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Hamiltonian property of intersection graph of zero
divisors of the ring Zn
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Abstract
The intersection graph G

′
Z(Zn) of zero-divisors of the ring Zn, the ring of integers modulo n is a simple undirected

graph with the vertex set is Z(Zn)
∗ = Z(Zn)\{0}, the set of all nonzero zero-divisors of the ring Zn and for any two

distinct vertices are adjacent if and only if their corresponding principal ideals have a nonzero intersection. We
determine some results concerning the necessary and sufficient condition for the graph G

′
Z(Zn) is Hamiltonian.

Also, we investigate for all values of for which the graph G
′
Z(Zn) is Hamiltonian and as an example we show that

how the results give as easy proof of the existence of a Hamilton cycle.
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1. Introduction
In 1736, Leonard Euler [10] starts the journey of Graph the-
ory with the famous problem Konigsberg bridge problem. A
graph is said to be Hamiltonian, if it posses a Hamilton cycle.
The Hamilton cycle problem is a NP-compete problem which
place a central role in graph theory and which has various
applications in computational theory, see [3, 11]. This Hamil-
ton problem traces its origin to the 1850’s, named for Sir
William Rowan Hamilton. Generally, the Hamilton problem
is considered to be determining the conditions under which a
graph contains a spanning cycle. Many authors have studied
the Hamilton cycles for several types of graphs and in which
those are refer [6, 13, 14].

The intersection graph is a graph that represents the pat-
tern of intersection of a family of sets. Let F = {A j : j ∈ J}
be a family of nonempty sets, then the intersection graph

G(F) defined on F as, for two distinct vertices Ai and A j are
adjacent whenever Ai∩A j 6= φ . Intersection graph was first
introduced by Bosak in 1965 for semigroup see [7], defined
as vertices are the sub semigroups of that semigroup and in
which two distinct vertices are adjacent if they have non trivial
intersection. Many researchers worked on these intersection
graphs by considering the members of F have different al-
gebraic structures and in which those see [8, 9, 17]. In [16],
the intersection graph G

′
Z(R) of zero-divisors of a finite com-

mutative ring R is a simple undirected graph whose vertices
are the nonzero zero-divisors of R and in which two distinct
vertices x and y are adjacent if and only if their corresponding
principal ideals having nonzero intersection. i.e., x is adja-
cent to y if and only if (x)∩ (y) 6= {0}, ∀x,y ∈V (G

′
Z(R)). In

this paper, we illustrate some results that shows the necessary
and sufficient condition for the intersection graph G

′
Z(Zn) is

Hamiltonian. Also, we investigate the problem of existence
of Hamilton cycles in the intersection graph G

′
Z(Zn) for all

characterizations of n.

2. Definitions and Notations
In this section, we consider the ring theoretic definitions
and notations from [1, 4]. The set of all elements in the
ring of integers modulo n, Zn can be partitioned into the dis-
joint union of zero-divisors and regular elements of Zn and
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which are denoted by Z(Zn) and Reg(Zn) = Zn \Z(Zn) respec-
tively. The set of all nonzero zero-divisors in Zn is denoted
by Z(Zn)

∗ = Z(Zn)\{0}. For an element x in Zn, the princi-
pal ideal generated by x is (x) = {xr : r ∈ Zn}. For further
definitions of ring theory, the reader may refer [12].

In [15], for every positive integer n > 1 can be written
as n = pα1

1 pα2
2 ...pαm

m , p1 < p2 < ... < pm are primes, αi is a
positive integer for every i = 1,2, ...,m and m > 1. The subset
D of Zn be the set of all non trivial proper divisors of n. i.e.,
D = {d : d|n and 1 < d < n}. The divisor function d(n) is the
cardinality of the set of all divisors of n. i.e., |D|= d(n)−2
and d(n) = (α1 +1)(α2 +1)...(αm +1). For any positive in-
teger m is called the least common multiple of a and b, if
m is a common multiple of a and b, and also m|m0 for any
common multiple m0 of a and b. We write m = lcm(a,b). For
the integers a,b and n > 0, if n divides the difference of a and
b, we denote that a is congruent to b modulo n and defined
as a≡ b(mod n). Otherwise, we denote that a is incongruent
to b modulo n and defined as a 6≡ b(mod n). For any positive
integer n is called a square free integer, if a positive integer d
with d2|n implies that d = 1. In particular, n > 1 is a square
free integer if and only if n = p1 p2...pm, p1 < p2 < ... < pm
are primes. For further definitions of number theory, see [2].
We consider the graph theoretic definitions and notations from
[5, 18]. For the graph G, the two distinct vertices x and y are
adjacent, write x− y. The graph G is called complete if there
exist an edge between every pair of two distinct vertices. A
complete graph with n vertices is denoted by Kn. A vertex in-
duced subgraph is a subgraph that can be obtained by deleting
a set of vertices. i.e., for the graph G the subgraph induced
with the vertex set T is denoted by < T >, < T >= G−T ,
where T = V (G)− T . A walk in a graph is an alternating
sequence of vertices and edges, which begins and ends with a
vertex. A trail is a walk in which all edges are distinct, and
also a path is a trail in which all vertices are distinct. The
graph G is said to be connected whenever there exist a path
between every pair of two distinct vertices, otherwise discon-
nected. A cycle is a 2-regular connected subgraph of a graph.
i.e., a closed path said to be a cycle. A collection of disjoint
cycles that includes all the vertices of the graph G is said to
be cycle factor of G. We denote cycle factor as the union of
cycles, i.e., C1∪C2∪ ...∪Cn where all cycle are disjoint and
each vertex of G belongs to some cycle Ci,∀16 i6 n. If t = 1,
then C1 is called Hamilton cycle of G. i.e., the cycle which
visits each vertex of the graph exactly once is called Hamilton
cycle of the graph. Also a graph is said to be Hamiltonian if it
has a Hamilton cycle. The following definition and results are
taken from [16].

Definition 2.1. The intersection graph G
′
Z(R) of a finite com-

mutative ring R with unity is a simple undirected graph whose
vertices are all the nonzero zero-divisors of R and in which two
distinct vertices are joined by an edge if and only if their corre-
sponding principal ideals having nonzero intersection. i.e., x
is adjacent to y if and only if (x)

⋂
(y) 6= 0, ∀x,y ∈V (G

′
Z(R)).

Theorem 2.2. For the ring Zn, order of the intersection graph

G
′
Z(Zn) is n−ϕ(n)−1.

Theorem 2.3. Let x and y be any two distinct nonzero zero-
divisors of a finite commutative ring Zn. Then the least com-
mon multiple of x and y is congruent to zero modulo n if and
only if x is not adjacent to y in G

′
Z(Zn).

Theorem 2.4. If n= p, p is prime, then the graph intersection
graph G

′
Z(Zn) does not exist.

Theorem 2.5. The graph G
′
Z(Zn) is complete if and only if

n = pm, p is prime and m > 1.

Theorem 2.6. If n can be written as a product of two distinct
primes p1 and p2, then the graph G

′
Z(Zn) is disconnected with

two components, which are complete with p2−1 and p1−1
vertices respectively.

Theorem 2.7. The graph G
′
Z(Zn) is connected, not complete

if and only if either of the following conditions is hold
(i) n can be written as a product of more than two primes.
(ii) n can be written as a product of at least two prime powers.

3. Hamilton cycle in the intersection
graph of zero divisors of the ring Zn

In this section, we show that the Intersection graph G
′
Z(Zn) of

zero-divisors of a finite commutative ring Zn is Hamiltonian
for those characterizations of n and not Hamiltonian for those
characterizations of n, for all n ∈ N. Let p be a prime. Then,
in view of Theorem 2.4, the graph G

′
Z(Zp) does not exist.

Theorem 3.1. The intersection graph G
′
Z(Zpm) is Hamilto-

nian if and only if m > 2.

Proof. Necessity. Suppose the graph G
′
Z(Zpm) is Hamiltonian.

But by the Theorem 2.5 the graph G
′
Z(Zpm) is complete. So,

there exist a Hamilton cycle C = (p,2p,3p, ..., pm− p) whose
length is pm−1−1 > 2. This shows m > 2.

Sufficiency. Let m > 2. Then, by Theorem 2.5, the graph
is complete with at least 3 vertices. Hence the graph G

′
Z(Zpm)

is Hamiltonian.

Example 3.2. For m = 3, the intersection graph G
′
Z(Z23) =

G
′
Z(Z8) having a Hamilton cycle C = (2,4,6) and is shown in

Fig. 1.

Figure 1. The graph G
′
Z(Z8).

Remark 3.3. The intersection graph G
′
Z(Zpm) is Hamiltonian

if and only if m = 2 for all p, except p ∈ {2,3}, since the
graphs G

′
Z(Z4) and G

′
Z(Z9) are not Hamiltonian.

Example 3.4. For m = 2, the Hamilton cycle C in the inter-
section graph G

′
Z(Z52) = G

′
Z(Z25) is C = (5,10,15,20) and

is shown in Fig. 2.
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Figure 2. The graph G
′
Z(Z25).

Notation 3.5. Let D be the set of all proper divisors of n. i.e.,
D= {d : d|n and 1< d < n} and Gi be the set of all non unit di-
visors of pα1

1 pα2
2 ...pαi−1

i−1 pαi−1
i pαi+1

i+1 ...pαm
m , for all i= 1,2, ...,m.

i.e., Gi = {d : d is a non unit divisor of pα1
1 pα2

2 ...pαi−1
i−1 pαi−1

i
pαi+1

i+1 ...pαm
m },∀1 6 i 6 m. Also H j, for all j = 0,1,2, ...,m are

H0 =
⋂

1≤i≤m

Gi,H j = G j−
⋃

0≤k≤ j−1

Hk,∀ j = 1,2, ...,m.

This shows that the cardinality of each H j, for all j =
0,1,2, ...,
m are |H0|=α1α2...αm−1, |H1|=α1(α2+1)(α3+1)...(αm
+1)−α1α2...αm, |Hk| = αk(αk+1 +1)(αk+2 +1)...(αm +1),
∀ k = 2,3, ...,m.

Theorem 3.6. For all i = 1,2, ...,m and j = 0,1, ...,m, then
the intersection graphs induced with the vertex sets Gi and
H j are complete induced subgraphs of the graph G

′
Z(Zn). In

particular, D is the disjoint union of H j, for all j = 0,1, ...,m.

Proof. From the notation of Gi, (d) contains an element
pα1

1 pα2
2 ...pαi−1

i−1 pαi−1
i pαi+1

i+1 ...pαm
m 6= 0, for every d ∈ Gi, for all

i = 1,2, ...,m. By the Definition 2.1 there exist an edge be-
tween every pair of two distinct vertices in the intersection
graph induced with the vertex set Gi, ∀1≤ i≤ m.

This shows that the intersection graph induced with the
vertex set Gi and H j is complete by Notations 3.5. To show
that D is the disjoint union of H j for all 0 ≤ j ≤ m, first we
prove that the set D can be written as the union of Gi for all
i = 1,2, ...,m.

We know that the set D = {d : d is a proper divisor of
pα1

1 pα2
2 ...pαm

m } and Gi = {d : d is a non unit divisor of pα1
1 pα2

2
...pαi−1

i−1 pαi−1
i pαi+1

i+1 ...pαm
m }, ∀1≤ i≤ m. i.e.,

G1 = {d : d is a non unit divisor of pα1−1
1 pα2

2 ...pαm
m },

G2 = {d : d is a non unit divisor of pα1
1 pα2−1

2 pαm
m },...,

Gm = {d : d is a non unit divisor of pα1
1 pα2

2 ...pαm−1
m }.

By the above construction of Gi’s, we have

D =
⋃

1≤i≤m

Gi.

From the notations of H0,H1,H2, ...,Hm, we have

H1 =G1−H0,H2 =G2−(H0∪H1), ...,H j =G j−
⋃

0≤k≤ j−1

Hk,

...,Hm = Gm−
⋃

0≤k≤m−1

Hk.

Hence D can be written as the disjoint union of H j, ∀ j =
0,1, ...,m.

Example 3.7. If n = 12, 12 = 22.3. Then D = {2,3,4,6},
G1 = {2,3,6},G2 = {2,4},H0 = {2},H1 = {3,6} and H2 =
{4}. Therefore, D is the disjoint union of H0, H1 and H2. The
subgraphs induced with vertex sets G1, G2, H0, H1, H2 and
the graph G

′
Z(Z12) are shown in the following Figs. [3-4].

Figure 3. The subgraphs induced with vertex sets G1, G2, H0,
H1 and H2 respectively.

Figure 4. The graph G
′
Z(Z12).

Definition 3.8. For every proper divisor d of n, Dd be the set
of all elements in the ring Zn such that whose principal ideal
is equal to principal ideal of d. i.e., Dd = {x ∈ Zn : (x) =
(d)},∀d ∈ D, where D be the set of all proper divisors of n.

Lemma 3.9. The intersection graph induced with the vertex
set Dd , for all d in D is a complete induced subgraph of the
graph G

′
Z(Zn).

Proof. By the Definition 3.8, for d ∈D we have (x) = (d) for
every x ∈ Dd . Clearly, d 6= 0, since d is a proper divisor of n.
Hence, there exists an edge between every pair of two distinct
vertices in the intersection graph with the vertex set Dd ,∀d ∈D
from the Definition 2.1. Hence the proof follows.

Theorem 3.10. Let n = pα1
1 pα2

2 ...pαm
m , m > 2. Then the inter-

section graph G
′
Z(Zn) is Hamiltonian.

Proof. The set D can be written as D = H0∪H1∪H2∪ ...∪
Hm, where Hi∩H j = /0 for distinct i and j varying from 0 to
m from Theorem 3.6. We shall prove that the graph G

′
Z(Zn) is

Hamiltonian. For this we construct a path P, which contains
vertices are the set of all elements in D as follows.

In H0 there is an edge between x01 = pα1−1
1 pα2−1

2 ...pαm−1
m

and x02 = pα1−2
1 pα2−1

2 ...pαm−1
m ; x02 and x03 = pα1−3

1 pα2−1
2 ...

pαm−1
m ;...; x0(|H0|−1) = p2 and x0|H0|= p1 again using Theorem

3.6.
Let x0|H0| in H0 and x11 = pα1−1

1 pα2
2 pα3−1

3 ...pαm−1
m in H1.

Since lcm(x0|H0|,x11) 6≡ 0(mod n), then there exist an edge
between x0|H0| and x11. Similarly in H0 there exist an edge
between x11 and x12 = pα1−2

1 pα2
2 pα3−1

3 ...pαm−1
m ; x12 and x13 =

pα1−3
1 pα2

2 pα3−1
3 ...pαm−1

m ;...; x1(|H1|−1) = p1 pαm
m and x1|H1| =

pαm
m in H1.

We can find an edge between x1|H1| in H1 and x21 =

pα1
1 pα3

3 ...pαm
m in H2. Because lcm(x1|H1|,x21) 6≡ 0(mod n).
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In H2, there is an edge between x21 and x22 = pα1
1 p2 pα3

3 ...
pαm

m ; x22 and x23 = pα1
1 p2

2 pα3
3 ...pαm

m ;...; x2(|H2|−1) = pα1
1 p2 and

x2|H2| = pα1
1 .

We have an edge between x2|H2| in H2 and x31 = pα1
1 pα2

2 pα3−1
3

pα4
4 ...pαm

m in H3 whereas lcm(x2|H2|,x31) 6≡ 0(mod n).
Continuing in this way, we get an edge between x(m−1)|Hm−1|

= pα1
1 pα2

2 ...pαm−2
m−2 in Hm−1 and xm1 = pα1

1 pα2
2 ...pαm−1

m−1 pαm−1
m in

Hm by considering lcm(xm−1|Hm−1|,xm1) 6≡ 0(mod n). In the
same way in H2 we can find an edge between xm1 and xm2 =
pα1

1 pα2
2 ...pαm−1

m−1 pαm−2
m ; xm2 and xm3 = pα1

1 pα2
2 ...pαm−1

m−1 pαm−3
m ;...

; xm(|Hm|−1) = pα1
1 pα2

2 ...pαm−1
m−1 pm and xm|Hm|= pα1

1 pα2
2 ...pαm−1

m−1
in Hm.

Thus we get a path P that joining all the elements D with
the initial vertex x01 and the terminal vertex xm|Hm| as follows
and also shown in Fig. 5.

P : x01,x02, ...,x0|H0|,x11,x12, ...,x1|H1|,x21,x22, ...,x2|H2|, ...,
xm−1|Hm−1|,xm1,xm2,xm|Hm|.

Figure 5. The path P.

The vertex set of the graph G
′
Z(Zn) is V (G

′
Z(Zn)) = {x ∈

Zn : (x) = (d),∀d ∈ D}.
Let Pd be the spanning path of the intersection graph in-

duced with the vertex set Dd ,∀d ∈ D by considering Lemma
3.9. Now, we replace Pd in place of d in the above path P.
Thus, we get a spanning path of the graph G

′
Z(Zn). Finally

we join the initial vertex x01 of the spanning path Px01 cor-
responding to the element x01 in H0 and the terminal vertex
n−xm|Hm| of the spanning path Pxm|Hm|

corresponding to the el-
ement xm|Hm| in Hm, because lcm(x01,n−xm|Hm|) 6≡ 0(mod/n)
and hence the graph G

′
Z(Zn) is Hamiltonian.

Remark 3.11. The set D can be written as the disjoint union
of H1,H2, ...,Hm from Theorem 3.6 when n is a square free
integer. Since H0 is empty from the notation of H0.

Theorem 3.12. Let n be s a square free integer except n 6= pq.
Then the intersection graph G

′
Z(Zn) is Hamiltonian.

Proof. Consider n = p1 p2...pm with m > 2. Then the set D
can be written as D = H1 ∪H2 ∪ ...∪Hm, Hi ∩H j = φ for
distinct i and j varying from 1 to m. Also |H1| = 2m−1− 1,
|H2|= 2m−2, |H3|= 2m−3, ..., |Hm−1|= 2 and |Hm|= 1.

Now, we construct a path P with the vertex set D follows.
In H1 there is an edge between x11 = p2 and x12 = p2 p3;

x12 and x13 = p2 p4;...; x1(2m−1−2) = pm−1 pm and x1(2m−1−1) =
pm. There exist an edge between x1(2m−1−1) in H1 and x21 =

p1 p3 p4...pm in H2, since lcm(x1(2m−1−1),x21) 6≡ 0(mod n).

Again, there exist an edge between x21 and x22 = p1 p4 p5...
pm; x22 and x23 = p1 p3 p5 p6...pm;...; x2(2m−2−1) = p1 p3 and
x2(2m−2) = p1 in H2. We have an edge between x2(2m−2) in
H2 and x31 = p1 p2 p4...pm in H3 whereas lcm(x2(2m−2),x31) 6≡
0(mod n).

Continuing in this way, we get an edge between x(m−1)2 =
p1 p2 p3...pm−2 in Hm−1 and xm1 = p1 p2 p3...pm−1 in Hm, be-
cause lcm(x(m−1)2,xm1) 6≡ 0(mod n).

Therefore, we get a path P whose vertices are the set of all
elements D with the initial vertex x11 and the terminal vertex
xm1 as follows and also shown in Fig. 6.

P : x11,x12, ...,x1(2m−1−1),x21,x22, ...,x2(2m−2), ...,x(m−1)2,xm1.

Figure 6. The path P.

Similarly in the Theorem 3.10, we replace the spanning
path Pd of the intersection graph induced with the vertex set
Dd ,∀d ∈ D in place of d in the above path P.

Thus we obtain a spanning path of the graph G
′
Z(Zn),

and finally we join the initial vertex x11 of the spanning path
Px11 corresponding to the element x11 in H1 and the terminal
vertex n− xm1 of the spanning path Pxm1 corresponding to the
element xm1 in Hm, since lcm(x11,n− xm1) 6≡ 0(mod n). This
completes the proof.

The following Example 3.13 illustrates an immediate con-
sequence of Theorem 3.12.

Example 3.13. Consider the intersection graph G
′
Z(Z30), where

30 = 2.3.5. Then D can be written as the disjoint union of H1,
H2 and H3, where D= {2,3,5,6,10,15}, H1 = {3,5,15},H2 =
{2,10} and H3 = {6}. We now construct a path P with ver-
tices are all the elements in D as follows.

In H1, there is an edge between 3 and 15; 15 and 5. Let 5
in H1 and 10 in H2. Then there exist an edge between 5 and
10, since lcm(5,10) 6≡ 0(mod 30). As same as in H1, we can
find an edge between 10 and 2 in H2. Again, let 2 in H2 and
6 in H3. Then, we have an edge between 2 and 6, because
lcm(2,6) 6≡ 0(mod 30).

Thus we get a path P whose vertices are all the elements
in D with the initial vertex 3 and the terminal vertex 6 as
P : 3,15,5,10,2,6 and is shown in the Fig. 7.

Figure 7. The path P.
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The spanning path Pd , for all d ∈ D are P2 : 2,4,8,14,16,
22,26,28, P3 : 3,9,21,27, P5 : 5,25, P6 : 6,12,18,24, P10 :
10,20, P15 : 15.

Now, we replace Pd in place of d in the above path P,
we get a spanning path of the graph G

′
Z(Z30) with the initial

vertex x11 = 3 and the terminal vertex 30−x31 = 24 as follows
and also shown in Fig. 8.

Spanning path of the graph G
′
Z(Z30),

P : 3,9,21,27,15,5,25,10,20,2,4,8,14,16,22,26,28,6,12,
18,24.

Figure 8. The spanning path of G
′
Z(Z30).

Finally, we join the initial vertex 3 and the terminal vertex
24, since lcm(3,24) 6≡ 0(mod 30). Thus we get a Hamilton cy-
cle in the graph G

′
Z(Z30). Also the intersection graph G

′
Z(Z30)

including its Hamilton cycle with thick lines is shown in Fig.
9.

Figure 9. The graph G
′
Z(Z30).

Remark 3.14. Theorem 3.10 is not sufficient for m = 2, it is
true for m > 2 only. Since every vertex in H1 is not adjacent
to every vertex in H2, when m = 2.

Now, we shall study the Hamilton property of graph G
′
Z(Zn)

for m = 2 and n 6= pq. Since the graph G
′
Z(Zpq) is never

Hamilton. Now, we prove the Hamiltonian property for n =
p2q and n 6= p2q, p < q are primes separately, since when
n = p2q and n 6= p2q then H consists of only one element and
more than one element respectively.

Theorem 3.15. If n = pα1
1 pα2

2 and n 6= p1 p2, p2q. Then the
intersection graph G

′
Z(Zn) Hamiltonian.

Proof. The set D can be written as the disjoint union of H0, H1
and H2 such that H0 = {x01,x02, ...,x0k} (assume), where k =
α1α2 − 2 > 1, H1 = {pα2

2 , p1 pα2
2 , p2

1 pα2
2 , ..., pα1−1

1 pα2
2 } and

H2 = {pα1
1 , pα1

1 p2, pα1
1 p2

2, ..., pα1
1 pα2−1

2 }.
We now construct a path P with vertices are all the ele-

ments in D as follows.

Let x01 in H0 and x11 = pα2
2 in H1. Then there exist an

edge between x01 and x11, since lcm(x01,x11) 6≡ 0(mod n).
In H1 there is an edge between x11 and x12 = p1 pα2

2 ;
x12 and x13 = p2

1 pα2
2 ;...; x1(α1−1) = pα1−2

1 pα2
2 and x1α1 =

pα1−1
1 pα2

2 .
Let x1α1 in H1 and x02 in H0, then lcm(x1α1 ,x02) 6≡ 0(mod n).

So, there exist an edge between x1α1 and x02.
Let x02 in H0 and x21 = pα1

1 in H2. There is an edge
between x02 and x21, whereas lcm(x02,x21) 6≡ 0(mod n).

Again, in H2, there exist an edge between x21 and x22 =

pα1
1 p2; x22 and x23 = pα1

1 p2
2;...; x2(α2−1) = pα1

1 pα2−2
2 and

x2α2 = pα1
1 pα2−1

2 .
If H0 consists of more than two elements, then consider

x2α2 in H2 and x03 in H0. So that there exists an edge between
x2α2 and x03, because lcm(x2α2 ,x03) 6≡ 0(mod n). Also there
exist an edge between x03 and x04; x04 and x05;...; x0(k−1) and
x0k.

Thus, we get a path P with the vertex set D having the
initial vertex x01 and the terminal vertex x2α2 , if H0 consists
of only two elements or x0k, if H0 consists of more than two
elements as follows and also shown in Figs. 10 and 11 respec-
tively.

P : x01, x11, x12,..., x1α1 , x02, x21, x22,..., x2α2 , if H0 consists
of only two elements or

P : x01, x11, x12,..., x1α1 , x02, x21, x22,..., x2α2 , x03, x04,...,
x0(k−1), x0k, if H0 consists of more than two elements.

Figure 10. The path P if H0 consists of only two elements.

Figure 11. The path P if H0 consists of more than two
elements.

Similarly in the Theorem 3.10, we replace the spanning
path Pd of the intersection graph induced with the vertex set
Dd , ∀d ∈ D in place of d in the above path P. Therefore we
get a spanning path of the intersection graph G

′
Z(Zn).

Finally we draw an edge between the initial vertex x01
of the spanning path Px01 corresponding to the element x01
in H0 and the terminal vertex n− x2α2 or n− x0k of the span-
ning path Px2α2

or Px0k corresponding to the element x2α2 or
x0k, if H0 consists of only two vertices or more than two ver-
tices respectively. Because lcm(x01,n− x2α2) 6≡ 0(mod n)
or lcm(x01,n− x0k) 6≡ 0(mod n) and hence the proof fol-
lows.
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Example 3.16. Consider the intersection graph G
′
Z(Z24), where

24 = 233. The set D can be written as the disjoint union
of H0, H1 and H2, where D = {2,3,4,6,8,12}, H0 = {2,4},
H1 = {3,6,12} and H2 = {8}. Similarly in Example 3.13, we
construct a path P with the vertex set D as follows.

Let x01 = 2 in H0 and x11 = 3 in H1. Then there exist an
edge between 2 and 3, since lcm(2,3) 6≡ 0(mod 24). In H1,
there is an edge between 3 and 6; 6 and 12 from Corollary
3.10. Let 12 in H1 and 4 in H0. So there is an edge between
12 and 4, since lcm(12,4) 6≡ 0(mod 24). Also we can find
an edge between 4 in H0 and 8 in H2, because lcm(4,8) 6≡
0(mod 24).

Thus we get path P with vertices are set of elements in
D and whose initial vertex 2 and the terminal vertex 8 as
P : 2,3,6,12,4,8, also shown in the Fig. 12. The spanning

Figure 12. The path P.

path Pd , for all d ∈ D are P2 : 2,10,14,22, P3 = 3,9,15,21,
P4 = 4,20, P6 = 6,18, P8 = 8,16, P12 = 12. We replace Pd
in place of d in the path P, we find a spanning path of the
graph G

′
Z(Z24) with the initial vertex 2 and the terminal vertex

24−8 = 16 as follows and also shown in Fig. 13.
Spanning path of the graph G

′
Z(Z24) : 2,10,14,22,3,9,15,

21,6,18,12,4,20,8,16.

Figure 13. The spanning path of G
′
Z(Z24).

Finally, we join the initial vertex 2 and the terminal vertex
16 in the spanning path, since lcm(2,16) 6≡ 0(mod 24). Also
the intersection graph G

′
Z(Z24) including its Hamilton cycle

with thick lines is shown in Fig. 14.

Figure 14. The graph G
′
Z(Z24).

Remark 3.17. The proof of Theorem 3.15 is not sufficient
for n = p2q. Because in this case it is not possible to draw

a closed path with the vertex set D, since H0 consists of only
one element p.

Theorem 3.18. If n = p2q, p < q are primes. Then the inter-
section graph G

′
Z(Zn) is Hamiltonian.

Proof. We have the set D can be written as the disjoint union
of H0, H1 and H2 such that H0 = {p}, H1 = {q, pq} and
H2 = {p2}. We now construct a trail P with the vertex D as
follows.

Consider p in H0 and q in H1. Then there exist an edge
between p and q, because lcm(p,q) 6≡ 0(mod n). There ex-
ist an edge between q and qp in H1. Let qp in H1 and p
in H0. So there exist an edge between qp and p whereas
lcm(qp, p) 6≡ 0(mod n). Let p in H0 and p2 in H2, then
lcm(p, p2) 6≡ 0(mod n) and thus there exist an edge between
p and p2.

Thus, we get a trail P whose vertex set D with the initial
vertex p and the terminal vertex p2 as P : p,q, pq, p, p2 and
also shown in Fig. 15. We construct the spanning path of the

Figure 15. The trail P.

graph G
′
Z(Zn) by replacing q,qp and p2 by Pq, Pqp and Pp2 ,

also repetition of p by Pp−{p} in the above trail P, here Pd
is the spanning path of the intersection graph induced with
the vertex set Dd , ∀d ∈ D. Finally, we join the initial vertex
p and the terminal vertex n− p2 of the spanning path Pp2

corresponding to the element p2 in H2, because lcm(p,n−
p2) 6≡ 0(mod n). Thus we a Hamilton cycle of the graph
G
′
Z(Zn).

Example 3.19. Consider the graph G
′
Z(Z12), where 12 = 223.

Then D can be written as the disjoint union of H0, H1 and
H2 such that D = {2,3,4,6}, H0 = {2}, H1 = {3,6} and
H2 = {4}. We construct a trail P with the vertex set D as
follows.

Let 2 in H0 and 3 in H1. Then there exist an edge between
2 and 3, since lcm(2,3) 6≡ 0(mod 12). In H1, there exist an
edge between 3 and 6. Let 6 in H1 and 2 in H0. So there is an
edge between 6 and 2, because lcm(6,2) 6≡ 0(mod 12). Also
we can find an edge between 2 in H0 and 4 in H2, whereas
lcm(2,4) 6≡ 0(mod 12).

Now, we get the trail P with vertices are all the elements in
D whose initial vertex 2 and terminal vertex 4 as P : 2,3,6,2,4
and also shown in the Fig. 16. The spanning path Pd , for all

Figure 16. The trail P.
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d ∈ D are P2 : 2,10, P3 : 3,9, P4 : 4,8, P6 : 6. Now we replace
P3, P4, P6 in place of 3, 4, 6 and also P2−{2} in place of
repetition of 2 in the above trail P. Thus, we find a spanning
path of the graph G

′
Z(Z12) with the initial vertex 2 and the

terminal vertex 12−4 = 8 as follows. Also shown in Fig. 17.
Spanning path of the graph G

′
Z(Z12) : 2,3,9,6,10,4,8.

Figure 17. The spanning path of G
′
Z(Z12).

Finally, we join the initial vertex 2 and the terminal vertex
8 in the spanning path, since lcm(2,8) 6≡ 0(mod 12). The
intersection graph G

′
Z(Z12) including its Hamilton cycle with

thick lines is shown in Fig. 18.

Figure 18. The graph G
′
Z(Z12).
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