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General solution and generalized Ulam - Hyers
stability of ri− type n dimensional quadratic-cubic
functional equation in random normed spaces:
Direct and fixed point methods
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Abstract
In this paper, the authors introduce and establish the general solution and generalized Ulam- Hyers stability of a
ri type n− dimensional Quadratic-Cubic functional equation
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1. Introduction
In 1940, Ulam [30] at the University of Wiscosin proposed
the following stability problem:

A basic question in the theory of functional equations is
as follows: when is it true that a function, which approxi-
mately satisfies a functional equation, must be close to an



General solution and generalized Ulam - Hyers stability of ri− type n dimensional quadratic-cubic functional equation
in random normed spaces: Direct and fixed point methods — 163/176

exact solution of the equation?
In 1941, D. H. Hyers [12] gave an affirmative answer to

the question of S.M. Ulam for Banach spaces. In 1950, T.
Aoki [2] was the second author to treat this problem for ad-
ditive mappings. In 1978, Th.M. Rassias [24] succeeded in
extending Hyers’ Theorem by weakening the condition for the
Cauchy difference controlled by (||x||p + ||y||p), p ∈ [0,1), to
be unbounded. In 1982, J.M. Rassias [23] replaced the factor
||x||p + ||y||p by ||x||p||y||q for p,q ∈ R. A generalization of
all the above stability results was obtained by P. Gavruta [8]
in 1994 by replacing the unbounded Cauchy difference by
a general control function ϕ(x,y). In 2008, a special case
of Gavruta’s theorem for the unbounded Cauchy difference
was obtained by K.Ravi etal., [26] by considering the sum-
mation of both the sum and the product of two p− norms.
These terminologies are also applied to the folder of other
functional equations and it has been extensively investigated
by a number of authors and there are countless remarkable
results pertaining to this problem together with mixed type
functional equations (see[1, 13, 17, 19, 25]) and references
cited there in.

The functional equation

f (x+ y)+ f (x− y) = 2 f (x)+2 f (y) (1.1)

is related to a symmetric bi-additive mapping (see[1, 19]). It
is natural that this equation is called a quadratic functional
equation. In particular, every solution of the quadratic equa-
tion (1.1) is said to be a quadratic mapping. K.W.Jun and
H.M.Kim [15] considered the following functional equation

f (2x+y)+ f (2x−y)= 2 f (x+y)+2 f (x−y)+12 f (x) (1.2)

which is called a cubic functional equation and every solution
of the cubic functional equation is said to be a cubic map-
ping. G.H.Kim, H.Y.Shin [20] introduced and investigated
the generalized Ulam-Hyers Stability of the following more
generalized cubic functional equation

f (rx+ sy)+ f (rx− sy) = rs2 f (x+ y)+ rs2 f (x− y)

+2r(r2− s2) f (x) (1.3)

where r 6=±1,0, s are real numbers. In 2003, I.S.Chang and
Y.S.Jung [5], investigated the solution and stability of the
functional equation

6 f (x+ y)+6 f (x− y)+4 f (3y) = 3 f (x+2y)

−3 f (x−2y)+9 f (2x) (1.4)

deriving from cubic and quadratic functions. Recently the
fuzzy stability of (1.3) was discussed by Z.H.Wang and W.X.Zhang
[31]. Yeol Je Cho et.al., [7] established the general solution
and stability of generalized mixed type quadratic-cubic func-

tional equations

f (x+ ky)+ f (x− ky) = k2 f (x+ y)

+ k2 f (x− y)+
2(k2−1)
k2(k−2)

f (kx)

− (k3− k2− k+1)
2(k−1)

f (2x)+ ˜f (2y)−8 ˜f (y)

(1.5)

where ˜f (y) = f (y)− f (−y) for fixed integers k with k 6=
0,±1,2 in Random Normed Spaces.

Recently M. Arunkumar and P. Agilan [3] introduced and
investigated the solution and stability of generalized Ulam-
Hyers Stability of a ri type n-dimensional Additive Quadratic
functional equation
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where ri and n are positive integers with n≥ 2 in quasi beta
normed spaces.

In this paper, the authors establish the general solution and
generalized Ulam- Hyers stability of a ri type n− dimensional
Quadratic-Cubic functional equation
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where r2i,r2i+1 ∈ R−{0} ,(i = 0,1,2 · · ·n) and n is a positive
integer in Random normed spaces .

In Section 2, the general solution of the functional equa-
tion (1.7) is given, In Section 3, basic definition and prelimi-
naries of Random normed space is present, In Section 4, the
generalized Ulam - Hyers stability of the functional equation
(1.7) is proved via Hyers method.
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2. General Solution
In this section, we present the general solution of the func-
tional equation (1.7). Through out this section let X and Y be
real vector spaces.

Lemma 2.1. An even function f : X→Y satisfies the quadratic
functional equation (1.1) if and only if f : X → Y satisfies the
functional equation (1.7) for all x0,x1, . . . ,x2n,x2n+1 ∈ X.

Proof. Assume f : X → Y satisfies the functional equation
(1.7). Using evenness of f in (1.7), we arrive
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we arrive (1.1). Conversely, Let f : X → Y satisfies (1.1).

Letting x = y = 0 in (1.1), we get f (0) = 0. Replacing y by x
in (1.1), we get
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for all x ∈ X . In general for any positive integer a, we have
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for all x ∈ X . With the help of (2.13), (2.12) can be written as
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on both sides of (2.14), and using evenness of f , we reach (1.7)
for all x0,x1, . . . ,x2n,x2n+1 ∈ X . Hence the proof is complete.

Lemma 2.2. An odd function f : X → Y satisfies the cubic
functional equation (1.3) where r 6=±1,0, s are real numbers
if and only if f : X → Y satisfies the functional equation (1.7)
for all x0,x1, . . . ,x2n,x2n+1 ∈ X.

Proof. Assume f : X → Y satisfies the functional equation
(1.7). Using oddness of f in (1.7), we arrive
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for all x0,x1, . . . ,x2n,x2n+1 ∈ X . Substituting
(x0,x1, . . . ,x2n,x2n+1) by (0, . . . ,0,0) in (2.16), we get f (0) =
0. Replacing

(x0,x1, . . . ,x2n,x2n+1) by (x0,x1,0, . . . ,0,0) in (2.16),we have

f (r0x0 + r1x1) =
r0r2

1
2

[ f (x0 + x1)+ f (x0− x1)]

+
r2

0r1

2
[ f (x0 + x1)− f (x0− x1)]

− (r0r2
1− r3

0) f (x0)− (r2
0r1− r3

1) f (x1) (2.17)

for all x0,x1 ∈ X . If we put x1 by 0 in (2.17), we obtain

f (r0x0) = r3
0 f (x0) (2.18)

for all x0 ∈ X . Again, if we put x0 by 0 in (2.17) and using
oddness of f , we get

f (r1x1) = r3
1 f (x1) (2.19)

for all x1 ∈ X . Setting x1 by −x1 and using oddness of f in
(2.17), we reach

f (r0x0− r1x1) =
r0r2

1
2

[ f (x0− x1)+ f (x0 + x1)]

+
r2

0r1

2
[ f (x0− x1)− f (x0 + x1)]

− (r0r2
1− r3

0) f (x0)− (r2
0r1 + r3

1) f (x1) (2.20)

for all x0,x1 ∈ X . Adding (2.17) and (2.20), we arrive (1.3) in
the form of

f (r0x0 + r1x1)+ f (r0x0− r1x1) = r0r2
1 f (x0 + x1)

+ r0r2
1 f (x0− x1)+2r0(r2

0− r2
1) f (x0)

(2.21)

for all x0,x1 ∈ X . where r0 6= ±1,0, r1 are real numbers.
Hence f Satisfies (1.3).
Again, replacing (x0,x1,x2,x3 . . . ,x2n,x2n+1) by (0,0,x2,x3, . . . ,0,0)
in (2.16), we have

f (r2x2 + r3x3) =
r2r2

2
2

[ f (x2 + x3)+ f (x2− x3)]

+
r2

2r3

2
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− (r2r2
3− r3

2) f (x2)− (r2
2r3− r3

3) f (x3)
(2.22)

for all x2,x3 ∈ X . It follows from the steps (2.18) to (2.21),
we have (1.3) in the form of

f (r2x2 + r3x3)+ f (r2x2− r3x3) = r2r2
3 f (x2 + x3)

+ r2r2
3 f (x2− x3)+2r2(r2

2− r2
3) f (x2)

(2.23)

for all x2,x3 ∈ X . where r2 6=±1,0 and r3 are real numbers.
By continuing this manner, finally replacing
(x0,x1, . . . ,x2n,x2n+1) by
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( 0, . . . ,0︸ ︷︷ ︸
2n−1times

,x2n,x2n+1)

in (2.16), we have

f (r2nx2n + r2n+1x2n+1)

=
r2nr2

2n+1

2
[ f (x2n + x2n+1)+ f (x2n− x2n+1)]

+
r2

2nr2n+1

2
[ f (x2n + x2n+1)− f (x2n− x2n+1)]

− (r2nr2
2n+1− r3

2n) f (x2n)

− (r2
2nr2n+1− r3

2n+1) f (x2n+1) (2.24)

for all x2n,x2n+1 ∈ X . Again, It follows from the steps (2.18)
to (2.21), we have (1.3) in the mold of

f (r2nx+ r2n+1y)+ f (r2nx− r2n+1y)

= r2nr2
2n f (x+ y)+ r2nr2

2n+1 f (x− y)

+2r2n(r2
2n− r2

2n+1) f (x) (2.25)

for all x2n,x2n+1 ∈ X .
where r2n 6=±1,0 and r2n+1 are real numbers.

Conversely, assume f : X → Y satisfies the functional
equation (1.3). Substituting (x0,x1) by (0,0) in (2.21), we get
f (0) = 0. Replacing (x0,x1) by (x0,0) in (2.21), we have

f (r0x0) = r3
0 f (x0) (2.26)

for all x0 ∈ X . Replacing x0 by r1x1 and x1 by r0x0 in (2.21),
and dividing the resultant by r0r2

1, we obtain

f (r1x1 + r0x0)+ f (r1x1− r0x0)

= r2
0r1 [ f (x1 + x0)+ f (x1− x0)]

+2r1(r2
0− r2

1) f (x1) (2.27)

for all x0,x1 ∈ X . Again, replacing x0 by x1 and x1 by x0 and
using oddness of f in (2.27), we get

f (r0x0 + r1x1) = f (r0x0 + r1x1)

− r2
0r1 [ f (x0 + x1)− f (x0− x1)]

+2r1(r2
0− r2

1) f (x1) (2.28)

for all x0,x1 ∈ X . Substituting (2.28) in (2.27), we arrive

f (r0x0 + r1x1) =
r0r2

1
2

[ f (x0 + x1)+ f (x0− x1)]

+
r2

0r1

2
[ f (x0 + x1)− f (x0− x1)]

− (r0r2
1− r3

0) f (x0)− (r2
0r1− r3

1) f (x1)
(2.29)

for all x0,x1 ∈ X . By applying the procedure from (2.26) to
(2.29), in (2.23) and (2.25), we have the following equations

f (r2x2 + r3x3) =
r2r2

3
2

[ f (x2 + x3)+ f (x2− x3)]

+
r2

2r3

2
[ f (x2 + x3)− f (x2− x3)]

− (r2r2
3) f (x2)− (r2

2r3− r3
3) f (x3) (2.30)

for all x2,x3 ∈ X , Finally

f (r2nx2n + r2n+1x2n+1)

=
r2nr2

2n+1

2
[ f (x2n + x2n+1)+ f (x2n− x2n+1)]

+
r2

2nr2n+1

2
[ f (x2n + x2n+1)− f (x2n− x2n+1)]

− (r2nr2
2n+1− r3

2n) f (x2n)

− (r2
2nr2n+1− r3

2n+1) f (x2n+1) (2.31)

for all x2n,x2n+1 ∈ X . Adding (2.29), (2.30) and (2.31), we
reach

n

∑
i=0

[ f (r2ir2i + r2i+1x2i+1)]

=
n

∑
i=0

[
r2ir2

2i+1

2
( f (x2i + x2i+1)+ f (x2i− x2i+1))

+
r2

2ir
2
2i+1

2
( f (x2i + x2i+1)− f (x2i− x2i+1))

−(r2ir2
2i+1− r3

2i) f (x2i)− r2
2ir2i+1− r3

2i+1) f (x2i+1)
]

(2.32)

for all x0, . . . ,x2n,x2n+1 ∈ X . Since f is an odd function, it
can be written as

f (x) =
1
2
( f (x)− f (−x)) (2.33)

for all x ∈ X . With the help of (2.33), (2.32) can be remodify
as,

n

∑
i=0

[ f (r2ix2i + r2i+1x2i+1)]

=
n

∑
i=0

[
r2ir2

2i+1

4
[[( f (x2i + x2i+1)+ f (x2i− x2i+1))]

− [ f (−(x2i + x2i+1))+ f (−(x2i− x2i+1)))]]

+
r2

2ir2i+1

4
[[( f (x2i + x2i+1)− f (x2i− x2i+1))]

− [( f (−(x2i + x2i+1))− f (−(x2i− x2i+1)))]]

−
r2ir2

2i+1− r3
2i

2
[ f (x2i)− f (−x2i)]

−
(r2

2ir2i+1− r3
2i+1)

2
[ f (x2i+1)− f (−x2i+1)]

]
(2.34)

for all x0, . . . ,x2n,x2n+1 ∈ X . Adding the followings terms
n

∑
i=1

r2
2i
2

f (x2i),

n

∑
i=1

r2
2i+1

2
f (x2i+1),

n

∑
i=0

r2ir2i+1

4
( f (x2i + x2i+1)− f (x2i− x2i+1))

(2.35)
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on both sides of (2.34), and using oddness of f , we reach (1.7)
for all x0, . . . ,x2n,x2n+1 ∈ X . Hence the proof is completed.

3. Preliminaries of Random Normed
Spaces

In the sequel, we adopt the usual terminology, notations and
conventions of the theory of random normed spaces as in
[6, 28, 29].

Throughout this paper, ∆+ is the space of distribution func-
tions, that is, the space of all mappings F : R∪{−∞,∞} →
[0,1] , such that F is leftcontinuous and nondecreasing on
R,F(0) = 0 and F(+∞) = 1. D+ is a subset of ∆+ consist-
ing of all functions F ∈ ∆+ for which l−F(+∞) = 1, where
l− f (x) denotes the left limit of the function f at the point x,
that is, l− f (x) = lim

t→x−
f (t). The space ∆+ is partially ordered

by the usual pointwise ordering of functions, that is, F ≤ G if
and only if F(t)≤ G(t) for all t ∈ R. The maximal element
for ∆+ in this order is the distribution function ε0 given by

ε0(t) =
{

0, i f t ≤ 0,
1, i f t > 0. (3.1)

Definition 3.1. [28] A mapping τ : [0,1]× [0,1]→ [0,1] is
called a continuous triangular norm (briefly, a continuous
t−norm) if τ satisfies the following conditions:

(a) τ is commutative and associative;

(b) τ is continuous;

(c) τ(a,1) = a for all a ∈ [0,1];

(d) τ(a,b) ≤ τ(c,d) whenever a ≤ c and b ≤ d for all
a,b,c,d ∈ [0,1] .

Typical examples of continuous t−norms are τP(a,b) =
ab,τM(a,b) = min(a,b) and τL(a,b) = max(a+b−1,0) (the
Lukasiewicz t−norm). Recall (see [10, 11]) that if τ is a
t−norm and xn is a given sequence of numbers in [0,1] , then
τn

i=1xn+i is defined recurrently by

τ
1
i=1xi = x1 and τ

n
i=1xi = τ

(
τ

n−1
i=1 xi,xn

)
f or n≥ 2.

τ∞
i=nxi is defined as τ∞

i=1xn+i. It is known [11] that, for the
Lukasiewicz t−norm, the following implication holds:

lim
n→∞

(τL)
∞
i=1xn+i = 1⇐⇒

∞

∑
n=1

(1− xn)< ∞ (3.2)

Definition 3.2. [29] A random normed space (briefly, RN-
space) is a triple (X ,µ,τ), where X is a vector space, τ is
a continuous t−norm and µ is a mapping from X into D+

satisfying the following conditions:

(RN1) µx(t) = ε0(t) for all t > 0 if and only if x = 0;

(RN2) µα x(t) = µx(t/|α|) for all x ∈ X, and α ∈ R with α 6=
0;

(RN3) µx+y(t + s)≥ τ (µx(t),µy(s)) for all x,y ∈ X and t,s≥
0.

Example 3.3. Every normed spaces (X , || · ||) defines a ran-
dom normed space (X ,µ,τM), where

µx(t) =
t

t + ||x||

and τM is the minimum t−norm. This space is called the
induced random normed space.

Definition 3.4. Let (X ,µ,τ) be a RN-space.

(1) A sequence {xn} in X is said to be convergent to a point
x ∈ X if, for any ε > 0 and λ > 0, there exists a positive
integer N such that µxn−x(ε)> 1−λ for all n≥ N.

(2) A sequence {xn} in X is called a Cauchy sequence if,
for any ε > 0 and λ > 0, there exists a positive integer
N such that µxn−xm(ε)> 1−λ for all n≥ m≥ N.

(3) A RN-space (X ,µ,τ) is said to be complete if every
Cauchy sequence in X is convergent to a point in X.

Theorem 3.5. If (X ,µ,τ) is a RN-space and {xn} is a se-
quence in X such that xn→ x, then lim

n→∞
µxn(t) = µx(t) almost

everywhere.

Hereafter, throughout this paper, let us consider U be a
linear space and (V,µ,τ) is a complete RN-space. Define a
mapping f : U →V by

f (x0,x1, · · · ,x2n,x2n+1)

=
n

∑
i=0

[ f (r2ix2i + r2i+1x2i+1)]

−
n

∑
i=0

 1

∑
u=0

 1

∑
v=0

1
4

 r2ir2i+1(−1)u+v

+r2ir2
2i+1(−1)u

+r2
2ir2i+1(−1)v


( f ((−1)ux2i +(−1)vx2i+1))

]
−

(
r3

2i + r2
2i− r2ir2

2i+1

4

)
f (x2i)

−

(
r2

2i− r3
2i + r2ir2

2i+1

4

)
f (−x2i)

−

(
r3

2i+1 + r2
2i+1− r2

2ir2i+1

4

)
f (x2i+1)

−

(
r2

2i+1− r3
2i+1 + r2

2ir2i+1

4

)
f (−x2i+1)

)
for all x0,x1, . . . ,x2n,x2n+1 ∈U .

4. Stability Results : Direct Method
In this section, the generalized Ulam –Hyers stability of the
functional equation (1.7) using direct method is provided.
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Theorem 4.1. Let j =±1. Let f : U→V be an even mapping
for which there exist a function Ψ : U2n+1 → D+ with the
condition

lim
n→∞

τ
∞
i=0Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωn jx,Ωn jx)

(
Ω

2(i+1) j t
)
= 1

= lim
n→∞

ΨΩn jx0,Ωn jx1,··· ,Ωn jx2n,Ωn jx2n+1

(
Ω

2n j t
)

(4.1)

such that the functional inequality such that

Λ f (x0,x1,··· ,x2n,x2n+1)(t)≥Ψx0,x1,··· ,x2n,x2n+1(t) (4.2)

for all x0,x1, . . . ,x2n,x2n+1 ∈ U and all t > 0. Then there
exists a unique quadratic mapping Q : U →V satisfying the
functional equation (1.7) and

ΛQ(x)− f (x)(t)≥ τ
∞
i=0Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωn jx,Ωn jx)

(
Ω

2(i+1) j t
)

(4.3)

for all x ∈U and all t > 0. The mapping Q(x) is defined by

ΛQ(x)(t) = lim
n→∞

Λ f (Ωn jx)
Ω2n j

(t) (4.4)

for all x ∈U and all t > 0.

Proof. Assume j = 1. Setting (x0,x1, . . . ,x2n,x2n+1)
by ( 0, · · · ,0︸ ︷︷ ︸

2n−1 times

,x,x) and using evenness

of f in (4.2), we get

Λ f [(r2n+r2n+1)x]−r2
2n f (x)−r2

2n+1 f (x)− r2nr2n+1
2 f (2x)(t)

≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,x,x)(t) (4.5)

for all x ∈U and all t > 0. Using (2.8) in (4.5), we have

Λ f [(r2n+r2n+1)x]−r2
2n f (x)−r2

2n+1 f (x)−2r2nr2n+1 f (x)(t)

≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,x,x)(t) (4.6)

for all x∈U and all t > 0. The above inequality can be written
as

Λ f [(r2n+r2n+1)x]−(r2n+r2n+1)2 f (x)(t)≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,x,x)(t) (4.7)

for all x ∈U and all t > 0. Define Ω = r2n + r2n+1 in (4.7), it
can be written as

Λ f (Ωx)−(Ω)2 f (x)(t)≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,x,x)(t) (4.8)

for all x ∈U and all t > 0. It follows from (4.8) and (RN2),
we have

Λ f (Ωx)
Ω2 − f (x)

( t
Ω2

)
≥Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,x,x)(t) (4.9)

for all x ∈U and all t > 0. Replacing x by Ωkx in (4.9), we
arrive

Λ f (Ωk+1x)
Ω2 − f (Ωkx)

( t
Ω2

)
≥Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωkx,Ωkx)(t) (4.10)

for all x ∈U and all t > 0. It follows from (4.10) that

Λ f (Ωk+1x)

Ω2(k+1) −
f (Ωkx)
Ω2k

( t
Ω2(k+1)

)
≥Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωkx,Ωkx)(t) (4.11)

for all x ∈U and all t > 0. Substitute t by Ω2(k+1) in (4.11),
we arrive

Λ f (Ωk+1x)

Ω2(k+1) −
f (Ωkx)
Ω2k

(t)≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωkx,Ωkx)

(
Ω

2(k+1)t
)

(4.12)

for all x ∈U and all t > 0. It is easy to see that

f (Ωkx)
Ω2k − f (x) =

n−1

∑
i=0

f (Ωi+1x)
Ω2(i+1) −

f (Ωix)
Ω2i (4.13)

for all x ∈U . From equations (4.12) and (4.13), we have

Λ f (Ωkx)
Ω2k − f (x)

(t)

= Λ
∑

k−1
i=0

f (Ωi+1x)

Ω2(i+1) −
f (Ωix)
Ω2i

(t)

≥ τ
k−1
i=0 Λ f (Ωi+1x)

Ω2(i+1) −
f (Ωix)
Ω2i

( t
Ω2(i+1)

)
≥ τ

k−1
i=0 Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1times

,Ωk jx,Ωk jx)

(
Ω

2(i+1) j t
)

(4.14)

for all x ∈U and all t > 0. In order to prove the convergence
of the sequence

{
f (Ωkx)

Ω2k

}
, we replace x by Ωmx in (4.14), we

arrive

Λ f (Ωk+mx)

Ω2(k+m)
− f (x)

(t)

≥ τ
k−1
i=0 Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωi+mx,Ωi+mx)

(
Ω

2(i+m+1) j t
)

= τ
m+k−1
i=m Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωix,Ωix)

(
Ω

2(i+1) j t
)

→ 1 as m → ∞ (4.15)

for all x ∈ U and all t > 0. Thus
{

f (Ωkx)
Ω2k

}
is a Cauchy

sequence. Since V is complete there exists a mapping Q :
U →V , we define

ΛQ(x)(t) = lim
n→∞

Λ f (Ωkx)
Ω2k

(t)

for all x ∈U and all t > 0. Letting m = 0 and n→∞ in (4.14),
we arrive (4.3) for all x ∈U and all t > 0. Now, we have to
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show that Q satisfies (1.7), replacing (x0,x1, . . . ,x2n,x2n+1) by
(Ωkx0,Ω

kx1, . . . ,Ω
kx2n,Ω

kx2n+1), we have

Λ f (Ωkx0,Ωkx1,··· ,Ωkx2n,Ωkx2n+1)
(t)

≥Ψ
Ωkx0,Ωkx1,··· ,Ωkx2n,Ωnx2n+1

(t) (4.16)

for all x ∈U and all t > 0. Taking k→ ∞ both sides, we find
that Q satisfies (1.7) for all x0,x1, . . . ,x2n,x2n+1 ∈U . There-
fore the mapping Q : X → Y is Quadratic.

Finally, to prove the uniqueness of the quadratic function
Q subject to (4.4), let us assume that there exist a quadratic
function Q′ which satisfies (4.3) and (4.4). Since Q(Ωkx) =
Ω2kQ(x) and Q′(Ωkx) = Ω2kQ′(x) for all x ∈U and all n ∈N,
it follows from (4.4) that

ΛQ(x)−Q′(x)(2t)

= ΛQ(Ωkx)−Q′(Ωkx)(2Ω
2kt)

= ΛQ(Ωkx)− f (Ωkx)+ f (Ωkx)−Q′(Ωkx)(2Ω
2kt)

≥ τ

(
ΛQ(Ωkx)− f (Ωkx)(Ω

2kt),Λ f (Ωkx)−Q′(Ωkx)(Ω
2kt)
)

= τ

τ
∞
i=0Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωi+1x,Ωi+1x)

(
Ω

2(i+1) j t
)
,

τ
∞
i=0Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωi+1x,Ωi+1x)

(
Ω

2(i+1) j t
)

→ 1 as n → ∞

for all x ∈U and all t > 0. Hence Q is unique.
For j =−1, we can prove a similar stability result.

This completes the proof of the theorem.

Corollary 4.2. Let Φ and s be nonnegative real numbers.
Let an even function f : U →V satisfies the inequality

Λ f (x0,x1,··· ,x2n,x2n+1)(t)

≥


ΨΦ(t),
Ψ

Φ∑
2n+1
i=0 ||xi||s(t), s 6= 2;

Ψ
Φ(∏

2n+1
i=0 ||xi||s+∑

2n+1
i=0 ||xi||(2n+1)s)(t), s 6= 2

(2n+1) ;

(4.17)

for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0.
Then there exists a unique quadratic function Q : U →V such
that

Λ f (x)−Q(x)(t)≤


Ψ Φ

|Ω2−1|
(t),

Ψ 2Φ||x||s
|Ω2−Ωns |

(t),

Ψ 2Φ||x||(2n+1)s

|Ω2−Ω(2n+1)s|

(t),
(4.18)

for all x ∈ U and all t > 0.

Theorem 4.3. Let j =±1. Let f : U→V be an odd mapping
for which there exist a function Ψ : U2n+1 → D+ with the
condition

lim
n→∞

τ
∞
i=0Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωn jx,Ωn jx)

(
Ω

3(i+1) j t
)
= 1

= lim
n→∞

ΨΩn jx0,Ωn jx1,··· ,Ωn jx2n,Ωn jx2n+1

(
Ω

3n j t
)

(4.19)

such that the functional inequality such that

Λ f (x0,x1,··· ,x2n,x2n+1)(t)≥Ψx0,x1,··· ,x2n,x2n+1(t) (4.20)

for all x0,x1, . . . ,x2n,x2n+1 ∈U and all t > 0. Then there exists
a unique cubic mapping C : U →V satisfying the functional
equation (1.7) and

ΛC(x)− f (x)(t)≥ τ
∞
i=0Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1 times

,Ωn jx,Ωn jx)

(
Ω

3(i+1) j t
)

(4.21)

for all x ∈U and all t > 0. The mapping Q(x) is defined by

ΛC(x)(t) = lim
n→∞

Λ f (Ωn jx)
Ω3n j

(t) (4.22)

for all x ∈U and all t > 0.

Proof. Assume j = 1. Setting (x0,x1, . . . ,x2n,x2n+1) by
( 0, · · · ,0︸ ︷︷ ︸

2n−1 times

,x,x) and using oddness of f in (4.20), we get

Λ
f [(r2n+r2n+1)x]−

r2nr2
2n+1
2 f (2x)−

r2
2nr2n+1

2 f (2x)
(4.23)

−(r2nr2
2n+1−r3

2n) f (x)−(r2
2nr2n+1−r2

2n+1) f (x)

(
t
)

≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,x,x)(t) (4.24)

for all x ∈U and all t > 0. Using (2.18) in (4.23), we have

Λ f [(r2n+r2n+1)x]−r3
2n f (x)−r3

2n+1 f (x)−3r2
2nr2n+1 f (x)−3r2nr2

2n+1 f (x)(t)

≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,x,x)(t) (4.25)

for all x∈U and all t > 0. The above inequality can be written
as

Λ f [(r2n+r2n+1)x]−(r2n+r2n+1)3 f (x)(t)≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,x,x)(t) (4.26)

for all x ∈U and all t > 0. Define Ω = r2n + r2n+1 in (4.26),
we get

Λ f (Ωx)−(Ω)3 f (x)(t)≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,x,x)(t) (4.27)

for all x ∈U and all t > 0.

The rest of the proof is similar to that of Theorem 4.1 .
Hence the details of the proof are omitted.
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Corollary 4.4. Let Φ and s be nonnegative real numbers. Let
an odd function f : U →V satisfies the inequality

Λ f (x0,x1,··· ,x2n,x2n+1)(t) (4.28)

≥


ΨΦ(t),
Ψ

Φ∑
2n+1
i=0 ||xi||s(t), s 6= 3;

Ψ
Φ(∏

2n+1
i=0 ||xi||s+∑

2n+1
i=0 ||xi||(2n+1)s)(t), s 6= 3

(2n+1) ;

(4.29)

for all x0,x1, · · · ,x2n,x2n+1 ∈ U and all t > 0. Then there
exists a unique cubic function C : U →V such that

Λ f (x)−C(x)(t)≤


Ψ Φ

|Ω3−1|
(t),

Ψ 2Φ||x||s
|Ω3−Ωns |

(t),

Ψ 2Φ||x||(2n+1)s

|Ω3−Ω(2n+1)s|

(t),
(4.30)

for all x ∈ U and all t > 0.

Theorem 4.5. Let j =±1. Let f : U →V be a mapping for
which there exist a function Ψ : U2n+1→ D+ satisfying the
conditions (4.1) and (4.19) and the functional inequality such
that

Λ f (x0,x1,··· ,x2n,x2n+1)(t)≥Ψx0,x1,··· ,x2n,x2n+1(t) (4.31)

for all x0,x1, · · · ,x2n,x2n+1 ∈ U and all t > 0. Then there
exists a unique quadratic function Q : U → V and a unique
cubic function C : U →V satisfying the functional equation
(1.7) such that

µQ(x)−C(x)− f (x)(t) (4.32)

≥ τ

τ
∞
i=0

τ

Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

2(i+1) j t
)
,

, Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

2(i+1) j t
)


, τ
∞
i=0

τ

Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

3(i+1) j t
)
,

, Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

3(i+1) j t
)


(4.33)

for all x ∈U and all t > 0. The mapping ΛQ(x) and ΛC(x) are
defined in (4.4) and (4.22) respectively for all x ∈U and all
t > 0.

Proof. Let fe(x) = 1
2 { f (x)+ f (−x)} for all x ∈ X . Then

fe (0) = 0, fe (−x) =− fe (x) for all x ∈U . Hence

Λ fe(x0,x1,··· ,x2n,x2n+1)(2t)

≥ τ
[
Ψx0,x1,··· ,x2n,x2n+1(t),

, Ψ−x0,−x1,··· ,−x2n,−x2n+1(t)
]

(4.34)

all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0. By Theorem 4.1,
we have

ΛQ(x)− fe(x)(t)

≥ τ
∞
i=0

τ

Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

2(i+1) j t
)
,

, Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,−Ωn jx,−Ωn jx)

(
Ω

2(i+1) j t
)


(4.35)

for all x ∈U .
Also, Let fo(x) = 1

2 { f (x)− f (−x)} for all x ∈ U . Then
fo (0) = 0, fo (−x) = fo (x) for all x ∈U . Hence

Λ fo(x0,x1,··· ,x2n,x2n+1)(2t)

≥ τ
[
Ψx0,x1,··· ,x2n,x2n+1(t),

, Ψ−x0,−x1,··· ,−x2n,−x2n+1(t)
]

for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0. By Theorem
4.3, we have

ΛC(x)− fo(x)(t)

≥ τ
∞
i=0

τ

Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

3(i+1) j t
)
,

, Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,−Ωn jx,−Ωn jx)

(
Ω

3(i+1) j t
)


(4.36)

for all x ∈U and all t > 0.Define

f (x) = fe(x)+ fo(x) (4.37)

170



General solution and generalized Ulam - Hyers stability of ri− type n dimensional quadratic-cubic functional equation
in random normed spaces: Direct and fixed point methods — 171/176

for all x ∈U . From 4.35,4.36 and 4.37, we arrive

ΛQ(x)−C(x)− f (x)(t)

= ΛQ(x)−C(x)− fo(x)− fe(x)(t)

≥ τ
(
ΛQ(x)− fe(x)(t),ΛC(x)− fo(x)(t)

)
≥ τ

τ
∞
i=0

τ

Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

2(i+1) j t
)
,

, Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

2(i+1) j t
)


, τ
∞
i=0

τ

Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

3(i+1) j t
)
,

, Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1 times

,Ωn jx,Ωn jx)

(
Ω

3(i+1) j t
)



for all x ∈U and all t > 0. Hence the theorem is proved.

Corollary 4.6. Let Φ and s be nonnegative real numbers. Let
a function f : U →V satisfies the inequality

Λ f (x0,x1,··· ,x2n,x2n+1)(t)

≥


ΨΦ(t),
Ψ

Φ∑
2n+1
i=0 ||xi||s(t), s 6= 2,3;

Ψ
Φ(∏

2n+1
i=0 ||xi||s+∑

2n+1
i=0 ||xi||(2n+1)s)(t), s 6= 2

(2n+1) ,
3

(2n+1) ;

(4.38)

for all x0,x1, · · · ,x2n,x2n+1 ∈ U and all t > 0. Then there
exists a unique quadratic function Q : U → V and a unique
cubic function C : U →V such that

Λ f (x)−Q(x)−C(x)(t)≤


Ψ Φ

|Ω2−1|
+ Φ

|Ω3−1|
(t),

Ψ 2Φ||x||s
|Ω2−Ωns|

+
2Φ||x||s
|Ω3−Ωns|

(t),

Ψ 2Φ||x||(2n+1)s

|Ω2−Ω(2n+1)s|
+

2Φ||x||(2n+1)s

|Ω3−Ω(2n+1)s|

(t),

(4.39)

for all x ∈ U and all t > 0.

5. Stability Results: Fixed point Method
In this section, the authors present the generalized Ulam -
Hyers stability of the functional equation (1.7) in Random
normed space using fixed point method.

Through out this section, Let us consider U be a vector
space and (V,Λ,T ) is a complete RN-space.

Now we will recall the fundamental results in fixed point
theory.

Theorem 5.1. [21](The alternative of fixed point) Suppose
that for a complete generalized metric space (X ,d) and a
strictly contractive mapping T : X → X with Lipschitz con-
stant L. Then, for each given element x ∈ X , either
(B1) d(T nx,T n+1x) = ∞ ∀ n≥ 0,
or
(B2) there exists a natural number n0 such that:
(i) d(T nx,T n+1x)< ∞ for all n≥ n0 ;
(ii)The sequence (T nx) is convergent to a fixed point y∗ of T
(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X :
d(T n0x,y)< ∞};
(iv) d(y∗,y)≤ 1

1−L d(y,Ty) for all y ∈ Y.

For to prove the stability result we define the following:
δi is a constant such that

δi =

{
Ω i f i = 0,
1
Ω

i f i = 1

and Γ is the set such that

Γ = {g | g : X → Y,g(0) = 0} .

Theorem 5.2. Let f : U →V be an even mapping for which
there exist a function Ψ : U2n+1→ D+ with the condition

lim
k→∞

Ψ
δ k

i x0,δ
k
i x1,··· ,δ k

i x2n,δ
k
i x2n+1

(
δ

2k
i t
)
= 1 (5.1)

for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0 and satisfying
the functional inequality

ΛD f (x0,x1,··· ,x2n,x2n+1)(t)≥Ψx0,x1,··· ,x2n,x2n+1(t) (5.2)

for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0. If there exists
L = L(i) such that the function

ΨD(x, t) = Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1times

, x
Ω
, x

Ω
)(t) (5.3)

has the property

ΨD(x, t) = L
1

δ 2
i

ΨD (δix, t) , ∀ x ∈ X , t > 0. (5.4)

Then there exists a unique quadratic function Q : U → V
satisfying the functional equation (1.7) and

ΛQ(x)− f (x)

(
L1−i

1−L
t
)
≥ΨD(x, t), ∀ x ∈ X , t > 0. (5.5)

Proof. Let d be a general metric on Γ, such that

d(g,h)= in f
{

K ∈ (0,∞)|Λg(x)−h(x)(Kt)≥ΨD(x, t),x ∈ X , t > 0
}
.

It is easy to see that (Γ,d) is complete. Define T : Γ→ Γ by

T g(x) =
1

δ 2
i

g(δix), for all x ∈ X . Now for g,h ∈ Γ, we have
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d(g,h)≤ K

⇒ Λg(x)−h(x)(Kt)≥ΨD(x, t)

⇒ Λ g(δix)
δ2
i
− h(δix)

δ2
i

(
Kt
δ 2

i

)
≥ΨD(δix, t)

⇒ ΛT g(x)−T h(x)

(
Kt
δ 2

i

)
≥ΨD(x, t)

⇒ d (T g(x),T h(x))≤ KL

⇒ d (T g,T h)≤ Ld(g,h) (5.6)

for all g,h ∈ Γ. There fore T is strictly contractive mapping
on Γ with Lipschitz constant L.
From (4.8) that

Λ f (Ωx)−(Ω)2 f (x)(t)≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1times

,x,x)(t) (5.7)

for all x ∈U and all t > 0. It follows from (5.7), we have

Λ f (Ωx)
Ω2 − f (x)

( t
Ω2

)
≥Ψ(0, · · · ,0︸ ︷︷ ︸

2n−1times

,x,x)(t) (5.8)

for all x ∈U, t > 0, Using (5.4) for the case i = 0 it reduces to

⇒ Λ f (Ωx)
Ω2 − f (x)

( t
Ω2

)
≥ΨD(x, t)

⇒ d(T f , f )≤ L = L1−0 < ∞. (5.9)

Again replacing x by x
Ω

in (5.7), we obtain

Λ f (x)−Ω2 f( x
Ω )

(t)≥Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1times

, x
Ω
, x

Ω
)(t) (5.10)

for all x∈U, t > 0 with the help of (5.4) when i = 1, it follows
from (5.10), we get

⇒ Λ f (x)−Ω2 f( x
Ω )

(t)≥ΨD(x, t)

⇒ d( f ,T f )≤ 1 = L0 = L1−i (5.11)

Then from (5.9) and (5.11), we can conclude,

d( f ,T f )≤ L0 < ∞

Now from the fixed point alternative in both cases, it follows
that there exists a fixed point Q of T in Γ such that

ΛQ(x)(t) = lim
k→∞

Λ f (δ k
i x)

δ 2k
i

(t), ∀x ∈U, t > 0. (5.12)

Replacing (x0,x1, · · · ,x2n,x2n+1) by (δ k
i x0,δ

k
i x1, · · · ,δ k

i x2n,δ
k
i x2n+1)

in (5.2) and dividing by δ 2k
i , it follows from (5.1) and (5.12),

Q satisfies (1.7) for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0.
By fixed point alternative, since Q is unique fixed point of

T in the set
∆ = { f ∈ Γ|d( f ,Q)< ∞} ,

therefore Q is a uniqe function such that

Λ f (x)−Q(x)(Kt)≥ΨD(x, t) (5.13)

for all x ∈U, t > 0 and K > 0. Again using the fixed point
alternative, we obtain

d( f ,Q)≤ 1
1−L

d( f ,T f )

⇒ d( f ,Q)≤ L1−i

1−L

⇒ Λ f (x)−Q(x)

(
L1−i

1−L
t
)
≥ΨD(x, t) (5.14)

for all x ∈ U and t > 0. This completes the proof of the
theorem.

From Theorem 5.2, we obtain the following corollary
concerning the stability for the functional equation (1.7).

Corollary 5.3. Let Φ and s be nonnegative real numbers. Let
an even function f : U →V satisfies the inequality

ΛD f (x0,x1,··· ,x2n,x2n+1)(t)

≥


ΨΦ(t),
Ψ

Φ∑
2n+1
i=0 ||xi||s(t), s 6= 2;

Ψ
Φ(∏

2n+1
i=0 ||xi||s+∑

2n+1
i=0 ||xi||(2n+1)s)(t), s 6= 2

(2n+1) ;

(5.15)

for all x0,x1, · · · ,x2n,x2n+1 ∈ U and all t > 0. Then there
exists a unique quadratic function Q : U →V such that

Λ f (x)−Q(x)(t)≤


Ψ Φ

|Ω2−1|
(t),

Ψ 2Φ||x||s
|Ω2−Ωns|

(t),

Ψ 2Φ||x||(2n+1)s

|Ω2−Ω(2n+1)s |

(t),
(5.16)

for all x ∈ U and all t > 0.

Proof. Setting

Ψx0,x1,··· ,x2n,x2n+1(t) =


ΨΦ(t),
Ψ

Φ
2n+1

∑
i=1
||xi||s

(t),

Ψ
Φ

(
2n+1

∏
i=1
||xi||s+

2n+1
∑

i=1
||xi||(2n+1)s

)(t),
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for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0. Then,

Ψ 1
δ2k
i
(δ k

i x0,δ
k
i x1,··· ,δ k

i x2nn,δ k
i x2n+1) (t)

=



Ψ Φ

δ2k
i

(t) ,

Ψ
Φ

δ2k
i

2n+1
∑

i=1
||δ k

i xi||s
(t) ,

Ψ
Φ

δ2k
i

(
2n+1

∏
i=1
||δ k

i xi||s+
2n+1

∑
i=1
||δ k

i xi||(2n+1)s
) (t) ,

=


Ψ

Φδ
−2k
i

(t) ,
Ψ

Φδ
k(s−2)
i

n
∑

i=1
||xi||s

(t) ,

Ψ
Φδ

k((2n+1)s−2)
i

(
2n+1

∏
i=1
||xi||s+

2n+1
∑

i=1
||xi||(2n+1)s

) (t) ,

=

 → 1 as k→ ∞,
→ 1 as k→ ∞,
→ 1 as k→ ∞.

Thus, (5.1) is holds. From (5.3), we have ∀ x ∈U, t > 0.
Also From (5.4), we arrive

1
δ 2

i
β (δix, t)

=


Ψ

Φδ
−2k
i

(t) ,
Ψ

Φδ
s−2
i

(
2

Ω2s

)
||x||s

(t) ,

Ψ
Φδ

(2n+1)s−2
i

(
2

Ω2(2n+1)s

)
||x||(2n+1)s (t) .

=


δ
−2k
i β (x, t),

δ
s−2
i β (x, t),

δ
(2n+1)s−2
i β (x, t).

Now from (5.5), we prove the following cases for condi-
tions (i) and (ii).
Case:1 L = Ω−2 for s = 0 if i = 0,

ΨD(x, t)≤ ΛQ(x)− f (x)

(
Ω−2(1−0)

1−Ω−2 t

)

= ΛQ(x)− f (x)

(
1

Ω2−1
t
)
.

Case:2 L = Ω2 for s = 0 if i = 1,

ΨD(x, t)≤ ΛQ(x)− f (x)

(
Ω2(1−1)

1−Ω2 t

)

= ΛQ(x)− f (x)

(
1

1−Ω2 t
)
.

Case:3 L = Ωs−2 for s > 2 if i = 0,

ΨD(x, t)≤ ΛQ(x)− f (x)

(
Ωs−2

1−Ωs−2 t
)

= ΛQ(x)− f (x)

(
Ωs

Ω2−Ωs t
)
.

Case:4 L = Ω2−s for s < 2 if i = 1,

ΨD(x, t)≤ ΛQ(x)− f (x)

(
1

1−Ω2−s t
)

= ΛQ(x)− f (x)

(
Ωs

Ωs−Ω2 t
)
.

Case:5 L = Ω(2n+1)s−2 for s > 2
(2n+1) if i = 0,

ΨD(x, t)≤ ΛQ(x)− f (x)

(
Ω(2n+1)s−2

1−Ω(2n+1)s−2 t

)

= ΛQ(x)− f (x)

(
Ω(2n+1)s

Ω2−Ω(2n+1)s t

)
.

Case:6 L = Ω2−(2n+1)s for s < 2
(2n+1) if i = 1,

ΨD(x, t)≤ ΛQ(x)− f (x)

(
1

1−Ω2−(2n+1)s t
)

= ΛQ(x)− f (x)

(
Ω(2n+1)s

Ω(2n+1)s−Ω2
t

)
.

Hence the proof is complete.

Theorem 5.4. Let f : U →V be an odd mapping for which
there exist a function Ψ : U2n+1→ D+ with the condition

lim
k→∞

Ψ
δ k

i x0,δ
k
i x1,··· ,δ k

i x2n,δ
k
i x2n+1

(
δ

3k
i t
)
= 1 (5.17)

for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0 and satisfying
the functional inequality

ΛD f (x0,x1,··· ,x2n,x2n+1)(t)≥Ψx0,x1,··· ,x2n,x2n+1(t) (5.18)

for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0. If there exists
L = L(i) such that the function

ΨD(x, t) = Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1times

, x
Ω
, x

Ω
)(t)

has the property

ΨD(x, t)≤ L
1

δ 3
i

ΨD (δix, t) , ∀ x ∈U, t > 0. (5.19)

Then there exists a unique cubic function C : X →Y satisfying
the functional equation (1.7) and

ΛC(x)− f (x)

(
L1−i

1−L
t
)
≥ΨD(x, t), ∀ x ∈U, t > 0. (5.20)

Corollary 5.5. Let Φ and s be nonnegative real numbers. Let
an odd function f : U →V satisfies the inequality

ΛD f (x0,x1, · · · ,x2n,x2n+1)(t)

≥


ΨΦ(t),
Ψ

Φ∑
2n+1
i=0 ||xi||s(t), s 6= 3;

Ψ
Φ(∏

2n+1
i=0 ||xi||s+∑

2n+1
i=0 ||xi||(2n+1)s)(t), s 6= 3

(2n+1) ;

(5.21)
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for all x0,x1, · · · ,x2n,x2n+1 ∈ U and all t > 0. Then there
exists a unique cubic function C : U →V such that

Λ f (x)−C(x)(t)≤


Ψ Φ

|Ω3−1|
(t),

Ψ 2Φ||x||s
|Ω3−Ωns |

(t),

Ψ 2Φ||x||(2n+1)s

|Ω3−Ω(2n+1)s|

(t),
(5.22)

for all x ∈ U and all t > 0.

Theorem 5.6. Let f : U →V be a mapping for which there
exist a function Ψ : U2n+1→ D+ with the condition (5.1) and
(5.17) satisfying the functional inequality with

ΛD f (x0,x1,··· ,x2n,x2n+1)(t)≥Ψx0,x1,··· ,x2n,x2n+1(t) (5.23)

for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0. If there exists
L = L(i) such that the function

ΨD(x, t) = Ψ(0, · · · ,0︸ ︷︷ ︸
2n−1times

, x
Ω
, x

Ω
)(t)

has the property (5.4) and (5.19) for all x ∈ U. Then there
exists a unique quadratic function Q : U → V and a unique
cubic function C : U →V satisfying the functional equation
(1.7) and

Λ f (x)−Q(x)−C(x)

(
L1−i

1−L
t
)

≥ τ

[
τ

[
ΨD

(
x,

t
2

)
,ΨD

(
−x,

t
2

)]
,τ
[
ΨD

(
x,

t
2

)
,ΨD

(
−x,

t
2

)]]
(5.24)

forall x ∈U and all t > 0.

Proof. Let fe(x) = 1
2 { f (x)+ f (−x)} for all x ∈ X . Then

fe (0) = 0, fe (−x) = fe (x) for all x ∈U . Hence

ΛD fe(x0,x1,··· ,x2n,x2n+1)(2t)

≥ τ
[
Ψx0,x1,··· ,x2n,x2n+1(t),Ψ−x0,−x1,··· ,−x2n,−x2n+1(t)

]
(5.25)

forall x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0. By Theorem 5.2,
we have

ΛQ(x)− fe(x)

(
L1−i

1−L
t
)

≥ τ [ΨD(x, t),ΨD(−x, t)] , ∀ x ∈ X , t > 0. (5.26)

Also,Let fo(x)= 1
2 { f (x)− f (−x)} for all x∈X . Then fo (0)=

0, fo (−x) =− fo (x) for all x ∈U . Hence

ΛD fo(x0,x1,··· ,x2n,x2n+1)(2t)

≥ τ
[
Ψx0,x1,··· ,x2n,x2n+1(t),Ψ−x0,−x1,··· ,−x2n,−x2n+1(t)

]
(5.27)

for all x0,x1, · · · ,x2n,x2n+1 ∈U and all t > 0. By Theorem
5.4, we have

ΛC(x)− fo(x)

(
L1−i

1−L
t
)

≥ τ [ΨD(x, t),ΨD(−x, t)] , ∀ x ∈ X , t > 0. (5.28)

Define

f (x) = fe(x)+ fo(x) (5.29)

for all x ∈U . From (5.26),(5.28) and (5.29), we arrive

ΛQ(x)−C(x)− f (x)

(
L1−i

1−L
2t
)

= ΛQ(x)−C(x)− fo(x)− fe(x)

(
L1−i

1−L
2t
)

≥ τ

(
ΛQ(x)− fe(x)

(
L1−i

1−L
t
)
,ΛC(x)− fo(x)

(
L1−i

1−L
t
))

≥ τ

[
τ

[
ΨD

(
x,

t
2

)
,ΨD

(
−x,

t
2

)]
,

, τ [ΨD (x, t) ,ΨD (−x, t)]]

for all x ∈U and all t > 0. Hence the theorem is proved.

Corollary 5.7. Let Φ and s be nonnegative real numbers. If
a function f : U →V satisfies the inequality

Λ f (x0,x1,··· ,x2n,x2n+1)(t)

≥



ΨΦ(t),
Ψ

Φ∑
2n+1
i=0 ||xi||s(t), s 6= 2,3;

Ψ
Φ

(
∏

2n+1
i=0 ||xi||s

+∑
2n+1
i=0 ||xi||(2n+1)s

)(t), s 6= 2
(2n+1) ,

3
(2n+1) ;

(5.30)

for all x0,x1, · · · ,x2n,x2n+1 ∈ U and all t > 0. Then there
exists a unique quadratic function Q : U → V and a unique
cubic function C : U →V such that

Λ f (x)−Q(x)−C(x)(t)≥


Ψ Φ

|Ω2−1|
+ Φ

|Ω3−1|
(t),

Ψ 2Φ||x||s
|Ω2−Ωns|

+
2Φ||x||s
|Ω3−Ωns|

(t),

Ψ 2Φ||x||(2n+1)s

|Ω2−Ω(2n+1)s |
+

2Φ||x||(2n+1)s

|Ω3−Ω(2n+1)s |

(t),

(5.31)

for all x ∈ U and all t > 0.
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