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Abstract
In this paper, the authors test the generalized Ulam - Hyers stability of the additive-quadratic and cubic-quartic
functional equations

f (2x) = 3 f (x)+ f (−x); g(2x) = 12g(x)+4g(−x),

via Quasi-Beta Banach space and Intuitionistic fuzzy Banach space using direct and fixed point methods.
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1. Introduction
The stability problem of functional equations originated from
the question of Ulam [53] in 1940, relating to the stability
of group homomorphisms. In 1941, D. H. Hyers [28] gave
the first positive answer to the question of Ulam for Banach
spaces. It was further generalized and interesting results ob-
tained by number of mathematicians [2, 23, 41, 45, 48].

During the last seven decades, a number of papers and
research monographs have been published on various gen-
eralizations and applications of the generalized Hyers-Ulam
stability to a number of functional equations and mappings via
various spaces and mixed type equations (see [1, 5–14, 14, 15,
17, 22, 24–27, 29–33, 36, 38, 39, 42, 46, 47, 49, 54–56, 58]).

M.Arunkumar et. al., [13] introduced and established the
general solution and generalized Ulam - Hyers stability of the
simple additive-quadratic and simple cubic-quartic functional
equations

f (2x) = 3 f (x)+ f (−x), (1.1)

and

g(2x) = 12g(x)+4g(−x), (1.2)

having solutions

f (x) = ax+bx2 and g(x) = cx3 +dx4, (1.3)
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respectively in via Banach spaces using direct and fixed point
methods.

Now, first we will recall the fundamental results in fixed
point theory.

Theorem 1.1. (Banach’s contraction principle) Let (X ,d) be
a complete metric space and consider a mapping T : X → X
which is strictly contractive mapping, that is

(A1) d(T x,Ty)≤ Ld(x,y) for some (Lipschitz constant) L <
1. Then,
(i) The mapping T has one and only fixed point x∗ =
T (x∗);
(ii)The fixed point for each given element x∗ is globally
attractive, that is

(A2) limn→∞T nx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(T nx,x∗)≤ 1
1−L d(T nx,T n+1x),∀ n≥ 0,∀ x ∈ X ;

(A4) d(x,x∗)≤ 1
1−L d(x,x∗),∀ x ∈ X .

Theorem 1.2. [34] Suppose that for a complete generalized
metric space (Ω,δ ) and a strictly contractive mapping T :
Ω→Ω with Lipschitz constant L. Then, for each given x ∈Ω

, either
d(T nx,T n+1x) = ∞ ∀ n≥ 0,

or there exists a natural number n0 such that
(FP1) d(T nx,T n+1x)< ∞ for all n≥ n0 ;
(FP2) The sequence (T nx) is convergent to a fixed to a fixed
point y∗ of T ;
(FP3) y∗ is the unique fixed point of T in the set ∆ = {y ∈Ω :
d(T n0x,y)< ∞};
(FP4) d(y∗,y)≤ 1

1−L d(y,Ty) for all y ∈ ∆.

In Section 2 the generalized Ulam - Hyers stability of
(1.1) and (1.2) are respectively proved via Quasi- beta Banach
space using direct and fixed point methods.

In Section 3 the generalized Ulam - Hyers stability of
(1.1) and (1.2) are respectively given via Intuitionistic fuzzy
Banach space using direct and fixed point methods.

Throughout this paper, let us take the following: Define a
constant Ji such that

Ji =

{
2 i f i = 0;
1
2 i f i = 1.

(1.4)

2. Stability Results In Quasi Beta Banach
Space

2.1 Definitions and Notations On Quasi Beta Banach
space

In this section, we present some basic facts concerning quasi-
β -Normed spaces and some preliminary results.

We fix a real number β with 0 < β ≤ 1 and let K denote
either R or C.

Definition 2.1. Let X be a linear space over K . A quasi-
β -norm ‖ · ‖ is a real-valued function on X satisfying the
following:

(Q1) ‖ x ‖≥ 0 for all x ∈ X and ‖ x ‖= 0 if and only if x = 0.

(Q2) ‖ λx ‖ =| λ |β . ‖ x ‖ for all λ ∈K and all x ∈ X.

(Q3) There is a constant K≥ 1 such that ‖ x+y ‖≤K (‖ x ‖+ ‖ y ‖)
for all x,y ∈ X.

The pair (X ,‖ · ‖) is called quasi-β -normed space if ‖ · ‖
is a quasi-β -norm on X. The smallest possible K is called the
modulus of concavity of ‖ · ‖.

Definition 2.2. A quasi-β -Banach space is a complete quasi-
β -normed space.

Definition 2.3. A qusi-β -norm ‖ · ‖ is called a (β , p)-norm
(0 < p≤ 1) if

‖ x+ y ‖p≤‖ x ‖p + ‖ y ‖p

for all x,y ∈ X. In this case, a quasi-β -Banach space is called
a (β , p)-Banach space.

In this section, the generalized Ulam - Hyers stability
of the functional equations (1.1) and (1.2) are respectively
provided using direct and fixed point methods.. Also through-
out this section, let us consider T1 and T2 to be a Linear
Space over R and quasi - beta Banach space with || · ||T2 .
respectively.

2.2 Stability Results of (1.1): Direct Method
Theorem 2.4. Let j ∈ {−1,1} and ∆AQ : T1 → [0,∞) be a
function such that

lim
n→∞

∆AQ
(
2n jx

)
2n j = 0 (2.1)

for all x ∈T1. Let fa : T1→T2 be an odd function satisfying
the inequality

‖ fa(2x)−3 fa(x)− fa(−x)‖T2
≤ ∆AQ (x) (2.2)

for all x ∈ T1. Then there exists a unique additive mapping
A : T1→T2 which satisfying (1.1) such that

‖ fa(x)−A(x)‖T2
≤ Kn−1

2β

∞

∑
k= 1− j

2

∆AQ(2k jx)
2k j (2.3)

for all x ∈T1. The mapping A(x) is defined by

A(x) = lim
n→∞

fa(2n jx)
2n j (2.4)

for all x ∈T1.

183



AQ and CQ functional equations — 184/205

Proof. Assume j = 1. Using oddness of fa in (2.2), it follows
that

‖ fa(2x)−2 fa(x)‖T2
≤ ∆AQ (x)

=⇒
∥∥∥∥ fa(2x)

2
− fa(x)

∥∥∥∥
T2

≤ ∆AQ (x)
2β

(2.5)

for all x ∈ T1. Now replacing x by 2x and dividing by 2 in
(2.5), we get∥∥∥∥ fa(22x)

22 − fa(2x)
2

∥∥∥∥
T2

≤ ∆AQ (2x)
2β ·2

(2.6)

for all x ∈T1. From (2.5) and (2.6), we obtain∥∥∥∥ fa(22x)
22 − fa(x)

∥∥∥∥
T2

≤
∥∥∥∥ fa(2x)

2
− fa(x)

∥∥∥∥
T2

+

∥∥∥∥ fa(22x)
22 − fa(2x)

2

∥∥∥∥
T2

≤ K
2β

[
∆AQ(x)+

∆AQ(2x)
2

]
(2.7)

for all x ∈T1. In general for any positive integer n, we have∥∥∥∥ fa(2nx)
2n − fa(x)

∥∥∥∥
T2

≤ Kn−1

2β

n−1

∑
k=0

∆AQ(2kx)
2k (2.8)

for all x ∈ T1. In order to prove the convergence of the se-
quence {

fa(2nx)
2n

}
,

replace x by 2mx and dividing by 2m in (2.8), for any m,n > 0
, we deduce∥∥∥∥ fa(2n+mx)

2(n+m)
− fa(2mx)

2m

∥∥∥∥
T2

≤ Kn−1

2β

n−1

∑
k=0

∆AQ(2k+mx)
2k+mβ

→ 0 as m→ ∞

for all x ∈ T1. Hence the sequence
{

fa(2nx)
2n

}
is a Cauchy

sequence. Since T2 is complete, there exists a mapping A :
T1→T2 such that

A(x) = lim
n→∞

fa(2nx)
2n , ∀ x ∈T1.

Letting n→ ∞ in (2.8), we see that (2.3) holds for all x ∈T1.
To prove that A satisfies (1.1), replacing x by 2nx and dividing
by 2n in (2.2), we obtain

1
2n

∥∥∥ fa(2n ·2x)−3 fa(2nx)− fa(−2nx)
∥∥∥≤ 1

2n ∆AQ(2nx)

for all x ∈ T1. Letting n→ ∞ in the above inequality and
using the definition of A(x) and (2.1), we see that

A(2x) = 3A(x)+A(−x).

Hence A satisfies (1.1) for all x ∈ T1. To prove that A is
unique, let B(x) be another additive mapping satisfying (1.1)
and (2.3), then

‖A(x)−B(x)‖T2

=
1
2n ‖A(2

nx)−B(2nx)‖T2

≤ K
2n

{
‖A(2nx)− fa(2nx)‖T2

+‖ fa(2nx)−B(2nx)‖T2

}
≤ 2Kn

2β

∞

∑
k=0

∆AQ(2k+nx)
2(k+n)

→ 0 as n→ ∞

for all x ∈T1. Hence A is unique. Thus the theorem holds for
j = 1.

Replacing x by x
2 in (2.5), we arrive∥∥∥ fa(x)−2 fa

( x
2

)∥∥∥
T2
≤

∆AQ
( x

2

)
2β

(2.9)

for all x ∈T1. The rest of the proof is similar to that of case
j = 1. Thus, for j =−1 also the theorem is true. Hence the
proof is complete.

The following corollary is an immediate consequence of
Theorem 2.4 concerning the stability of (1.1).

Corollary 2.5. Let λ and r be nonnegative real numbers. Let
an odd function fa : T1→T2 satisfies the inequality

‖ fa(2x)−3 fa(x)− fa(−x)‖T2
≤
{

λ ,
λ ||x||r, r 6= 1;

(2.10)

for all x ∈ T1. Then there exists a unique additive function
A : T1→T2 such that

‖ fa(x)−A(x)‖T2
≤


Kn−12|λ |

2β
,

Kn−12|λ |||x||r

|2−2rβ |
,

(2.11)

for all x ∈ T1.

Theorem 2.6. Let j ∈ {−1,1} and ∆AQ : T1 → [0,∞) be a
function such that

lim
n→∞

∆AQ
(
2n jx

)
4n j = 0 (2.12)

for all x∈T1. Let fq : T1→T2 be an even function satisfying
the inequality∥∥ fq(2x)−3 fq(x)− fq(−x)

∥∥
T2
≤ ∆AQ (x) (2.13)

for all x ∈T1. Then there exists a unique quadratic mapping
Q2 : T1→T2 which satisfying (1.1) such that∥∥ fq(x)−Q2(x)

∥∥
T2
≤ Kn−1

4β

∞

∑
k= 1− j

2

∆AQ(2k jx)
4k j (2.14)
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for all x ∈T1. The mapping Q2(x) is defined by

Q2(x) = lim
n→∞

fq(2n jx)
4n j (2.15)

for all x ∈T1.

Proof. Assume j = 1. Using evenness of fq in (2.13), it
follows that∥∥ fq(2x)−4 fq(x)

∥∥
T2
≤ ∆AQ (x)

=⇒
∥∥∥∥ fq(x)−

fq(2x)
4

∥∥∥∥
T2

≤ ∆AQ (x)
4β

(2.16)

for all x ∈ T1. The rest of the proof is similar to that of
Theorem 2.4.

The following corollary is an immediate consequence of
Theorem 2.6 concerning the stability of (1.1).

Corollary 2.7. Let λ and r be nonnegative real numbers. Let
an even function fq : T1→T2 satisfies the inequality

∥∥ fq(2x)−3 fq(x)− fq(−x)
∥∥

T2
≤
{

λ ,
λ ||x||r, r 6= 2;

(2.17)

for all x ∈T1. Then there exists a unique quadratic function
Q2 : T1→T2 such that

∥∥ fq(x)−Q2(x)
∥∥

T2
≤


Kn−14|λ |

3 ·4β
,

Kn−14|λ |||x||r

|4−2rβ |
,

(2.18)

for all x ∈ T1.

Theorem 2.8. Let j ∈ {−1,1} and ∆AQ : T1 → [0,∞) be a
function with conditions (2.1) and (2.12) for all x ∈ T1. Let
f : T1→T2 be a function satisfying the inequality

‖ f (2x)−3 f (x)− f (−x)‖T2
≤ ∆AQ (x) (2.19)

for all x ∈ T1. Then there exists a unique additive mapping
A : T1→ T2 and a unique quadratic mapping Q : T1→ T2
which satisfying (1.1) such that

‖ f (x)−A(x)−Q2(x)‖T2

≤ Kn+1

2β

 1
2β

∞

∑
k= 1− j

2

(
∆AQ(2k jx)

2k j +
∆AQ(−2k jx)

2k j

)

+
1

4β

∞

∑
k= 1− j

2

(
∆AQ(2k jx)

4k j +
∆AQ(−2k jx)

4k j

)
(2.20)

for all x ∈ T1. The mapping A(x) and Q2(x) are defined in
(2.4) and (2.15) respectively for all x ∈T1.

Proof. Let fo(x) =
fa(x)− fa(−x)

2
for all x∈T1. Then fo(0)=

0 and fo(−x) =− fo(x) for all x ∈T1. Hence

‖ fo(2x)−3 fo(x)− fo(−x)‖T2
≤ K

2β
{∆AQ(x)+∆AQ(−x)}

(2.21)

for all x ∈T1. By Theorem 2.4, we have

‖ fo(x)−A(x)‖T2
≤ Kn

4β

∞

∑
k= 1− j

2

(
∆AQ(2k jx)

2k j +
∆AQ(−2k jx)

2k j

)
(2.22)

for all x∈T1. Also, let fe(x) =
fq(x)+ fq(−x)

2
for all x∈T1.

Then fe(0) = 0 and fe(−x) = fe(x) for all x ∈T1. Hence

‖ fe(2x)−3 fe(x)− fe(−x)‖T2
≤ K

2β
{∆AQ(x)+∆AQ(−x)}

(2.23)

for all x ∈T1. By Theorem 2.6, we have

‖ fe(x)−Q2(x)‖T2
≤ Kn

8β

∞

∑
k= 1− j

2

(
∆AQ(2k jx)

4k j +
∆AQ(−2k jx)

4k j

)
(2.24)

for all x ∈T1. Define

f (x) = fe(x)+ fo(x) (2.25)

for all x ∈T1. From (2.22),(2.24) and (2.25), we arrive

‖ f (x)−A(x)−Q2(x)‖T2

= ‖ fe(x)+ fo(x)−A(x)−Q2(x)‖T2

≤ K
{
‖ fo(x)−A(x)‖T2

+‖ fe(x)−Q2(x)‖T2

}
≤ K

2β

Kn

2β

∞

∑
k= 1− j

2

(
∆AQ(2k jx)

2k j +
∆AQ(−2k jx)

2k j

)

+
Kn

4β

∞

∑
k= 1− j

2

(
∆AQ(2k jx)

4k j +
∆AQ(−2k jx)

4k j

)
for all x ∈T1. Hence the theorem is proved.

Using Corollaries 2.5 and 2.7, we have the following
corollary concerning the stability of (1.1).

Corollary 2.9. Let λ and r be nonnegative real numbers. Let
a function f : T1→T2 satisfies the inequality

‖ f (2x)−3 f (x)− f (−x)‖T2
≤
{

λ ,
λ ||x||r, r 6= 1,2;

(2.26)
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for all x ∈ T1. Then there exists a unique additive function
A : T1→T2 and a unique quadratic function Q2 : T1→T2
such that

‖ f (x)−A(x)−Q2(x)‖T2

≤


Kn+1

2β

{
2|λ |
2β

+
4|λ |
3 ·4β

}
,

Kn+1

2β

{
2λ ||x||r

|2−2rβ |
+

4λ ||x||r

|4−2rβ |

}
,

(2.27)

for all x ∈ T1.

2.3 Stability Results of (1.2): Direct Method
Theorem 2.10. Let j ∈ {−1,1} and ∆CQ : T1→ [0,∞) be a
function such that

lim
n→∞

∆CQ
(
2n jx

)
8n j = 0 (2.28)

for all x ∈T1. Let gc : T1→T2 be an odd function satisfying
the inequality

‖gc(2x)−12gc(x)−4gc(−x)‖T2
≤ ∆CQ (x) (2.29)

for all x ∈ T1. Then there exists a unique cubic mapping
C : T1→T2 which satisfying (1.2) such that

‖gc(x)−C(x)‖T2
≤ Kn−1

8β

∞

∑
k= 1− j

2

∆CQ(2k jx)
8k j (2.30)

for all x ∈T1. The mapping C(x) is defined by

C(x) = lim
n→∞

gc(2n jx)
8n j (2.31)

for all x ∈T1.

Proof. Assume j = 1. Using oddness of gc in (2.29), it fol-
lows that

‖gc(2x)−8gc(x)‖T2
≤ ∆CQ (x)

=⇒
∥∥∥∥gc(2x)

8
−gc(x)

∥∥∥∥
T2

≤ ∆CQ (x)
8β

(2.32)

for all x ∈ T1. The rest of the proof is similar to that of
Theorem 2.4.

The following corollary is an immediate consequence of
Theorem 2.10 concerning the stability of (1.2).

Corollary 2.11. Let µ and r be nonnegative real numbers.
Let an odd function gc : T1→T2 satisfies the inequality

‖gc(2x)−12gc(x)−4gc(−x)‖T2
≤
{

µ,
µ||x||r, r 6= 3;

(2.33)

for all x ∈ T1. Then there exists a unique cubic function
C : T1→T2 such that

‖gc(x)−C(x)‖T2
≤


Kn−18|µ|

7 ·8β
,

Kn−18µ||x||r

8β |8−2rβ |
,

(2.34)

for all x ∈T1.

Theorem 2.12. Let j ∈ {−1,1} and ∆CQ : T1→ [0,∞) be a
function such that

lim
n→∞

∆CQ
(
2n jx

)
16n j = 0 (2.35)

for all x∈T1. Let gq : T1→T2 be an even function satisfying
the inequality∥∥gq(2x)−12gq(x)−4gq(−x)

∥∥
T2
≤ ∆CQ (x) (2.36)

for all x ∈ T1. Then there exists a unique quartic mapping
Q4 : T1→T2 which satisfying (1.2) such that∥∥gq(x)−Q4(x)

∥∥
T2
≤ Kn−1

16β

∞

∑
k= 1− j

2

∆CQ(2k jx)
16k j (2.37)

for all x ∈T1. The mapping Q4(x) is defined by

Q4(x) = lim
n→∞

gq(2n jx)
16n j (2.38)

for all x ∈T1.

Proof. Assume j = 1. Using evenness of gq in (2.36), it
follows that∥∥gq(2x)−16gq(x)

∥∥
T2
≤ ∆CQ (x)

=⇒
∥∥∥∥gq(2x)

16
−gq(x)

∥∥∥∥
T2

≤ ∆CQ (x)
16β

(2.39)

for all x ∈ T1. The rest of the proof similar to the Theorem
2.4.

The following corollary is an immediate consequence of
Theorem 2.12 concerning the stability of (1.2).

Corollary 2.13. Let µ and r be nonnegative real numbers.
Let an even function gq : T1→T2 satisfies the inequality∥∥gq(2x)−12gq(x)−4gq(−x)

∥∥
T2
≤
{

µ,
µ||x||r, r 6= 4;

(2.40)

for all x ∈ T1. Then there exists a unique quartic function
Q4 : T1→T2 such that

∥∥gq(x)−Q4(x)
∥∥

T2
≤


Kn−116|µ|

15 ·16β
,

Kn−116µ||x||r

16β |16−2rβ |
,

(2.41)

for all x ∈T1.
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Theorem 2.14. Let j ∈ {−1,1} and ∆CQ : T1→ [0,∞) be a
function with conditions (2.28) and (2.35) for all x ∈T1. Let
g : T1→T2 be a function satisfying the inequality

‖g(2x)−12g(x)−4g(−x)‖T2
≤ ∆CQ (x) (2.42)

for all x ∈ T1. Then there exists a unique cubic mapping
C : T1 → T2 and a unique quartic mapping Q4 : T1 → T2
which satisfying (1.2) such that

‖g(x)−C(x)−Q4(x)‖T2

≤ Kn+1

2β

 1
8β

∞

∑
k= 1− j

2

(
∆CQ(2k jx)

8k j +
∆CQ(−2k jx)

8k j

)

+
1

16β

∞

∑
k= 1− j

2

(
∆CQ(2k jx)

16k j +
∆CQ(−2k jx)

16k j

)
(2.43)

for all x ∈ T1. The mapping C(x) and Q4(x) are defined in
(2.31) and (2.38) respectively for all x ∈T1.

Proof. The proof of the Theorem is similar to the Theorem
2.8.

Using Corollaries 2.11 and 2.13, we have the following
corollary concerning the stability of (1.2).

Corollary 2.15. Let µ and r be nonnegative real numbers.
Let a function g : T1→T2 satisfies the inequality

‖g(2x)−12g(x)−4g(−x)‖T2
≤
{

µ,
µ||x||r, r 6= 3,4;

(2.44)

for all x ∈ T1. Then there exists a unique cubic function
C : T1 → T2 and a unique quartic function Q4 : T1 → T2
such that

‖g(x)−C(x)−Q4(x)‖T2

≤


Kn+1

2β

{
8|λ |
7 ·8β

+
16|λ |

15 ·16β

}
,

Kn+1

2β

{
8λ ||x||r

|8−2rβ |
+

16λ ||x||r

|16−2rβ |

}
,

(2.45)

for all x ∈T1.

2.4 Stability Results of (1.1): Fixed Point Method
Theorem 2.16. Let fa : T1 → T2 be an odd mapping for
which there exist a function ∆AQ : T1→ [0,∞) with the condi-
tion

lim
k→∞

1
Jk

i
∆AQ(Jk

i x) = 0 (2.46)

where Ji is defined in (1.4) such that the functional inequality

‖ fa(2x)−3 fa(x)− fa(−x)‖T2
≤ ∆AQ(x) (2.47)

for all x ∈ T1. If there exists L = L(i) < 1 such that the
function

x→ ∆
AQ
CQ(x) = ∆AQ

( x
2

)
,

has the property

1
Ji

∆
AQ
CQ (Jix) = L∆

AQ
CQ(x). (2.48)

for all x ∈ T1. Then there exists a unique additive mapping
A : T1→T2 satisfying the functional equation (1.1) and

‖ fa(x)−A(x)‖T2
≤ L1−i

1−L
∆

AQ
CQ(x) (2.49)

for all x ∈T1.

Proof. Consider the set

I = {p/p : T1→T2, p(0) = 0}.

Introduce the generalized metric on I as

d(p,q)= inf{M ∈ (0,∞) :‖ p(x)−q(x) ‖T2≤M∆
AQ
CQ(x),x∈T1}.

It is easy to see that (I ,d) is complete. Define Γ : I →I
by

Γp(x) =
1
Ji

p(Jix),

for all x ∈T1. Now p,q ∈I ,

d(p,q)≤ K⇒‖ p(x)−q(x) ‖T2≤M∆
AQ
CQ(x),x ∈T1,

⇒
∥∥∥∥ 1

Ji
p(Jix)−

1
Ji

q(Jix)
∥∥∥∥

T2

≤ 1
Ji

M∆
AQ
CQ(Jix),x ∈T1,

⇒
∥∥∥∥ 1

Ji
p(Jix)−

1
Ji

q(Jix)
∥∥∥∥

T2

≤ LM∆
AQ
CQ(x),x ∈T1,

⇒‖ Γp(x)−Γq(x) ‖T2≤ LM∆
AQ
CQ(x),x ∈T1,

⇒d(p,q)≤ LM.

This implies d(Γp,Γq)≤ Ld(p,q), for all p,q ∈I . i.e., Γ is
a strictly contractive mapping on I with Lipschitz constant
L.

Using oddness of fa in (2.47), we arrive

‖ fa(2x)−2 f (x)‖T2
≤ ∆AQ(x) (2.50)

for all x ∈T1. It follows from (2.50) that∥∥∥∥ fa(2x)
2
− fa(x)

∥∥∥∥
T2

≤ ∆AQ(x)
2β

(2.51)

for all x ∈T1. Using (2.48) for the case i = 0 it reduces to∥∥∥∥ fa(2x)
2
− fa(x)

∥∥∥∥
T2

≤ L ∆
AQ
CQ(x)

for all x ∈T1,

i.e., d(Γ fa, fa)≤ L⇒ d(Γ fa, fa)≤ L = L1 < ∞. (2.52)
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Again replacing x = x
2 in (2.50), we get∥∥∥ fa(x)−2 fa

( x
2

)∥∥∥
T2
≤ ∆AQ

( x
2

)
(2.53)

for all x ∈T1. Using (2.48) for the case i = 1 it reduces to∥∥∥ fa(x)−2 fa

( x
2

)∥∥∥
T2
≤ ∆

AQ
CQ(x)

for all x ∈T1,

i.e., d( fa,Γ fa)≤ 1⇒ d( fa,Γ fa)≤ 1 = L0 < ∞. (2.54)

From (2.52) and (2.54), we arrive

d( fa,Γ fa)≤ L1−i.

Therefore (FP1) holds. By (FP2), it follows that there exists a
fixed point A of Γ in I such that

A(x) = lim
k→∞

fa(Jk
i x)

Jk
i

, ∀ x ∈T1. (2.55)

To order to prove A : T1→T2 is additive. Replacing x by
Jk

i x in (2.47) and dividing by Jk
i , it follows from (2.46) that

1
Jk

i

∥∥∥ fa(Jk
i 2x)−3 fa(Jk

i x)− fa(−Jk
i x)
∥∥∥

T2
≤ 1

Jk
i

∆AQ(Jk
i x)

for all x ∈ T1. Letting k→ ∞ in the above inequality and
using the definition of A(x), we see that

A(2x) = 3A(x)+A(−x)

i.e., A satisfies the functional equation (1.1) for all x ∈T1.
By (FP3), A is the unique fixed point of Γ in the set

∆ = {A ∈I : d( fa,A)< ∞},

such that
‖ fa(x)−A(x)‖T2

≤ K∆
AQ
CQ(x)

for all x ∈T1 and K > 0. Finally by (FP4), we obtain

‖ fa(x)−A(x)‖T2
≤ L1−i

1−L
∆

AQ
CQ(x)

this completes the proof of the theorem.

The following corollary is an immediate consequence of
Theorem 2.16 concerning the stability of (1.1).

Corollary 2.17. Let fa : T1 → T2 be an odd mapping and
there exists real numbers λ and r such that

‖ fa(2x)−3 fa(x)− fa(−x)‖T2
≤
{

(i) λ ,
(ii) λ ||x||r, r 6= 1;

(2.56)

for all x ∈ T1. Then there exists a unique additive function
A : T1→T2 such that

‖ fa(x)−A(x)‖T2
≤

 (i) |λ |,

(ii)
λ ||x||r

|2−2rβ |
,

(2.57)

for all x ∈ T1.

Proof. Setting

∆AQ(x) =
{

λ ,
λ ||x||r,

for all x ∈T1. Now,

1
Jk

i
∆AQ(Jk

i x) =


λ

Jk
i
,

λ

Jk
i
||Jk

i xi||r,
=

 → 0 as k→ ∞,

→ 0 as k→ ∞.

Thus, (2.46) is holds.
But, we have ∆

AQ
CQ(x)=∆AQ

( x
2

)
has the property L∆

AQ
CQ(x)=

1
Ji

∆
AQ
CQ (Jix) for all x ∈T1. Hence

∆
AQ
CQ(x) = ∆AQ

( x
2

)
=

 λ

λ

2rβ
||x||r.

Now,

1
Ji

∆
AQ
CQ(Jix) =


λ

Ji
,

λ

Ji
||Jix||r,

=


λ

Ji
,

λ

Ji
Jrβ

i ||x||
r,

=


J−1

i λ ,

Jrβ−1
i λ ||x||r,

=


J−1

i ∆
AQ
CQ(x),

Jrβ−1
i ∆

AQ
CQ(x).

Hence the inequality (2.48) holds either, L = 2−1 if i = 0
and L = 1

2−1 if i= 1. Now from (2.49), we prove the following
cases for condition (i).
Case:1 L = 2−1 if i = 0

‖ fa(x)−A(x)‖T2
≤
(
2−1
)1−0

1−2−1 ∆
AQ
CQ(x) = λ .

Case:2 L = 1
2−1 if i = 1

‖ fa(x)−A(x)‖T2
≤

(
1

2−1

)1−1

1− 1
2−1

∆
AQ
CQ(x) =−λ .

Also the inequality (2.48) holds either, L= 2rβ−1 for r < 1
if i = 0 and L = 1

2rβ−1 for r > 1 if i = 1. Now from (2.49), we
prove the following cases for condition (ii).
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Case:3 L = 2rβ−1 for r < 1 if i = 0

‖ fa(x)−A(x)‖T2
≤

(
2(rβ−1)

)1−0

1−2(rβ−1) ∆
AQ
CQ(x)

=
2rβ

2−2rβ

λ

2rβ
||x||r

=
λ ||x||r

2−2rβ
.

Case:4 L = 1
2rβ−1 for r > 1 if i = 1

‖ fa(x)−A(x)‖T2
≤

(
1

2(rβ−1)

)1−1

1− 1
2(rβ−1)

∆
AQ
CQ(x)

=
2rβ

2rβ −2
λ

2rβ
||x||r

=
λ ||x||r

2rβ −2
.

Hence the proof is complete.

Theorem 2.18. Let fq : T1 → T2 be an even mapping for
which there exist a function ∆AQ : T1→ [0,∞) with the condi-
tion

lim
k→∞

1
J2k

i
∆AQ(Jk

i x) = 0 (2.58)

where Ji is defined in (1.4) such that the functional inequality∥∥ fq(2x)−3 fq(x)− fq(−x)
∥∥

T2
≤ ∆AQ(x) (2.59)

for all x ∈ T1. If there exists L = L(i) < 1 such that the
function

x→ ∆
AQ
CQ(x) = ∆AQ

( x
2

)
,

has the property

L ∆
AQ
CQ(x) =

1
J2

i
∆

AQ
CQ (Jix) . (2.60)

for all x ∈T1. Then there exists a unique quadratic mapping
Q2 : T1→T2 satisfying the functional equation (1.1) and

∥∥ fq(x)−Q2(x)
∥∥

T2
≤ L1−i

1−L
∆

AQ
CQ(x) (2.61)

for all x ∈T1.

Proof. The proof of the theorem is similar ideas given in
Theorem 2.16 by defining a mapping Γ : I →I by

Γp(x) =
1
J2

i
p(Jix),

for all x ∈T1.

The following corollary is an immediate consequence of
Theorem 2.16 concerning the stability of (1.1).

Corollary 2.19. Let fq : T1→ T2 be an even mapping and
there exists real numbers λ and r such that

‖ f (2x)−3 f (x)− f (−x)‖T2
≤
{

(i) λ ,
(ii) λ ||x||r, r 6= 2;

(2.62)

for all x ∈T1. Then there exists a unique quadratic function
Q2 : T1→T2 such that

∥∥ fq(x)−Q2(x)
∥∥

T2
≤


(i)

λ

|3|
,

(ii)
λ ||x||r

|4−2rβ |
,

(2.63)

for all x ∈ T1.

Proof. The proof of the corollary is similar lines to the of
Corollary 2.17.

Theorem 2.20. Let f : T1→T2 be a mapping for which there
exist a function ∆AQ : E → [0,∞) with the conditions (2.46)
and (2.58) where Ji is defined (1.4) such that the functional
inequality

‖ f (2x)−3 f (x)− f (−x)‖T2
≤ ∆AQ(x) (2.64)

for all x ∈ T1. If there exists L = L(i) < 1 such that the
function

x→ ∆
AQ
CQ(x) = ∆AQ

( x
2

)
,

with the properties (2.48) and (2.60) for all x ∈ T1. Then
there exists a unique additive mapping A : T1→T2 satisfying
the functional equation and a unique quadratic mapping Q2 :
T1→T2 satisfying the functional equation (1.1) and

‖ f (x)−A(x)−Q2(x)‖T2
≤ L1−i

1−L
(∆AQ

CQ(x)+∆
AQ
CQ(−x))

(2.65)

for all x ∈T1.

Proof. Using definition of fo and Theorem 2.16, we have

‖ fo(x)−A(x)‖T2
≤ K

2β

L1−i

1−L

(
∆

AQ
CQ(x)+∆

AQ
CQ(−x)

)
(2.66)

for all x ∈T1. Also, using definition of fe and Theorem 2.18,
we have

‖ fe(x)−Q(x)‖T2
≤ K

2β

L1−i

1−L

(
∆

AQ
CQ(x)+∆

AQ
CQ(−x)

)
(2.67)

for all x ∈T1. Define

f (x) = fe(x)+ fo(x) (2.68)
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for all x ∈T1. From (2.66),(2.67) and (2.68), we arrive

‖ f (x)−A(x)−Q(x)‖T2

= ‖ fe(x)+ fo(x)−A(x)−Q(x)‖T2

≤ K
{
‖ fo(x)−A(x)‖T2

+‖ fe(x)−Q(x)‖T2

}
≤ K2

2β

L1−i

1−L

[(
∆

AQ
CQ(x)+∆

AQ
CQ(−x)

)
+
(

∆
AQ
CQ(x)+∆

AQ
CQ(−x)

)]
≤ 2K2

2β
· L1−i

1−L

{(
∆

AQ
CQ(x)+∆

AQ
CQ(−x)

)}
for all x ∈ X . Hence the theorem is proved.

The following corollary is an immediate consequence of
Theorem 2.20, using Corollaries 2.17 and 2.19 concerning the
stability of (1.1).

Corollary 2.21. Let f : T1 → T2 be a mapping and there
exists real numbers λ and r such that

‖ f (2x)−3 f (x)− f (−x)‖T2
≤
{

(i) λ ,
(ii) λ ||x||r, r 6= 1,2;

(2.69)

for all x ∈ T1. Then there exists a unique additive function
A : T1→T2 and a unique quadratic function Q2 : T1→T2
such that

‖ f (x)−A(x)−Q2(x)‖T2

≤


2K2|λ |

2β

(
1+

1
3

)
,

2K2λ ||x||r

2β

(
1

|2−2rβ |
+

1
|4−2rβ |

)
,

(2.70)

for all x ∈ T1.

2.5 Stability Results of (1.2): Fixed Point Method
Theorem 2.22. Let gc : T1 → T2 be an odd mapping for
which there exist a function ∆CQ : T1→ [0,∞) with the condi-
tion

lim
k→∞

1
J3k

i
∆CQ(Jk

i x) = 0 (2.71)

where Ji is defined in (1.4) such that the functional inequality

‖gc(2x)−12gc(x)−4gc(−x)‖T2
≤ ∆CQ(x) (2.72)

for all x ∈ T1. If there exists L = L(i) < 1 such that the
function

x→ ∆
AQ
CQ(x) = ∆CQ

( x
2

)
,

has the property

L∆
AQ
CQ(x) =

1
J3

i
∆

AQ
CQ (Jix) . (2.73)

for all x ∈ T1. Then there exists a unique cubic mapping
C : T1→T2 satisfying the functional equation (1.2) and

‖gc(x)−C(x)‖T2
≤ L1−i

1−L
∆

AQ
CQ(x) (2.74)

for all x ∈T1.

Proof. The proof of the theorem is similar ideas given in
Theorem 2.16 by defining a mapping Γ : I →I by

Γp(x) =
1
J3

i
p(Jix),

for all x ∈T1.

The following corollary is an immediate consequence of
Theorem 2.22 concerning the stability of (1.2).

Corollary 2.23. Let gc : T1 → T2 be an odd mapping and
there exists real numbers µ and r such that

‖gc(2x)−12gc(x)−4gc(−x)‖T2
≤
{

(i) µ,
(ii) µ||x||r, r 6= 3;

(2.75)

for all x ∈ T1. Then there exists a unique cubic function
C : T1→T2 such that

‖gc(x)−C(x)‖T2
≤


(i)

µ

|7|
,

(ii)
µ||x||r

|8−2rβ |
,

(2.76)

for all x ∈ T1.

Proof. The proof of the corollary is similar lines to the of
Corollary 2.17.

Theorem 2.24. Let gq : T1 → T2 be an even mapping for
which there exist a function ∆CQ : T1→ [0,∞) with the condi-
tion

lim
k→∞

1
J4k

i
∆CQ(Jk

i x) = 0 (2.77)

where Ji is defined in (1.4) such that the functional inequality∥∥gq(2x)−12gq(x)−4gq(−x)
∥∥

T2
≤ ∆CQ(x) (2.78)

for all x ∈ T1. If there exists L = L(i) < 1 such that the
function

x→ ∆
AQ
CQ(x) = ∆CQ

( x
2

)
,

has the property

L∆
AQ
CQ(x) =

1
J4

i
∆

AQ
CQ (Jix) . (2.79)

for all x ∈ T1. Then there exists a unique quartic mapping
Q4 : T1→T2 satisfying the functional equation (1.2) and∥∥gq(x)−Q4(x)

∥∥
T2
≤ L1−i

1−L
∆

AQ
CQ(x) (2.80)

for all x ∈T1.
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Proof. The proof of the theorem is similar ideas given in
Theorem 2.16 by defining a mapping Γ : I →I by

Γp(x) =
1
J4

i
p(Jix),

for all x ∈T1.

The following corollary is an immediate consequence of
Theorem 2.24 concerning the stability of (1.2).

Corollary 2.25. Let gq : T1→ T2 be an even mapping and
there exists real numbers µ and r such that

∥∥gq(2x)−12gq(x)−4gq f (−x)
∥∥

T2
≤
{

(i) µ,
(ii) µ||x||r, r 6= 4;

(2.81)

for all x ∈ T1. Then there exists a unique quartic function
Q4 : T1→T2 such that

∥∥gq(x)−Q2(x)
∥∥

T2
≤


(i)

µ

|15|
,

(ii)
µ||x||r

|16−2rβ |
,

(2.82)

for all x ∈ T1.

Proof. The proof of the corollary is similar lines to the of
Corollary 2.17.

Theorem 2.26. Let g : T1→T2 be a mapping for which there
exist a function ∆CQ : T1→ [0,∞) with the conditions (2.71)
and (2.77) where Ji is defined (1.4) such that the functional
inequality

‖g(2x)−12g(x)−4g(−x)‖T2
≤ ∆CQ(x) (2.83)

for all x ∈ T1. If there exists L = L(i) < 1 such that the
function

x→ ∆
AQ
CQ(x) = ∆CQ

( x
2

)
,

with the properties (2.73) and (2.79) for all x ∈ T1. Then
there exists a unique cubic mapping C : T1→ T2 satisfying
the functional equation and a unique quartic mapping Q4 :
T1→T2 satisfying the functional equation (1.2) and

‖g(x)−C(x)−Q4(x)‖T2
≤ 2K2

2β

L1−i

1−L
(∆AQ

CQ(x)+∆
AQ
CQ(−x))

(2.84)

for all x ∈T1.

Proof. The proof of the Theorem is similar to the Theorem
2.20.

The following Corollary is an immediate consequence of
Theorem 2.26, using Corollaries 2.23 and 2.25 concerning the
stability of (1.2).

Corollary 2.27. Let g : T1 → T2 be a mapping and there
exists real numbers µ and r such that

‖g(2x)−12g(x)−4g(−x)‖T2
≤
{

(i) µ,
(ii) µ||x||r, r 6= 2,4;

(2.85)

for all x ∈ T1. Then there exists a unique cubic function
C : T1 → T2 and a unique quartic function Q4 : T1 → T2
such that

‖g(x)−C(x)−Q4(x)‖T2

≤


2K2|µ|

2β

(
1
7
+

1
15

)
,

2K2µ||x||r

2β

(
1

|8−2rβ |
+

1
|16−2rβ |

)
,

(2.86)

for all x ∈ T1.

3. Stability Results In Intuitionistic Fuzzy
Banach Space

3.1 Definitions and Notations of Intuitionistic Fuzzy
Banach Space

Now, we recall the basic definitions and notations in the setting
of intuitionistic fuzzy normed space.

Definition 3.1. A binary operation ∗ : [0,1]× [0,1]−→ [0,1]
is said to be continuous t-norm if ∗ satisfies the following
conditions:

(1) ∗ is commutative and associative;

(2) ∗ is continuous;

(3) a∗1 = a for all a ∈ [0,1];

(4) a∗b≤ c∗d whenever a≤ c and b≤ d for all a,b,c,d ∈
[0,1] .

Definition 3.2. A binary operation � : [0,1]× [0,1]−→ [0,1]
is said to be continuous t-conorm if � satisfies the following
conditions:

(1’) � is commutative and associative;

(2’) � is continuous;

(3’) a�0 = a for all a ∈ [0,1];

(4’) a�b≤ c�d whenever a≤ c and b≤ d for all a,b,c,d ∈
[0,1] .

Using the notions of continuous t-norm and t-conorm,
Saadati and Park [50] introduced the concept of intuitionistic
fuzzy normed space as follows:

Definition 3.3. The five-tuple (X ,µ,ν ,∗,�) is said to be an
intuitionistic fuzzy normed space (for short, IFNS) if X is a
vector space, ∗1 is a continuous t-norm, � is a continuous t−
conorm, and µ,ν are fuzzy sets on X × (0,∞) satisfying the
following conditions. For every x,y ∈ X and s, t > 0
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(IFN1) µ(x, t)+ν(x, t)≤ 1,

(IFN2) µ(x, t)> 0,

(IFN3) µ(x, t) = 1, if and only if x = 0.

(IFN4) µ(αx, t) = µ
(
x, t

α

)
for each α 6= 0,

(IFN5) µ(x, t)∗µ(y,s)≤ µ(x+ y, t + s),

(IFN6) µ(x, ·) : (0,∞)→ [0,1] is continuous,

(IFN7) lim
t→∞

µ(x, t) = 1 and lim
t→0

µ(x, t) = 0,

(IFN8) ν(x, t)< 1,

(IFN9) ν(x, t) = 0, if and only if x = 0.

(IFN10) ν(αx, t) = ν
(
x, t

α

)
for each α 6= 0,

(IFN11) ν(x, t)�ν(y,s)≥ ν(x+ y, t + s),

(IFN12) ν(x, ·) : (0,∞)→ [0,1] is continuous,

(IFN13) lim
t→∞

ν(x, t) = 0 and lim
t→0

ν(x, t) = 1.

In this case, (µ,ν) is called an intuitionistic fuzzy norm.

Example 3.4. Let (X ,‖·‖) be a normed space. Let a∗b = ab
and a � b = min{a+b,1} for all a,b ∈ [0,1]. For all x ∈ X
and every t > 0, consider

µ(x, t) =
{ t

t+‖x‖ i f t > 0;
0 i f t ≤ 0;

and

ν(x, t) =

{
‖x‖

t+‖x‖ i f t > 0;
0 i f t ≤ 0.

Then (X ,µ,ν ,∗,�) is an IFN-space.

The concepts of convergence and Cauchy sequences in an
intuitionistic fuzzy normed space are investigated in [50].

Definition 3.5. Let (X ,µ,ν ,∗,�) be an IFNS. Then, a se-
quence x = {xk} is said to be intuitionistic fuzzy convergent
to a point L ∈ X if

lim µ(xk−L, t) = 1 and lim ν(xk−L, t) = 0

for all t > 0. In this case, we write

xk
IF−→ L as k→ ∞

Definition 3.6. Let (X ,µ,ν ,∗,�) be an IFN-space. Then,
x = {xk} is said to be intuitionistic fuzzy Cauchy sequence if

µ
(
xk+p− xk, t

)
= 1 and ν

(
xk+p− xk, t

)
= 0

for all t > 0, and p = 1,2 · · · .

Definition 3.7. Let (X ,µ,ν ,∗,�) be an IFN-space. Then
(X ,µ,ν ,∗,�) is said to be complete if every intuitionistic fuzzy
Cauchy sequence in (X ,µ,ν ,∗,�) is intuitionistic fuzzy con-
vergent (X ,µ,ν ,∗,�).

In this section, the generalized Ulam - Hyers stability
of the functional equations (1.1) and (1.2) are respectively pro-
vided with the help of direct and fixed point methods. Here
and subsequently, assume that X is a linear space, (Z,µ ′,ν ′)
is an intuitionistic fuzzy normed space and (Y,µ,ν) an intu-
itionistic fuzzy Banach space.

3.2 Stability Results of (1.1): Direct Method
Theorem 3.8. Let j ∈ {1,−1}. Let ∆AQ : X −→ Z be a func-

tion such that for some 0 <
( p

2

) j
< 1,

µ ′
(
∆AQ

(
2n jx

)
, t
)
≥ µ ′

(
pn j∆AQ (x) , t

)
ν ′
(
∆AQ

(
2n jx

)
, t
)
≤ ν ′

(
pn j∆AQ (x) , t

)
 (3.1)

for all x ∈ X and all t > 0 and

lim
n→∞

µ ′
(
∆AQ

(
2 jnx

)
,2 jnt

)
= 1

lim
n→∞

ν ′
(
∆AQ

(
2 jnx

)
,2 jnt

)
= 0

 (3.2)

for all x ∈ X and all t > 0. Let fa : X → Y be an odd function
satisfying the inequality

µ ( fa(2x)−3 fa(x)− fa(−x), t)≥ µ ′ (∆AQ (x) , t)

ν ( fa(2x)−3 fa(x)− fa(−x), t)≤ ν ′ (∆AQ (x) , t)


(3.3)

for all x∈ X and all t > 0. Then there exists a unique additive
mapping A : X −→ Y satisfying (1.1) and

µ ( fa(x)−A (x), t)≥ µ ′ (∆AQ (x) ,2|2− p|t)

ν ( fa(x)−A (x), t)≤ ν ′ (∆AQ (x) ,2|2− p|t)


(3.4)

for all x ∈ X and all t > 0.

Proof. Case (i): Let j = 1. Using oddness of f in in (3.3),
we obtain

µ ( fa(2x)−2 f (x) , t)≥ µ ′ (∆AQ (x) , t)

ν ( fa(2x)−2 f (x) , t)≤ ν ′ (∆AQ (x) , t)

 (3.5)

for all x ∈ X and all t > 0. Using (IFN4) and (IFN10) in (3.5),
we arrive

µ

( fa(3x)
2
− fa(x),

t
2

)
≥ µ

′ (∆AQ(x), t)

ν

( fa(3x)
2
− fa(x),

t
2

)
≤ ν

′ (∆AQ(x), t)

 (3.6)
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for all x ∈ X and all t > 0. Substituting x by 2nx in (3.6), we
have

µ

( fa(2n+1x)
2

− fa(2nx),
t
2

)
≥ µ

′ (∆AQ(2nx), t)

ν

( fa(2n+1x)
2

− fa(2nx),
t
2

)
≤ ν

′ (∆AQ(2nx), t)


(3.7)

for all x ∈ X and all t > 0. It is easy to verify from (3.7) and
using (3.1), (IFN4), (IFN10) that

µ

( fa(2n+1x)
2(n+1) − fa(2nx)

2n ,
t

2 ·2n

)
≥ µ

′
(

∆AQ(x),
t
pn

)

ν

( fa(2n+1x)
2(n+1) − fa(2nx)

2n ,
t

2 ·2n

)
≤ ν

′
(

∆AQ(x),
t
pn

)


(3.8)

for all x ∈ X and all t > 0. Interchanging t into pnt in (3.8),
we have

µ

( fa(2n+1x)
2(n+1) − fa(2nx)

2n ,
t · pn

2 ·2n

)
≥ µ

′ (∆AQ(x), t)

ν

( fa(2n+1x)
2(n+1) − fa(2nx)

2n ,
t · pn

2 ·2n

)
≤ ν

′ (∆AQ(x), t)


(3.9)

for all x ∈ X and all t > 0. It is easy to see that

fa(2nx)
2n − fa(x) =

n−1

∑
i=0

fa(2i+1x)
2(i+1) − fa(2ix)

2i (3.10)

for all x ∈ X . It follows from (3.9) and (3.10), we get

µ

(
fa(2nx)

2n − fa(x),
n−1

∑
i=0

pi t
2 ·2i

)

= µ

(
n−1

∑
i=0

fa(2i+1x)
2(i+1) − fa(2ix)

2i ,
n−1

∑
i=0

pi t
2 ·2i

)

ν

(
fa(2nx)

2n − fa(x),
n−1

∑
i=0

pi t
2 ·2i

)

= ν

(
n−1

∑
i=0

fa(2i+1x)
2(i+1) − fa(2ix)

2i ,
n−1

∑
i=0

pi t
2 ·2i

)


(3.11)

for all x ∈ X and all t > 0. Using (IFNS5) and (IFNA11) in

(3.11), we have

µ

(
fa(2nx)

2n − fa(x),
n−1

∑
i=0

pit
2 ·2i

)
≥∏

n−1
i=0 µ

(
fa(2i+1x)

2(i+1) − fa(2ix)
2i ,

pi tr
2 ·2i

)

ν

(
fa(2nx)

2n − fa(x),
n−1

∑
i=0

pit
2 ·2i

)
≤∏

n−1
i=0 ν

(
fa(2i+1x)

2(i+1) − fa(2ix)
2i ,

pi t
2 ·2i

)



(3.12)

where
n−1

∏
i=0

c j = c1 ∗ c2 ∗ · · · ∗ cn

and
n−1

∏
i=0

d j = d1 �d2 � · · · �dn

for all x ∈ X and all t > 0. Hence

µ

(
fa(2nx)

2n − fa(x),
n−1

∑
i=0

pi t
2 ·2i

)
≥∏

n−1
i=0 µ ′ (∆AQ(x), t) = µ ′ (∆AQ(x), t)

ν

(
fa(2nx)

2n − fa(x),
n−1

∑
i=0

pi t
2 ·2i

)
≤∏

n−1
i=0 ν ′ (∆AQ(x), t) = ν ′ (∆AQ(x), t)


(3.13)

for all x ∈ X and all t > 0. Replacing x by 2mx in (3.13) and
using (3.2), (IFN4), (IFN10), we obtain

µ

(
fa(2n+mx)

2(n+m)
− fa(2mx)

2m ,
n−1

∑
i=0

pi t
2 ·2(i+m)

)
≥ µ ′ (∆AQ(2mx), t) = µ ′

(
∆AQ(x), t

pm

)

ν

(
fa(2n+mx)

2(n+m)
− fa(2mx)

2m ,
n−1

∑
i=0

pi t
2 ·2(i+m)

)
≤ ν ′ (∆AQ(2mx), t) = ν ′

(
∆AQ(x), t

pm

)


(3.14)

for all x ∈ X and all t > 0 and all m,n≥ 0. Replacing t by pmt
in (3.14), we get

µ

(
fa(2n+mx)

2(n+m)
− fa(2mx)

2m ,
n−1

∑
i=0

pi+m t
2 ·2(i+m)

)
≥ µ

′ (∆AQ(x), t)

ν

(
fa(2n+mx)

2(n+m)
− fa(2mx)

2m ,
n−1

∑
i=0

pi+m t
2 ·2(i+m)

)
≤ ν

′ (∆AQ(x), t)


(3.15)

for all x ∈ X and all t > 0 and all m,n≥ 0. The relation (3.14)
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implies that

µ

(
fa(2n+mx)

2(n+m)
− fa(2mx)

2m , t
)

≥ µ ′

(
∆AQ(x), t

∑
n−1
i=m

pi

2·2i

)

ν

(
fa(2n+mx)

2(n+m)
− fa(2mx)

2m , t
)

≤ ν ′

(
∆AQ(x), t

∑
n−1
i=m

pi

2·2i

)



(3.16)

holds for all x ∈ X and all t > 0 and all m,n ≥ 0. Since

0 < p < 2 and
n
∑

i=0

( p
2

)i
< ∞. The Cauchy criterion for conver-

gence in IFNS shows that the sequence
{

fa(2nx)
2n

}
is Cauchy

in (Y,µ,ν). Since (Y,µ,ν) is a complete IFN-space this se-
quence converges to some point A (x)∈Y . So, one can define
the mapping A : X −→ Y by

lim
n→∞

µ

(
fa(2nx)

2n −A (x), t
)
= 1,

lim
n→∞

ν

(
fa(2nx)

2n −A (x), t
)
= 0

for all x ∈ X and all t > 0. Hence

fa(2nx)
2n

IF−→A (x), as n→ ∞.

Letting m = 0 in (3.15), we arrive

µ

(
fa(2nx)

2n − fa(x), t
)
≥ µ

′

(
∆AQ(x),

t

∑
n−1
i=0

pi

2·2i

)

ν

(
fa(2nx)

2n − fa(x), t
)
≤ ν

′

(
∆AQ(x),

t

∑
n−1
i=0

pi

2·2i

)


(3.17)

for all x ∈ X and all t > 0. Letting n→ ∞ in (3.17), we arrive

µ (A (x)− fa(x), t)≥ µ ′ (∆AQ(x),2 t|2− p|)

ν (A (x)− fa(x), t)≤ ν ′ (∆AQ(x),2 t|2− p|)


(3.18)

for all x∈X and all t > 0. To prove A satisfies (1.1), replacing
x by 2nx in (3.3) respectively, we obtain

µ
( 1

2n [ fa(2 ·2nx)−3 fa(2nx)− fa(−2nx)] , t
)

≥ µ ′ (∆AQ(2nx),2nt)

ν
( 1

2n [ fa(2 ·2nx)−3 fa(2nx)− fa(−2nx)] , t
)

≥ ν ′ (∆AQ(2nx),2nt)


(3.19)

for all x ∈ X and all t > 0. Now,

µ

(
A (2x)−3A (x)−A (−x), t

)
≥ µ

(
A (2x)− 1

2n fa(2x),
t
4

)
∗µ

(
−3A (x)+3

1
2n fa(x),

t
4

)
∗µ

(
−A (−x)+

1
2n fa(−x),

t
4

)
∗µ

( 1
2n fa(2x)−3

1
2n fa(x)−

1
2n fa(−x),

t
4

)
(3.20)

and

ν

(
A (2x)−3A (x)−A (−x), t

)
≥ ν

(
A (2x)− 1

2n fa(2x),
t
4

)
�ν

(
−3A (x)+3

1
2n fa(x),

t
4

)
�ν

(
−A (−x)+

1
2n fa(−x),

t
4

)
�ν

( 1
2n fa(2x)−3

1
2n fa(x)−

1
2n fa(−x),

t
4

)
(3.21)

for all x ∈ X and all t > 0. Also,

lim
n→∞

µ

(
1
2n [ fa(2 ·2nx)−3 fa(2nx)− fa(−2nx)] , t

4

)
= 1

lim
n→∞

ν

(
1
2n [ fa(2 ·2nx)−3 fa(2nx)− fa(−2nx)] , t

4

)
= 0


(3.22)

for all x ∈ X and all t > 0. Letting n→ ∞ in (3.20), (3.21)
and using (3.22), we find that A fulfills (1.1). Therefore, A
is a additive mapping. In order to prove A (x) is unique, let
A ′(x) be another additive functional equation satisfying (1.1)
and (3.4). Hence,

µ(A (x)−A ′(x), t)

≥ µ

(
A (2nx)− fa(2nx),

t.2n

2

)
∗µ

(
fa(2nx)−A ′(2nx),

t.2n

2

)
≥ µ

′
(

∆AQ(2nx),
2t 2n|2− p|

2

)
≥ µ

′
(

∆AQ(x),
2t 2n|2− p|

2 · pn

)
ν(A (x)−A ′(x), t)

≤ ν

(
A (2nx)− fa(2nx),

t.2n

2

)
�ν

(
fa(2nx)−A ′(2nx),

t.2n

2

)
≤ ν

′
(

∆AQ(2nx),
2t 2n|2− p|

2

)
≤ ν

′
(

∆AQ(x),
2t 2n|2− p|

2 · pn

)

for all x ∈ X and all t > 0. Since lim
n→∞

2t 2n|2− p|
2 pn = ∞, we

obtain

lim
n→∞

µ ′
(

∆AQ(x),
2t 2n|2−p|

2·pn

)
= 1

lim
n→∞

ν ′
(

∆AQ(x),
2t 2n|2−p|

2·pn

)
= 0


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for all x ∈ X and all t > 0. Thus

µ(A (x)−A ′(x), t) = 1
ν(A (x)−A ′(x), t) = 0

}
for all x ∈ X and all t > 0. Hence, A (x) = A ′(x). Therefore,
A (x) is unique.
Case 2: For j =−1. Putting x by x

2 in (3.5), we get

µ
(

fa(x)−2 f
( x

2

)
, t
)
≥ µ ′

(
∆AQ

( x
2

)
, t
)

ν
(

fa(x)−2 f
( x

2

)
, t
)
≤ ν ′

(
∆AQ

( x
2

)
, t
)
 (3.23)

for all x ∈ X and all t > 0. The rest of the proof is similar to
that of Case 1. This completes the proof.

The following corollary is an immediate consequence of
Theorem 3.8, regarding the stability of (1.1)

Corollary 3.9. Suppose that an odd function fa : X −→ Y
satisfies the double inequality

µ ( fa(2x)−3 fa(x)− fa(−x), t)

≥
{

µ ′ (λ , t) ,
µ ′ (λ (||x||r) , t) ,

ν ( fa(2x)−3 fa(x)− fa(−x), t)

≤
{

ν ′ (λ , t) ,
ν ′ (λ (||x||r) , t) ,


(3.24)

for all x ∈ X and all t > 0 , where λ ,r are constants with
λ > 0 and r 6= 2. Then there exists a unique additive mapping
A : X −→ Y such that

µ ( fa(x)−A (x), t)≥
{

µ ′ (λ , |2|t) ,
µ ′ (λ ||x||r,2|2−2r|t) ,

ν ( fa(x)−A (x), t)≤
{

ν ′ (λ , |2|t) ,
µ ′ (λ ||x||r,2|2−2r|t) ,


(3.25)

for all x ∈ X and all t > 0.

Theorem 3.10. Let j ∈ {1,−1}. Let ∆AQ : X −→ Z be a

function such that for some 0 <
( p

4

) j
< 1,

µ ′
(
∆AQ

(
2n jx

)
, t
)
≥ µ ′

(
pn j∆AQ (x) , t

)
ν ′
(
∆AQ

(
2n jx

)
, t
)
≤ ν ′

(
pn j∆AQ (x) , t

)
 (3.26)

for all x ∈ X and all t > 0 and

lim
n→∞

µ ′
(
∆AQ

(
2 jnx

)
,4 jnt

)
= 1

lim
n→∞

ν ′
(
∆AQ

(
2 jnx

)
,4 jnt

)
= 0

 (3.27)

for all x ∈ X and all t > 0. Let fq : X→Y be an even function
satisfying the inequality

µ ( fq(2x)−3 fq(x)− fq(−x), t)≥ µ ′ (∆AQ (x) , t)

ν ( fq(2x)−3 fq(x)− fq(−x), t)≤ ν ′ (∆AQ (x) , t)


(3.28)

for all x ∈ X and all t > 0. Then there exists a unique
quadratic mapping Q2 : X −→ Y satisfying (1.1) and

µ ( fq(x)−Q2(x), t)≥ µ ′ (∆AQ (x) ,4|4− p|t)

ν ( fq(x)−Q2(x), t)≤ ν ′ (∆AQ (x) ,4|4− p|t)


(3.29)

for all x ∈ X and all t > 0.

Proof. Case (i): Let j = 1. Using evenness of f in in (3.28),
we obtain

µ ( fq(2x)−4 f (x) , t)≥ µ ′ (∆AQ (x) , t)

ν ( fq(2x)−4 f (x) , t)≤ ν ′ (∆AQ (x) , t)

 (3.30)

for all x ∈ X and all t > 0. The rest of the proof is similar to
that of Theorem 3.8.

The following corollary is an immediate consequence of
Theorem 3.10, regarding the stability of (1.1)

Corollary 3.11. Suppose that an even function f : X −→ Y
satisfies the double inequality

µ ( fq(2x)−3 fq(x)− fq(−x), t)≥
{

µ ′ (λ , t) ,
µ ′ (λ (||x||r) , t) ,

ν ( fq(2x)−3 fq(x)− fq(−x), t)≤
{

ν ′ (λ , t) ,
ν ′ (λ (||x||r) , t) ,


(3.31)

for all x∈X and all t > 0 , where λ ,r are constants with λ > 0
and r 6= 2. Then there exists a unique quadratic mapping
Q2 : X −→ Y such that

µ ( fq(x)−Q2(x), t)≥
{

µ ′ (λ ,4|3|t) ,
µ ′ (λ ||x||r,4|4−2r|t) ,

ν ( fq(x)−Q2(x), t)≤
{

ν ′ (λ ,4|3|t) ,
µ ′ (λ ||x||r,4|4−2r|t) ,


(3.32)

for all x ∈ X and all t > 0.

Theorem 3.12. Let j ∈ {1,−1}. Let ∆AQ : X −→ Z be a

function such that for some 0 <
( p

2

) j
,0 <

( p
4

) j
< 1, with

conditions (3.1), (3.26), (3.2) and (3.27) for all x ∈ X and all
t > 0. Let f : X → Y be a function satisfying the inequality

µ ( f (2x)−3 f (x)− f (−x), t)≥ µ ′ (∆AQ (x) , t)

ν ( f (2x)−3 f (x)− f (−x), t)≤ ν ′ (∆AQ (x) , t)


(3.33)

for all x∈ X and all t > 0. Then there exists a unique additive
mapping A : X −→ Y and a unique quadratic mapping Q2 :
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X −→ Y satisfying (1.1) and

µ ( f (x)−A (x)−Q2(x), t)
≥ µ ′ (∆AQ (x) ,2|2− p|t)

∗µ ′ (∆AQ (−x) ,2|2− p|t)
∗µ ′ (∆AQ (x) ,4|4− p|t)
∗µ ′ (∆AQ (−x) ,4|4− p|t)

ν ( f (x)−A (x)−Q2(x), t)
≤ ν ′ (∆AQ (x) ,2|2− p|t)

�ν ′ (∆AQ (−x) ,2|2− p|t)
�ν ′ (∆AQ (x) ,4|4− p|t)
�ν ′ (∆AQ (−x) ,4|4− p|t)



(3.34)

for all x ∈ X and all t > 0.

Proof. Let fo(x) =
fa(x)− fa(−x)

2
for all x∈T1. Then fo(0)=

0 and fo(−x) =− fo(x) for all x ∈ X . Hence by Theorem 3.8,
we have

µ ( fo(x)−A (x), t)≥ µ ′ (∆AQ (x) ,2|2− p|t)
∗µ ′ (∆AQ (−x) ,2|2− p|t)

ν ( fo(x)−A (x), t)≤ ν ′ (∆AQ (x) ,2|2− p|tt)
�ν ′ (∆AQ (−x) ,2|2− p|tt)


(3.35)

for all x ∈ X and all t > 0. Also, let fe(x) =
fq(x)+ fq(−x)

2
for all x ∈ X . Then fe(0) = 0 and fe(−x) = fe(x) for all
x ∈T1. Hence by Theorem 3.10, we have

µ ( fe(x)−Q2(x), t)≥ µ ′ (∆AQ (x) ,4|4− p|t)
∗µ ′ (∆AQ (−x) ,4|4− p|t)

ν ( fe(x)−Q2(x), t)≤ ν ′ (∆AQ (x) ,4|4− p|t)
�ν ′ (∆AQ (−x) ,4|4− p|t)


(3.36)

for all x ∈ X and all t > 0. Define

f (x) = fo(x)+ fe(x) (3.37)

for all x ∈ X . From (3.35),(3.36) and (3.37), we arrive

µ ( f (x)−A (x)−Q2(x),2t)

= µ ( fo(x)+ fe(x)−A (x)−Q2(x),2t)

≥ µ ( fo(x)−A (x), t)∗µ ( fe(x)−Q2(x), t)

≥ µ
′ (∆AQ (x) ,2|2− p|t)
∗µ
′ (∆AQ (−x) ,2|2− p|t)

∗µ
′ (∆AQ (x) ,4|4− p|t)

∗µ
′ (∆AQ (−x) ,4|4− p|t)

and

ν ( f (x)−A (x)−Q2(x),2t)

= ν ( fo(x)+ fe(x)−A (x)−Q2(x),2t)

≤ ν ( fo(x)−A (x), t)∗ν ( fe(x)−Q2(x), t)

≤ ν
′ (∆AQ (x) ,2|2− p|t)
�ν
′ (∆AQ (−x) ,2|2− p|t)

�ν
′ (∆AQ (x) ,4|4− p|t)

�ν
′ (∆AQ (−x) ,4|4− p|t)

for all x ∈ X and all t > 0.

The following corollary is an immediate consequence of
Theorem 3.12, regarding the stability of (1.1)

Corollary 3.13. Suppose that a function f : X −→Y satisfies
the double inequality

µ ( f (2x)−3 f (x)− f (−x), t)≥
{

µ ′ (λ , t) ,
µ ′ (λ (||x||r) , t) ,

ν ( f (2x)−3 f (x)− f (−x), t)≤
{

ν ′ (λ , t) ,
ν ′ (λ (||x||r) , t) ,


(3.38)

for all x∈X and all t > 0 , where λ ,r are constants with λ > 0
and r 6= 1,2. Then there exists a unique additive mapping
A : X −→ Y and a unique quadratic mapping Q2 : X −→ Y
such that

µ ( f (x)−A (x)−Q2(x), t)

≥
{

µ ′ (4λ , |2|t)∗µ ′ (4λ ,4|3|t) ,
µ ′ (4λ ||x||r,2|2−2r|t)∗µ ′ (4λ ||x||r,4|4−2r|t) ,

ν ( f (x)−A (x)−Q2(x), t)

≤
{

ν ′ (4λ , |2|t)�ν ′ (4λ ,4|3|t) ,
ν ′ (4λ ||x||r,2|2−2r|t)�ν ′ (4λ ||x||r,4|4−2r|t) ,


(3.39)

for all x ∈ X and all t > 0.

3.3 Stability Results of (1.2): Direct Method
Theorem 3.14. Let j ∈ {1,−1}. Let ∆CQ : X −→ Z be a

function such that for some 0 <
( p

8

) j
< 1,

µ ′
(
∆CQ

(
2n jx

)
, t
)
≥ µ ′

(
pn j∆CQ (x) , t

)
ν ′
(
∆CQ

(
2n jx

)
, t
)
≤ ν ′

(
pn j∆CQ (x) , t

)
 (3.40)

for all x ∈ X and all t > 0 and

lim
n→∞

µ ′
(
∆CQ

(
2 jnx

)
,8 jnt

)
= 1

lim
n→∞

ν ′
(
∆CQ

(
2 jnx

)
,8 jnt

)
= 0

 (3.41)
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for all x ∈ X and all t > 0. Let gc : X → Y be an odd function
satisfying the inequality

µ (gc(2x)−12gc(x)−4gc(−x), t)≥ µ ′ (∆CQ (x) , t)

ν (gc(2x)−12gc(x)−4gc(−x), t)≤ ν ′ (∆CQ (x) , t)


(3.42)

for all x ∈ X and all t > 0. Then there exists a unique cubic
mapping C : X −→ Y satisfying (1.2) and

µ (gc(x)−C (x), t)≥ µ ′ (∆CQ (x) ,8|8− p|t)

ν (gc(x)−C (x), t)≤ ν ′ (∆CQ (x) ,8|8− p|t)


(3.43)

for all x ∈ X and all t > 0.

Proof. Case (i): Let j = 1. Using oddness of gc in in (3.42),
we obtain

µ (gc(2x)−8 f (x) , t)≥ µ ′ (∆CQ (x) , t)

ν (gc(2x)−8 f (x) , t)≤ ν ′ (∆CQ (x) , t)

 (3.44)

for all x ∈ X and all t > 0. The rest of the proof is similar to
that of Theorem 3.8.

The following corollary is an immediate consequence of
Theorem 3.14, regarding the stability of (1.2)

Corollary 3.15. Suppose that an odd function gc : X −→ Y
satisfies the double inequality

µ (gc(2x)−12gc(x)−4gc(−x), t)

≥
{

µ ′ (λ , t) ,
µ ′ (λ (||x||r) , t) ,

ν (gc(2x)−12gc(x)−4gc(−x), t)

≤
{

ν ′ (λ , t) ,
ν ′ (λ (||x||r) , t) ,


(3.45)

for all x ∈ X and all t > 0 , where λ ,r are constants with
λ > 0 and r 6= 3. Then there exists a unique cubic mapping
C : X −→ Y such that

µ (gc(x)−C (x), t)≥
{

µ ′ (λ ,8|7|t) ,
µ ′ (λ ||x||r,8|8−2r|t) ,

ν (gc(x)−C (x), t)≤
{

ν ′ (λ ,8|7|t) ,
µ ′ (λ ||x||r,8|8−2r|t) ,


(3.46)

for all x ∈ X and all t > 0.

Theorem 3.16. Let j ∈ {1,−1}. Let ∆CQ : X −→ Z be a

function such that for some 0 <
( p

16

) j
< 1,

µ ′
(
∆CQ

(
2n jx

)
, t
)
≥ µ ′

(
pn j∆CQ (x) , t

)
ν ′
(
∆CQ

(
2n jx

)
, t
)
≤ ν ′

(
pn j∆CQ (x) , t

)
 (3.47)

for all x ∈ X and all t > 0 and

lim
n→∞

µ ′
(
∆CQ

(
2 jnx

)
,16 jnt

)
= 1

lim
n→∞

ν ′
(
∆CQ

(
2 jnx

)
,16 jnt

)
= 0

 (3.48)

for all x ∈ X and all t > 0. Let gq : X→Y be an even function
satisfying the inequality

µ (gq(2x)−12gq(x)−4gq(−x), t)≥ µ ′ (∆CQ (x) , t)

ν (gq(2x)−12gq(x)−4gq(−x), t)≤ ν ′ (∆CQ (x) , t)


(3.49)

for all x ∈ X and all t > 0. Then there exists a unique quartic
mapping Q4 : X −→ Y satisfying (1.2) and

µ (gq(x)−Q4(x), t)≥ µ ′ (∆CQ (x) ,16|16− p|t)

ν (gq(x)−Q4(x), t)≤ ν ′ (∆CQ (x) ,16|16− p|t)


(3.50)

for all x ∈ X and all t > 0.

Proof. Case (i): Let j = 1. Using evenness of gq in in (3.49),
we obtain

µ (gq(2x)−16 f (x) , t)≥ µ ′ (∆CQ (x) , t)

ν (gq(2x)−16 f (x) , t)≤ ν ′ (∆CQ (x) , t)

 (3.51)

for all x ∈ X and all t > 0. The rest of the proof is similar to
that of Theorem 3.8.

The following corollary is an immediate consequence of
Theorem 3.16, regarding the stability of (1.2)

Corollary 3.17. Suppose that an even function f : X −→ Y
satisfies the double inequality

µ (gq(2x)−12gq(x)−4gq(−x), t)≥
{

µ ′ (λ , t) ,
µ ′ (λ (||x||r) , t) ,

ν (gq(2x)−12gq(x)−4gq(−x), t)≤
{

ν ′ (λ , t) ,
ν ′ (λ (||x||r) , t) ,


(3.52)

for all x ∈ X and all t > 0 , where λ ,r are constants with
λ > 0 and r 6= 4. Then there exists a unique quartic mapping
Q4 : X −→ Y such that

µ (gq(x)−Q4(x), t)≥
{

µ ′ (λ ,16|15|t) ,
µ ′ (λ ||x||r,16|16−2r|t) ,

ν (gq(x)−Q4(x), t)≤
{

ν ′ (λ ,16|15|t) ,
µ ′ (λ ||x||r,16|16−2r|t) ,


(3.53)

for all x ∈ X and all t > 0.
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Theorem 3.18. Let j ∈ {1,−1}. Let ∆CQ : X −→ Z be a

function such that for some 0 <
( p

8

) j
,0 <

( p
16

) j
< 1, with

conditions (3.40), (3.47), (3.41) and (3.48) for all x ∈ X and
all t > 0. Let g : X →Y be a function satisfying the inequality

µ (g(2x)−12(x)−4(−x), t)≥ µ ′ (∆AQ (x) , t)

ν (g(2x)−12(x)−4(−x), t)≤ ν ′ (∆AQ (x) , t)


(3.54)

for all x ∈ X and all t > 0. Then there exists a unique cubic
mapping C : X −→ Y and a unique quartic mapping Q4 :
X −→ Y satisfying (1.2) and

µ (g(x)−C (x)−Q4(x), t)
≥ µ ′ (∆CQ (x) ,8|8− p|t)

∗µ ′ (∆CQ (−x) ,8|8− p|t)
∗µ ′ (∆CQ (x) ,16|16− p|t)
∗µ ′ (∆CQ (−x) ,16|16− p|t)

ν (g(x)−C (x)−Q4(x), t)
≤ ν ′ (∆CQ (x) ,8|8− p|t)

�ν ′ (∆CQ (−x) ,8|8− p|t)
�ν ′ (∆CQ (x) ,16|16− p|t)
�ν ′ (∆CQ (−x) ,16|16− p|t)



(3.55)

for all x ∈ X and all t > 0.

Proof. The proof of the Theorem is similar to the Theorem
3.12

The following corollary is an immediate consequence of
Theorem 3.18, regarding the stability of (1.2)

Corollary 3.19. Suppose that a function g : X −→Y satisfies
the double inequality

µ (g(2x)−12g(x)−4g(−x), t)

≥
{

µ ′ (λ , t) ,
µ ′ (λ (||x||r) , t) ,

ν (g(2x)−12g(x)−4g(−x), t)

≤
{

ν ′ (λ , t) ,
ν ′ (λ (||x||r) , t) ,


(3.56)

for all x ∈ X and all t > 0 , where λ ,r are constants with
λ > 0 and r 6= 3,2. Then there exists a unique cubic mapping
C : X −→Y and a unique quartic mapping Q4 : X −→Y such
that

µ (g(x)−C (x)−Q4(x), t)

≥

 µ ′ (4λ ,8|7|t)∗µ ′ (4λ ,16|15|t) ,
µ ′ (4λ ||x||r,8|8−2r|t)

∗µ ′ (4λ ||x||r,16|16−2r|t) ,

ν (g(x)−C (x)−Q4(x), t)

≤

 ν ′ (4λ ,8|7|t)�ν ′ (4λ ,16|15|t) ,
ν ′ (4λ ||x||r,8|8−2r|t)

�ν ′ (4λ ||x||r,16|16−2r|t) ,


(3.57)

for all x ∈ X and all t > 0.

3.4 Stability Results of (1.1): Fixed Point Method
Theorem 3.20. Let fa : X −→Y be an odd mapping for which
there exists a function ∆AQ : X −→ Z with the double condition

lim
n→∞

µ ′ (∆AQ (Jn
i x) ,Jn

i t) = 1

lim
n→∞

ν ′ (∆AQ (Jn
i x) ,Jn

i t) = 0

 (3.58)

for all x,y ∈ X and all t > 0 where Ji is defined in (1.4) and
satisfying the double functional inequality

µ ( fa(2x)−3 fa(x)− fa(−x), t)≥ µ ′ (∆AQ(x), t)

ν ( fa(2x)−3 fa(x)− fa(−x), t)≤ ν ′ (∆AQ(x), t)


(3.59)

for all x ∈ X and all t > 0. If there exists L = L(i) such that
the function

∆AQ(x) = ∆AQ

( x
2

)
, (3.60)

has the property

µ ′ (Ji∆AQ(Jix), t) = µ ′ (∆AQ(x),Lt)
ν ′ (Ji∆AQ(Jix), t) = ν ′ (∆AQ(x),Lt)

}
(3.61)

for all x ∈ X and all t > 0, then there exists a unique additive
function A : X −→ Y satisfying the functional equation (1.1)
and

µ ( fa(x)−A (x), t)≥ µ ′
(

∆AQ(x), L1−i

1−L t
)

ν ( fa(x)−A (x), t)≤ ν ′
(

∆AQ(x), L1−i

1−L t
)  (3.62)

for all x ∈ X and all t > 0.

Proof. Consider the set

Λ = {h|h : X −→ Y, h(0) = 0}

and introduce the generalized metric on Λ, as

d(h, f ) = inf

L ∈ (0,∞) :


µ(h(x)− f (x), t)
≥ µ ′(∆AQ(x),Lt),
ν(h(x)− f (x), t)
≤ ν ′(∆AQ(x),Lt),




(3.63)

for all x ∈ X and all t > 0. It is easy to see that (3.63) is
complete with respect to the defined metric. Define Γ : Λ−→
Λ by

Γh(x) =
1
Ji

h(Jix),

for all x ∈X . Now, from (3.63) and h, f ∈ Λ
µ(h(x)− f (x), t)≥ µ ′(∆AQ(x), t),x ∈ X , t > 0
µ( 1

Ji
h(Jix)− 1

Ji
f (Jix), t)≥ µ ′(∆AQ(Jix),Jit),x ∈ X , t > 0

µ( 1
Ji

h(Jix)− 1
Ji

f (Jix), t)≥ µ ′(∆AQ(x),Lt),x ∈ X , t > 0
µ(Γh(x)−Γ f (x), t)≥ µ ′(∆AQ(x),Lt),x ∈ X , t > 0
ν(h(x)− f (x), t)≤ ν ′(∆AQ(x), t),x ∈ X , t > 0
ν( 1

Ji
h(Jix)− 1

Ji
f (Jix), t)≤ ν ′(∆AQ(Jix),Jit),x ∈ X , t > 0

ν( 1
Ji

h(Jix)− 1
Ji

f (Jix), t)≤ ν ′(∆AQ(x),Lt),x ∈ X , t > 0
ν(Γh(x)−Γ f (x), t)≤ ν ′(∆AQ(x),Lt),x ∈ X , t > 0
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This implies d(Γh,Γg)≤ Ld(h,g). i.e., Γ is a strictly contrac-
tive mapping on Λ with Lipschitz constant L.

Using oddness of f in (3.59), we reach

µ

(
f (2x)−2 f (x), t

)
≥ µ ′ (∆AQ(x), t)

ν

(
f (2x)−2 f (x), t

)
≤ ν ′ (∆AQ(x), t)

 (3.64)

for all x ∈ X and all t > 0. Now, from (3.64) and (3.61) for
the case i = 0, we reach

µ

(
f (2x)−2 f (x), t

)
≥ µ ′ (∆AQ(x), t)

µ

(
f (2x)

2 − f (x), t
)
≥ µ ′ (∆AQ(x),2t)

µ

(
Γ f (x)− f (x), t

)
≥ µ ′ (∆AQ(x),Lt)

µ

(
Γ f (x)− f (x), t

)
≥ µ ′ (∆AQ(x),Lt)

µ

(
Γ f (x)− f (x), t

)
≥ µ ′ (∆AQ(x),Lt)

ν

(
f (2x)−2 f (x), t

)
≤ ν ′ (∆AQ(x), t)

ν

(
f (2x)

2 − f (x), t
)
≤ ν ′ (∆AQ(x),2t)

ν

(
Γ f (x)− f (x), t

)
≤ ν ′ (∆AQ(x),Lt)

ν

(
Γ f (x)− f (x), t

)
≤ ν ′ (∆AQ(x),Lt)

ν

(
Γ f (x)− f (x), t

)
≤ ν ′ (∆AQ(x),Lt)

(3.65)

for all x ∈ X and all t > 0. Again by interchanging x into
x
2

in
(3.64) and (3.61) for the case i = 1, we get

µ

(
f (2x)−2 f (x), t

)
≥ µ ′

(
∆AQ(

x
2 ), t

)
µ

(
f (x)−Γ f (x), t

)
≥ µ ′ (∆AQ(x), t)

µ

(
f (x)−Γ f (x), t

)
≥ µ ′ (∆AQ(x), t)

µ

(
f (x)−Γ f (x), t

)
≥ µ ′ (∆AQ(x), t)

ν

(
f (2x)−2 f (x), t

)
≤ ν ′

(
∆AQ(

x
2 ), t

)
ν

(
f (x)−Γ f (x), t

)
≤ ν ′ (∆AQ(x), t)

ν

(
f (x)−Γ f (x), t

)
≤ ν ′ (∆AQ(x), t)

ν

(
f (x)−Γ f (x), t

)
≤ ν ′ (∆AQ(x), t)

(3.66)

for all x ∈ X and all t > 0. Thus, from (3.64) and (3.66), we
arrive

µ(Γ f (x)− f (x), t)≥ µ ′(∆AQ(x),L1−it),x ∈ X
ν(Γ f (x)− f (x), t)≤ ν ′(∆AQ(x),L1−it),x ∈ X

}
(3.67)

Hence property (FP1) holds.
By (FP2), it follows that there exists a fixed point A of J

in Λ such that

lim
n→∞

µ

(
f (Jn

i x)
Jn

i
−A (x), t

)
= 1, lim

n→∞
ν

(
f (Jn

i x)
Jn

i
−A (x), t

)
= 0

for all x ∈ X and all t > 0. To order to prove A : X −→ Y is
additive, the proof is similar to that of Theorem 3.8

By (FP3), A is the unique fixed point of Γ in the set
∆ = {A ∈ Λ : d( f ,A) < ∞},A is the unique function such
that

µ( f (x)−A (x), t)≥ µ ′(∆AQ(x),L1−it),x ∈ X
ν( f (x)−A (x), t)≤ ν ′(∆AQ(x),L1−it),x ∈ X

}
for all x ∈ X and and all t > 0. Finally by (FP4), we obtain

µ ( f (x)−A (x), t)≥ µ ′
(

∆AQ(x), L1−i

1−L t
)

ν ( f (x)−A (x), t)≤ ν ′
(

∆AQ(x), L1−i

1−L t
) 

for all x ∈ X and all t > 0. So, the proof is complete.

The next corollary is a direct consequence of Theorem
3.20 which shows that (1.1) can be stable.

Corollary 3.21. Suppose that an odd function fa : X −→ Y
satisfies the double inequality

µ ( fa(2x)−3 fa(x)− fa(−x), t)≥
{

µ ′ (λ , t) ,
µ ′ (λ ||x||r), t) ,

ν ( fa(2x)−3 fa(x)− fa(−x), t)≤
{

ν ′ (λ , t) ,
ν ′ (λ ||x||r, t) ,


(3.68)

for all x,y ∈ X and all t > 0 , where λ ,r 6= 1 are constants
with λ > 0. Then there exists a unique additive mapping
A : X −→ Y such that the double inequality

µ ( fa(x)−A (x), t)≥

{
µ ′ (λ , |1|t) ,
µ ′
(

λ ||x||r, 4r

|2−2r |

)
,

ν ( fa(x)−A (x), t)≤

{
ν ′ (λ , |1|t) ,
ν ′
(

λ ||x||r, 4r

|2−2r |

)
,


(3.69)

holds for all x ∈ X and all t > 0.

Proof. Now,

µ
′
(

∆AQ(Jn
i x,Jn

i y),Jk
i t
)
=

{
µ ′
(
λ ,Jk

i t
)
,

µ ′
(
λ ||x||r,Jk−a

i t
)
,

=

{
→ 1 as k→ ∞

→ 1 as k→ ∞

ν
′
(

∆AQ(Jn
i x,Jn

i y),Jk
i t
)
=

{
ν ′
(
λ ,Jk

i t
)
,

ν ′
(
λ ||x||r,Jk−a

i t
)
,

=

{
→ 0 as k→ ∞

→ 0 as k→ ∞

for all x ∈ X and all t > 0. Thus, the relation (3.58) holds. It
follows from (3.60), (3.61) and (3.68), we arrive

µ
′ (∆AQ, t) = µ

′
(

∆AQ

( x
2

)
, t
)
=

{
µ ′ (λ , t)

µ ′
(

λ ||x||r
2r , t

)
ν
′ (∆AQ, t) = ν

′
(

∆AQ

( x
2

)
, t
)
=

{
ν ′ (λ , t)

ν ′
(

λ ||x||r
2r , t

)
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for all x,y ∈ X and all t > 0. Also from (3.61), we have

µ
′ (Ji∆AQ(Jix), t) =

{
µ ′
(
λ ,Ji

−1t
)

µ ′
(
λ ||x||r,Ji

r−1t
)

ν
′ (Ji∆AQ(Jix), t) =

{
ν ′
(
λ ,Ji

−1t
)

ν ′
(
λ ||x||r,Ji

r−1t
)

for all x ∈ X and all t > 0.
For the case L = Ji

−1 = 2−1 for i = 0 and L = Ji
−1 =( 1

2

)−1
= 2 for i = 1 from the inequality (3.62), we arrive

µ ( f (x)−A (x), t)≥ µ ′
(

∆AQ(x),
(2−1)1−0

1−2−1 t
)

= µ ′ (λ , t)

ν ( f (x)−A (x), t)≤ ν ′
(

∆AQ(x),
(2−1)1−0

1−2−1 t
)

= ν ′ (λ , t)


µ ( f (x)−A (x), t)≥ µ ′

(
∆AQ(x),

(2)1−1

1−2 t
)

= µ ′ (λ ,−t)

ν ( f (x)−A (x), t)≤ ν ′
(

∆AQ(x),
(2)1−1

1−2 t
)

= ν ′ (λ ,−t)


for all x ∈ X and all t > 0.

For the case L = Ji
r−1 = 2r−1 for i = 0 and L = Ji

r−1 =( 1
2

)r−1
= 21−r for i = 1 from the inequality (3.62), we arrive

µ ( f (x)−A (x), t)≥ µ ′
(

∆AQ(x),
(2r−1)1−0

1−2r−1 t
)

= µ ′
(

λ ||x||r, 4r

2−2r t
)

ν ( f (x)−A (x), t)≤ ν ′
(

∆AQ(x),
(2r−1)1−0

1−2r−1 t
)

= ν ′
(

λ ||x||r, 4r

2−2r t
)


µ ( f (x)−A (x), t)≥ µ ′

(
∆AQ(x),

(21−r)1−1

1−21−r t
)

= µ ′
(

λ ||x||r, 4r

2r−2 t
)

ν ( f (x)−A (x), t)≤ ν ′
(

∆AQ(x),
(21−r)1−1

1−21−r t
)

= ν ′
(

λ ||x||r, 4r

2r−2 t
)


for all x ∈ X and all t > 0. This finishes the proof.

Theorem 3.22. Let fq : X −→ Y be an even mapping for
which there exists a function ∆AQ : X −→ Z with the double
condition

lim
n→∞

µ ′
(
∆AQ (Jn

i x) ,J2n
i t
)
= 1

lim
n→∞

ν ′
(
∆AQ (Jn

i x) ,J2n
i t
)
= 0

 (3.70)

for all x,y ∈ X and all t > 0 where Ji is defined in (1.4) and
satisfying the double functional inequality

µ ( fq(2x)−3 fq(x)− fq(−x), t)≥ µ ′ (∆AQ(x), t)

ν ( fq(2x)−3 fq(x)− fq(−x), t)≤ ν ′ (∆AQ(x), t)


(3.71)

for all x ∈ X and all t > 0. If there exists L = L(i) such that
the function

∆AQ(x) = ∆AQ

( x
2

)
, (3.72)

has the property

µ ′ (Ji∆AQ(Jix), t) = µ ′ (∆AQ(x),Lt)
ν ′ (Ji∆AQ(Jix), t) = ν ′ (∆AQ(x),Lt)

}
(3.73)

for all x∈ X and all t > 0, then there exists a unique quadratic
function Q2 : X −→Y satisfying the functional equation (1.1)
and

µ ( fq(x)−Q2(x), t)≥ µ ′
(

∆AQ(x), L1−i

1−L t
)

ν ( fq(x)−Q2(x), t)≤ ν ′
(

∆AQ(x), L1−i

1−L t
)  (3.74)

for all x ∈ X and all t > 0.

Proof. The proof of the theorem is similar ideas given in
Theorem 3.20 by defining a mapping Γ : Λ→ Λ by

Γh(x) =
1
J2

i
h(Jix),

for all x ∈ X .

The next corollary is a direct consequence of which shows
that (1.1) can be stable.

Corollary 3.23. Suppose that an even function fq : X −→ Y
satisfies the double inequality

µ ( fq(2x)−3 fq(x)− fq(−x), t)≥
{

µ ′ (λ , t) ,
µ ′ (λ ||x||r), t) ,

ν ( fq(2x)−3 fq(x)− fq(−x), t)≤
{

ν ′ (λ , t) ,
ν ′ (λ ||x||r, t) ,


(3.75)

for all x,y ∈ X and all t > 0 , where λ ,r 6= 2 are constants
with λ > 0. Then there exists a unique quadratic mapping
Q2 : X −→ Y such that the double inequality

µ ( fq(x)−Q2(x), t)≥

{
µ ′ (λ , |3|t) ,
µ ′
(

λ ||x||r, 4r

|4−2r |

)
,

ν ( fq(x)−Q2(x), t)≤

{
ν ′ (λ , |3|t) ,
ν ′
(

λ ||x||r, 4r

|4−2r |

)
,


(3.76)

holds for all x ∈ X and all t > 0.

Theorem 3.24. Let f : X −→Y be a mapping for which there
exists a function ∆AQ : X −→ Z with the double conditions
(3.58), (3.70) for all x,y ∈ X and all t > 0 and satisfying the
double functional inequality

µ ( f (2x)−3 f (x)− f (−x), t)≥ µ ′ (∆AQ(x), t)

ν ( f (2x)−3 f (x)− f (−x), t)≤ ν ′ (∆AQ(x), t)


(3.77)
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for all x ∈ X and all t > 0. If there exists L = L(i) such
that the functions (3.60) and (3.72) has the properties (3.61)
and (3.73) for all x ∈ X and all t > 0, then there exists a
unique additive function A : X −→Y and a unique quadratic
function Q2 : X −→Y satisfying the functional equation (1.1)
and

µ ( f (x)−A (x)−Q2(x), t)

≥ µ ′
(

∆AQ(x), L1−i

1−L t
)
∗µ ′

(
∆AQ(−x), L1−i

1−L t
)

∗µ ′
(

∆AQ(x), L1−i

1−L t
)
∗µ ′

(
∆AQ(−x), L1−i

1−L t
)

ν ( f (x)−A (x)−Q2(x), t)

≤ ν ′
(

∆AQ(x), L1−i

1−L t
)
�ν ′

(
∆AQ(−x), L1−i

1−L t
)

�ν ′
(

∆AQ(x), L1−i

1−L t
)
�ν ′

(
∆AQ(−x), L1−i

1−L t
)


(3.78)

for all x ∈ X and all t > 0.

The next corollary is a direct consequence of Theorem
3.24 which shows that (1.1) can be stable.

Corollary 3.25. Suppose that a function f : X −→Y satisfies
the double inequality

µ ( f (2x)−3 f (x)− f (−x), t)≥
{

µ ′ (λ , t) ,
µ ′ (λ ||x||r), t) ,

ν ( f (2x)−3 f (x)− f (−x), t)≤
{

ν ′ (λ , t) ,
ν ′ (λ ||x||r, t) ,


(3.79)

for all x,y ∈ X and all t > 0 , where λ ,r 6= 1,2 are constants
with λ > 0. Then there exists a unique additive mapping
A : X −→ Y and a unique quadratic function Q2 : X −→ Y
such that the double inequality

µ ( f (x)−A (x)−Q2(x), t)

≥

{
µ ′ (4λ , |1|t)∗µ ′ (4λ , |3|t) , ,
µ ′
(

4λ ||x||r, 4r

|2−2r |

)
∗µ ′

(
4λ ||x||r, 4r

|4−2r |

)
,

ν ( f (x)−A (x)−Q2(x)), t)

≤

{
ν ′ (4λ , |1|t)�ν ′ (4λ , |3|t) ,
ν ′
(

4λ ||x||r, 4r

|2−2r |

)
�ν ′

(
4λ ||x||r, 4r

|4−2r |

)


(3.80)

holds for all x ∈ X and all t > 0.

3.5 Stability Results of (1.2): Fixed Point Method
Theorem 3.26. Let gc : X −→Y be an odd mapping for which
there exists a function ∆CQ : X −→ Z with the double condition

lim
n→∞

µ ′ (∆CQ (Jn
i x) ,Jn

i t) = 1

lim
n→∞

ν ′ (∆CQ (Jn
i x) ,Jn

i t) = 0

 (3.81)

for all x,y ∈ X and all t > 0 where Ji is defined in (1.4) and
satisfying the double functional inequality

µ (gc(2x)−12gc(x)−4gc(−x), t)≥ µ ′ (∆CQ(x), t)

ν (gc(2x)−12gc(x)−4gc(−x), t)≤ ν ′ (∆CQ(x), t)


(3.82)

for all x ∈ X and all t > 0. If there exists L = L(i) such that
the function

∆CQ(x) = ∆CQ

( x
2

)
, (3.83)

has the property

µ ′ (Ji∆CQ(Jix), t) = µ ′ (∆CQ(x),Lt)
ν ′ (Ji∆CQ(Jix), t) = ν ′ (∆CQ(x),Lt)

}
(3.84)

for all x ∈ X and all t > 0, then there exists a unique cubic
function C : X −→ Y satisfying the functional equation (1.2)
and

µ (gc(x)−C (x), t)≥ µ ′
(

∆CQ(x), L1−i

1−L t
)

ν (gc(x)−C (x), t)≤ ν ′
(

∆CQ(x), L1−i

1−L t
)  (3.85)

for all x ∈ X and all t > 0.

Proof. The proof of the theorem is similar ideas given in
Theorem 3.20 by defining a mapping Γ : Λ→ Λ by

Γh(x) =
1
J3

i
h(Jix),

for all x ∈ X .

The next corollary is a direct consequence of Theorem
3.26 which shows that (1.1) can be stable.

Corollary 3.27. Suppose that an odd function gc : X −→ Y
satisfies the double inequality

µ (gc(2x)−12gc(x)−4gc(−x), t)≥
{

µ ′ (λ , t) ,
µ ′ (λ ||x||r), t) ,

ν (gc(2x)−12gc(x)−4gc(−x), t)≤
{

ν ′ (λ , t) ,
ν ′ (λ ||x||r, t) ,


(3.86)

for all x,y∈X and all t > 0 , where λ ,r 6= 3 are constants with
λ > 0. Then there exists a unique cubic mapping C : X −→Y
such that the double inequality

µ (gc(x)−C (x), t)≥

{
µ ′ (λ , |7|t) ,
µ ′
(

λ ||x||r, 4r

|8−2r |

)
,

ν (gc(x)−C (x), t)≤

{
ν ′ (λ , |7|t) ,
ν ′
(

λ ||x||r, 4r

|8−2r |

)
,


(3.87)

holds for all x ∈ X and all t > 0.
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Theorem 3.28. Let gq : X −→ Y be an even mapping for
which there exists a function ∆CQ : X −→ Z with the double
condition

lim
n→∞

µ ′
(
∆CQ (Jn

i x) ,J2n
i t
)
= 1

lim
n→∞

ν ′
(
∆CQ (Jn

i x) ,J2n
i t
)
= 0

 (3.88)

for all x,y ∈ X and all t > 0 where Ji is defined in (1.4) and
satisfying the double functional inequality

µ (gq(2x)−12gq(x)−4gq(−x), t)≥ µ ′ (∆CQ(x), t)

ν (gq(2x)−12gq(x)−4gq(−x), t)≤ ν ′ (∆CQ(x), t)


(3.89)

for all x ∈ X and all t > 0. If there exists L = L(i) such that
the function

∆CQ(x) = ∆CQ

( x
2

)
, (3.90)

has the property

µ ′ (Ji∆CQ(Jix), t) = µ ′ (∆CQ(x),Lt)
ν ′ (Ji∆CQ(Jix), t) = ν ′ (∆CQ(x),Lt)

}
(3.91)

for all x ∈ X and all t > 0, then there exists a unique quartic
function Q4 : X −→Y satisfying the functional equation (1.2)
and

µ (gq(x)−Q4(x), t)≥ µ ′
(

∆CQ(x), L1−i

1−L t
)

ν (gq(x)−Q4(x), t)≤ ν ′
(

∆CQ(x), L1−i

1−L t
)  (3.92)

for all x ∈ X and all t > 0.

Proof. The proof of the theorem is similar ideas given in
Theorem 3.20 by defining a mapping Γ : Λ→ Λ by

Γh(x) =
1
J4

i
h(Jix),

for all x ∈ X .

The next corollary is a direct consequence of which shows
that (1.1) can be stable.

Corollary 3.29. Suppose that an even function gq : X −→ Y
satisfies the double inequality

µ (gq(2x)−12gq(x)−4gq(−x), t)

≥
{

µ ′ (λ , t) ,
µ ′ (λ ||x||r), t) ,

ν (gq(2x)−12gq(x)−4gq(−x), t)

≤
{

ν ′ (λ , t) ,
ν ′ (λ ||x||r, t) ,


(3.93)

for all x,y ∈ X and all t > 0 , where λ ,r 6= 4 are constants
with λ > 0. Then there exists a unique quartic mapping
Q4 : X −→ Y such that the double inequality

µ (gq(x)−Q4(x), t)≥

{
µ ′ (λ , |15|t) ,
µ ′
(

λ ||x||r, 4r

|16−2r |

)
,

ν (gq(x)−Q4(x), t)≤

{
ν ′ (λ , |15|t) ,
ν ′
(

λ ||x||r, 4r

|16−2r |

)
,


(3.94)

holds for all x ∈ X and all t > 0.

Theorem 3.30. Let g : X −→Y be a mapping for which there
exists a function ∆CQ : X −→ Z with the double conditions
(3.81), (3.88) for all x,y ∈ X and all t > 0 and satisfying the
double functional inequality

µ (g(2x)−12g(x)−4g(−x), t)≥ µ ′ (∆CQ(x), t)

ν (g(2x)−12g(x)−4g(−x), t)≤ ν ′ (∆CQ(x), t)


(3.95)

for all x ∈ X and all t > 0. If there exists L = L(i) such that
the functions (3.60) and (3.72) has the properties (3.84) and
(3.91) for all x ∈ X and all t > 0, then there exists a unique
cubic function C : X −→ Y and a unique quartic function
Q4 : X −→ Y satisfying the functional equation (1.2) and

µ (g(x)−C (x)−Q4(x), t)

≥ µ ′
(

∆CQ(x), L1−i

1−L t
)
∗µ ′

(
∆CQ(−x), L1−i

1−L t
)

∗µ ′
(

∆CQ(x), L1−i

1−L t
)
∗µ ′

(
∆CQ(−x), L1−i

1−L t
)

ν (g(x)−C (x)−Q4(x), t)

≤ ν ′
(

∆CQ(x), L1−i

1−L t
)
�ν ′

(
∆CQ(−x), L1−i

1−L t
)

�ν ′
(

∆CQ(x), L1−i

1−L t
)
�ν ′

(
∆CQ(−x), L1−i

1−L t
)


(3.96)

for all x ∈ X and all t > 0.

The next corollary is a direct consequence of Theorem
3.24 which shows that (1.2) can be stable.

Corollary 3.31. Suppose that a function g : X −→Y satisfies
the double inequality

µ (g(2x)−12g(x)−4g(−x), t)≥
{

µ ′ (λ , t) ,
µ ′ (λ ||x||r), t) ,

ν (g(2x)−12g(x)−4g(−x), t)≤
{

ν ′ (λ , t) ,
ν ′ (λ ||x||r, t) ,


(3.97)

for all x,y ∈ X and all t > 0 , where λ ,r 6= 3,4 are constants
with λ > 0. Then there exists a unique cubic mapping C :
X −→ Y and a unique quartic function Q4 : X −→ Y such
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that the double inequality

µ (g(x)−C (x)−Q4(x), t)

≥

{
µ ′ (4λ , |7|t)∗µ ′ (4λ , |15|t) , ,
µ ′
(

4λ ||x||r, 4r

|8−2r |

)
∗µ ′

(
4λ ||x||r, 4r

|16−2r |

)
,

ν (g(x)−C (x)−Q4(x)), t)

≤

{
ν ′ (4λ , |7|t)�ν ′ (4λ , |15|t) ,
ν ′
(

4λ ||x||r, 4r

|8−2r |

)
�ν ′

(
4λ ||x||r, 4r

|16−2r |

)


(3.98)

holds for all x ∈ X and all t > 0.
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