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Abstract
In this paper, we study some operations of interval valued T -fuzzy soft sets and give fundamental properties
of interval valued T -fuzzy soft sets. Then, we illustrate properties of homomorphism and anti-homomorphism,
normal operations by giving theroems.
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1. Introduction
Many fields deal daily with the uncertain data that may not

be successfully modeled by the classical mathematics. There
are some mathematical tools for dealing with uncertainties;
two of them are fuzzy set theory, developed by Zadeh (1965),
and soft set theory, introduced by Molodtsov (1999), that
are related to this work. Molodtsov showed the applications
of soft sets in various fields like stability and regularization,
game theory, operations research and analysis. Maji and
Roy presented a theoretical study [9] and defined several
operations on soft sets. In 2001, they proposed the concept
of ”Fuzzy Soft Sets” [10] and later on applied the theories
in decision making problem [11, 15]. Different algebraic
structures and their applications have also been studied in soft
and fuzzy soft context [2, 3, 5].The paper is organized by two
sections. First have given preliminaries on the theories of
T-fuzzy soft sets. After accomplishing an account of algebraic
properties of interval valued T -fuzzy soft sets, we study the
overall algebraic structures of interval valued T -fuzzy soft

sets subhemiring of a hemiring under homomorphism, anti
homomorphism and established some results.

2. Preliminaries

Definition 2.1. A T -norm is a binary operation T : [0,1]×
[0,1]→ [0,1] satisfying the following requirements:

(i) 1T x = x (boundary conditions)

(ii) xTy = yT x (commutativity)

(iii) xT (yT z) = (xTy)T z (associativity)

(iv) If x ∈ y and w ∈ z, then xTw ∈ yT z (monotonicity).

Definition 2.2. Let (R,+, .) be a hemiring. A interval valued
T -fuzzy soft subset [(F,A)] of R is said to be an interval val-
ued T -fuzzy soft subhemiring (IVTFHR) of R if the following
conditions are satisified:

(i) [µ(F,A)](x+ y)≤ T
(
[µ(F,A)](x), [µ(F,A)](y)

)
(ii) [µ(F,A)](xy)≤ T

(
[µ(F,A)](x), [µ(F,A)](y)

)
, for all x and y

in R.

Definition 2.3. Let (R,+, ·) be a hemiring. A interval valued
T -fuzzy soft subhemiring [(F,A)] of R is said to be an interval
valued T -fuzzy soft normal subhemiring (IVTFNSHR) of R if
([µ(F,A)](xy)) = ([µ(F,A)](yx)), for all x and y in R.
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Definition 2.4. Let X and X ′ be any two sets. Let f : X → X ′

be any function and [A] be an interval valued T -fuzzy soft
subset in X , [G,V ] be an interval valued T -fuzzy soft subset in
f (X) = X ′, [µ(G,V )](y) = sup

x∈ f−1(y)
[µ(F,A)](x) for all x in X and

y in X ′. Then [F,A] is called a pre-image of [G,V ] under f and
is denoted by f−1([G,V ]).

3. Properties of interval valued T -fuzzy
soft subhemirings

Theorem 3.1. Let (R,+, ·) and (R′,+, ·) be any two hemir-
ings. The homomorphic image of an interval valued T -fuzzy
soft subhemiring of R is an interval valued T -fuzzy soft sub-
hemiring of R′.

Proof. Let (R,+, ·) and (R′,+, ·) be any two hemirings. Let
f : R→ R′ be a homomorphism. Then, f (x+y) = f (x)+ f (y)
and f (xy) = f (x) f (y), for all x and y in R. Let [(G,V )] =
f ([(F,A)]), where [(F,A)] is an interval valued T -fuzzy soft
subhemiring of R. We have to prove that [(G,V )] is an interval
valued T -fuzzy soft subhemiring of R′. Now,for f (x), f (y) in
R′.

[µ(G,V )](( f (x))+( f (y)))

= [µ(G,V )]( f (x+ y))

≥ [µ(F,A)](x+ y)

≤ T{[µ(F,A)](x), [µ(F,A)](y)}

which implies that

[µ(G,V )](( f (x))+( f (y)))

≤ T
(
[µ(G,V )]( f (x)), [µ(G,V )]( f (y))

)
.

Again,

[µ(G,V )](( f (x))( f (y)))

= [µ(G,V )](( f (xy)))

≥ [µ(F,A)](xy)

≤ T{[µ(F,A)](x), [µ(F,A)](y)}

which implies that

[µ(G,V )](( f (x))( f (y)))

≤ T
(
[µ(G,V )]( f (x)), [µ(G,V )]( f (y))

)
.

Hence [(G,V )] is an interval valued T -fuzzy soft subhemiring
of R′.

Theorem 3.2. Let (R,+, ·) and (R′,+, ·) be any two hemir-
ings. The homomorphic preimage of an interval valued T -
fuzzy soft subhemiring of R′ is an interval valued T -fuzzy soft
subhemiring of R.

Proof. Let (R,+, ·) and (R′,+, ·) be any two hemirings. Let
f : R→ R′ be a homomorphism. Then, f (x+y) = f (x)+ f (y)
and f (xy) = f (x) f (y), for all x and y in R. Let [(G,V )] =
f ([(F,A)]), where [(F,A)] is an interval valued T -fuzzy soft
subhemiring of R′. We have to prove that [(G,V )] is an interval
valued T -fuzzy soft subhemiring of R. Now,for x,y in R. Then

[µ(F,A)](x+ y)

= [µ(F,A)]( f (x+ y)

≥ [µ(G,V )]( f (x)+ f (y))

≤ T{[µ(G,V )]( f (x)), [µ(G,V )]( f (y))}
= T{[µ(F,A)](x),µ(F,A)(y)},

which implies that

[µ(F,A)](x+ y)

≤ T{[µ(F,A)](x),µ(F,A)(y)}.

Again,

[µ(F,A)](xy)

= [µ(G,V )]( f (xy))

≥ [µ(G,V )]( f (x) f (y))

≤ T{[µ(G,V )]( f ((x)), [µ(G,V )]( f (y))}
≤ T{[µ(F,A)](x), [µ(F,A)(y)](y)}

which implies that

[µ(F,A)](xy)

≤ T{[µ(F,A)](x), [µ(F,A)(y)](y)}.

Hence [(F,A)] is an interval valued T -fuzzy soft subhemiring
of R.

Theorem 3.3. Let (R,+, ·) and (R′,+, ·) be any two hemir-
ings. The anti-homomorphic image of an interval valued
T -fuzzy soft subhemiring of R is an interval valued T -fuzzy
soft subhemiring of R′.

Proof. Let (R,+, ·) and (R′,+, ·) be any two hemirings. Let
f : R→ R′ be a homomorphism. Then, f (x+y) = f (y)+ f (x)
and f (xy) = f (y) f (x), for all x and y in R. Let [(G,V )] =
f ([(F,A)]), where [(F,A)] is an interval valued T -fuzzy soft
subhemiring of R. We have to prove that [(G,V )] is an interval
valued T -fuzzy soft subhemiring of R′. Now,for f (x), f (y) in
R′.

[µ(G,V )](( f (x))+( f (y)))

= [µ(G,V )](( f (y))+( f (x)))

= [µ(G,V )]( f (y+ x)

≥ [µ(F,A)](x+ y)

≤ T{[µ(F,A)](y), [µ(F,A)](x))}
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which implies that

[µ(G,V )](( f (x))+( f (y)))

≤ T ([µ(G,V )]( f (x)), [µ(G,V )]( f (y))).

Again,

[µ(G,V )](( f (x))( f (y)))

= [µ(G,V )](( f (yx)))

≥ [µ(F,A)](yx)

≤ T{[µ(F,A)](y), [µ(F,A)](x))}
≤ T{[µ(F,A)](x), [µ(F,A)](y))}.

Which implies that

[µ(G,V )](( f (x))( f (y)))

≤ T ([µ(G,V )]( f (x)), [µ(G,V )]( f (y))).

Hence [(G,V )] is an interval valued T -fuzzy soft subhemiring
of R′.

Theorem 3.4. Let (R,+, ·) and (R′,+, ·) be any two hemir-
ings. The anti-homomorphic preimage of an interval valued
T -fuzzy soft subhemiring of R′ is an interval valued T -fuzzy
soft subhemiring of R.

Proof. Let (R,+, ·) and (R′,+, ·) be any two hemirings. Let
f : R→ R′ be a homomorphism. Then, f (x+y) = f (y)+ f (x)
and f (xy) = f (y) f (x), for all x and y in R. Let [(G,V )] =
f ([(F,A)]), where [(G,V )] is an interval valued T -fuzzy soft
subhemiring of R′. We have to prove that [(F,A)] is an interval
valued T -fuzzy soft subhemiring of R. Now,for x,y in R. Then

[µ(F,A)](x+ y)

= [µ(G,V )]( f (x+ y))

= [µ(G,V )]( f (y+ x))

≤ T{[µ(G,V )]( f (y)), [µ(G,V )]( f (x))}
≤ T{[µ(G,V )]( f (x)), [µ(G,V )]( f (y))}
≤ T{[µ(F,A)](x), [µ(F,A)](y)}

which implies that

[µ(F,A)](x+ y)

≤ T{[µ(F,A)](x), [µ(F,A)](y)}.

Again,

[µ(F,A)](xy)

= [µ(G,V )](( f (xy)))

≥ [µ(G,V )]( f (x) f (y))

≤ T{[µ(G,V )]( f (y)), [µ(G,V )]( f (x))}
≤ T{[µ(G,V )]( f (x)), [µ(G,V )]( f (y))}
= T{[µ(F,A)(x).[µ(F,A)](y)}

which implies that

[µ(F,A)](xy)

≤ T{[µ(F,A)(x).[µ(F,A)](y)}.

Hence [(F,A)] is an interval valued T -fuzzy soft subhemiring
of R.

Theorem 3.5. Let (R,+, ·) and (R′,+, ·) be any two hemir-
ings. The homomorphic image of an interval valued T -fuzzy
soft normal subhemiring of R is an interval valued T -fuzzy
soft subhemiring of R′.

Proof. Let (R,+, ·) and (R′,+, ·) be any two hemirings. Let
f : R→ R′ be a homomorphism. Let [(F,A)] is an interval
valued T -fuzzy soft normal subhemiring of R. We have to
prove that [(G,V )] is an interval valued T -fuzzy soft normal
subhemiring of f (R) = R′. Now,for f (x), f (y) in R′. Clearly,
[(G,V )] is an interval valued T -fuzzy soft subhemiring of
f (R) = R′. Since [(F,A)] is an interval valued T -fuzzy soft
subhemiring of R. Now,

([µ(G,V )] f (x) f (y))

= T ([µ(G,V )]( f (xy))

≤ T ([µ(F,A)](xy))

= T ([µ(F,A)](yx))

≤ T ([µ(G,V )]{ f (yx))})
= T ([µ(G,V )](( f (y))( f (x))))

which implies that

T ([µ(G,V )](( f (x))( f (y))))

= T ([µ(G,V )](( f (y))( f (x)))).

Hence [(G,V )] is an interval valued T -fuzzy soft normal sub-
hemiring of the hemiring R′.

Theorem 3.6. Let (R,+, ·) and (R′,+, ·) be any two hemir-
ings. The homomorphic preimage of an interval valued T -
fuzzy soft normal subhemiring of R′ is an interval valued
T -fuzzy soft subhemiring of R.

Proof. Let (R,+, ·) and (R′,+, ·) be any two hemirings. Let
f : R→ R′ be a homomorphism. Let [(G,V )] is an interval
valued T -fuzzy soft normal subhemiring of f (R) = R′. We
have to prove that [(F,A)] is an interval valued T -fuzzy soft
normal subhemiring of R. Let x and y in R. Then clearly
[(F,A)] is an interval valued T -fuzzy soft subhemiring of R.
Now,

T ([µ(F,A)](xy))

= T ([µ(G,V )]( f (xy))

= T ([µ(G,V )]{( f (x))( f (y))})
= T ([µ(G,V )](( f (y))( f (x))))

= T ([µ(F,A)]( f (yx)))

= T ([µ(F,A)](yx))
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which implies that

T ([µ(F,A)](xy)

= T ([µ(F,A)](yx)).

for all x and y in R. Hence [(F,A)] is an interval valued T -
fuzzy soft normal subhemiring of the hemiring R.

Theorem 3.7. Let (R,+, ·) and (R′,+, ·) be any two hemir-
ings. The antihomomorphic image of an interval valued T -
fuzzy soft normal subhemiring of R is an interval valued T -
fuzzy soft subhemiring of R′.

Proof. Let (R,+, ·) and (R′,+, ·) be any two hemirings. Let
f : R→ R′ be a homomorphism. Let [(F,A)] is an interval
valued T -fuzzy soft normal subhemiring of R. We have to
prove that [(G,V )] is an interval valued T -fuzzy soft normal
subhemiring of f (R) = R′. Now,for f (x), f (y) in R′. Clearly,
[(G,V )] is an interval valued T -fuzzy soft subhemiring of
f (R) = R′. Since [(F,A)] is an interval valued T -fuzzy soft
subhemiring of R. Now,

T ([µ(G,V )] f (x) f (y))

= T ([µ(G,V )]( f (xy))

≤ T ([µ(F,A)](xy))

= T ([µ(F,A)](yx))

≤ T ([µ(G,V )]{ f (yx))})
= T ([µ(G,V )](( f (y))( f (x))))

which implies that

T ([µ(G,V )](( f (x))( f (y))))

= T ([µ(G,V )](( f (y))( f (x)))).

Hence [(G,V )] is an interval valued T -fuzzy soft normal sub-
hemiring of the hemiring R′.

Theorem 3.8. Let (R,+, ·) and (R′,+, ·) be any two hemir-
ings. The antihomomorphic preimage of an interval valued
T -fuzzy soft normal subhemiring of R′ is an interval valued
T -fuzzy soft subhemiring of R.

Proof. Let (R,+, ·) and (R′,+, ·) be any two hemirings. Let
f : R→ R′ be a homomorphism. Let [(G,V )] is an interval
valued T -fuzzy soft normal subhemiring of f (R) = R′. We
have to prove that [(F,A)] is an interval valued T -fuzzy soft
normal subhemiring of R. Let x and y in R. Then clearly
[(F,A)] is an interval valued T -fuzzy soft subhemiring of R.
Since [(G,V )] is an interval valued T - fuzzy soft subhemiring

of the hemiring R′. Now,

T ([µ(F,A)](xy))

= T ([µ(G,V )]( f (xy))

= T ([µ(G,V )]{ f (y) f (x)})
= T ([µ(G,V )](( f (x))( f (y))))

= ([µ(G,V )]( f (yx)))

= T ([µ(F,A)](yx))

which implies that

T ([µ(F,A)](xy))

= T ([µ(F,A)](yx)),

for all x and y in R. Hence [(F,A)] is an interval valued T -
fuzzy soft normal subhemiring of the hemiring R.
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