

https://doi.org/10.26637/MJM0601/0025

T-fuzzy TL-ideal of Γ -near ring

N. Anitha¹* and J. Aruna²

Abstract

In this paper, we establish and revise the concept of *T*-fuzzy *TL*– ideal of Γ - near ring. Also the notations of *TL*– ideal of Γ near ring were introduced with some related properties.

Keywords

 Γ -near ring, *TL*-ideal, *TL*-Fuzzy ideal, Direct Product of *TL*-Fuzzy Sub Γ - near ring, Quotient Γ -near ring with *t*-norm.

AMS Subject Classification

16Y30, 16Y99, 03E72.

^{1,2} Periyar University PG Extension Center, Dharmapuri-636 705, Tamil Nadu, India.
 *Corresponding author: ¹ anithaarenu@gmail.com; ²arunaraguks.com
 Article History: Received 24 November 2017; Accepted 17 December 2017

©2017 MJM.

Contents

1	Introduction	206
2	Preliminaries	206
3	<i>T</i> -fuzzy <i>TL</i> -ideal of Γ -near ring	207
	References	211

1. Introduction

The theory of fuzzy sets and their related properties was introduced by Zadeh.L.A [15] in 1965. In 1991, Abou Zaid. S [1] defined a Fuzzy subnear-rings and ideals. In 1996, Seung dong kim and hee sikkim was defined as the homomorphic image of fuzzy ideals and some related properties. The notation of Γ -near ring was introduced by Bhavanari Satyanarayana and Syam Prasad. K [11]. In 2007, Akram. M was introduced the T- fuzzy ideals in near rings. In 2012, Srinivas.T and Nagaiah.T [13] was presented *T*-fuzzy ideal of Γ -near ring has several properties of Γ -near rings. In this paper, by using *T*- fuzzy ideal and *TL*-ideal of Γ -near ring all the above are use them. Further, additionally we introduce homomorphic images and direct product of *T*- fuzzy *TL*-ideal of Γ -near ring. We may expand to this paper as the Γ - near ring from a theoretical portion.

2. Preliminaries

In this section, we review the some definitions that will be required in this paper.

Definition 2.1. A non empty set N with two binary operations

"+ "(addition) and " \cdot " (Multiplication) is called a near ring if it satisfies the following axioms:

- (i) (N,+) is a group.
- (*ii*) (N, \cdot) is a semi group.
- (iii) $x \cdot (y+z) = x \cdot y + x \cdot z$ for all $x, y, z \in N$.

precisely speaking it is a left near ring because it satisfies the left distributive law. We will use the word near ring instead of "Left near-ring". We denote xy instead of $x \cdot y$. Note that x0 = 0 and x(-y) = -xy, but $0x \neq 0$ for $x, y \in N$.

Definition 2.2. Let (R, +) be a group and Γ be a nonempty set. Then *R* is said to be a Γ -near ring if their exist a mapping $R \times \Gamma \times R \rightarrow R$ satisfies the following conditions:

- (i) $(x+y)\alpha z = x\alpha z + y\alpha z$.
- (*ii*) $(x\alpha y)\beta z = x\alpha(y\beta z)$

for all $x, y, z \in R$ and $\alpha, \beta \in \Gamma$.

Definition 2.3. Let R be a Γ - near ring. A normal subgroup (I, +) of (R, +) is called

- (*i*) a left ideal if $x\alpha(y+i)-x\alpha y \in I$ for all $x, y \in R, \alpha \in \Gamma, i \in I$.
- (*ii*) a right ideal if $i\alpha x \in I$ for all $x \in R, \alpha \in \Gamma, i \in I$
- (iii) an ideal if it is both a left ideal and a right ideal of R.

A Γ - near ring R is said to be a zero – symmetric if $a\alpha 0 = 0$ for all $a \in R$ and $\alpha \in \Gamma$, where 0 is additive identity in R. **Definition 2.4.** A subset M of a Γ - near ring R is said to be a sub Γ - near ring if there exist a mapping $M \times \Gamma \times M \to M$ such that

- (i) (M, +) be a subgroup of (R, +).
- (*ii*) $(x+y)\alpha z = x\alpha z + y\alpha z$ for every $x, y, z \in M$ and $\alpha \in \Gamma$.
- (*iii*) $(x\alpha y)\beta z = x\alpha(y\beta z)$ for every $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Definition 2.5. A fuzzy sub near ring A of R is called a fuzzy ideal if it satisfies the following conditions:

- (i) $A(y+x-y) \ge A(x)$ for all $x, y, z \in R$.
- (*ii*) $A(xy) \ge A(y)$ for all $x, y \in \mathbb{R}, \alpha \in \Gamma$.
- (iii) $A((x+i)y-xy) \ge A(i)$ for all $x, y, i \in \mathbb{R}$.
- if $\mu(0) \ge \mu(x)$ for all $x \in R$.

Definition 2.6. A binary operation T on a lattice L is called a t-norm if it satisfies the following conditions:

- (*i*) T(T(a,b),c) = T(a,T(b,c)),
- (*ii*) T(a,b) = T(b,a),
- (*iii*) $b \le c \Rightarrow T(a,b) \le T(a,c)$,
- (iv) T(a,1) = a, for all $a,b,c \in L$.

Definition 2.7. A function $\mu : R \to L$ is called an L-subset of R. The set of all L-subsets of R is called the L-power set of R and is denoted by L^R .

Definition 2.8. A fuzzy set A of a Γ - near ring R is called a T-fuzzy sub Γ - near ring with respect to a t-norm of R if,

- (i) $A(x-y) \ge A(x)TA(y)$
- (*ii*) $A(x\alpha y) \ge A(x)TA(y)$

for all $x, y \in R$ and $\alpha \in \Gamma$.

Definition 2.9. A fuzzy set A of a Γ - near ring R is called a T-fuzzy sub Γ - near ring A of R is called a T-fuzzy ideal of R it satisfies the following conditions,

- (i) $A(y+x-y) \ge A(x)$ for all $x, y, z \in R$.
- (*ii*) $A(x\alpha y) \ge A(y)$ for all $x, y \in \mathbb{R}, \alpha \in \Gamma$.
- (*iii*) $A(x\alpha(z+y)-x\alpha y) \ge A(z)$ for all $x, y, z \in \mathbb{R}, \alpha \in \Gamma$.

Definition 2.10. An *L*- subset $A \in L^R$ of a Γ - near ring *R* is called a *TL*- ideal of *R* if

- (*i*) A(0) = 1
- (ii) $A(-x) \ge A(x)$
- (*iii*) $A(x+y) \ge A(x)TA(y)$
- $(iv) A(y+x-y) \ge A(x)$

(v)
$$A(xy) \ge A(y)$$

(vi) $A((x+i)y-xy) \ge A(i)$
for all $x, y, i \in R$.

Definition 2.11. An *L*- subset $A \in L^R$ of a Γ - near ring *R* is called a *T*-fuzzy *TL*-ideal of *R* if

- (i) A(0) = 1(ii) $A(-x) \ge A(x)$ (iii) $A(x+y) \ge A(x)TA(y)$ (iv) $A(y+x-y) \ge A(x)$ (v) $A(x\alpha y) \ge A(y)$ (vi) $A(x\alpha(z+y)-x\alpha y)) \ge A(z)$
- for all $x, y, z \in R, \alpha \in \Gamma$.

Definition 2.12. Let A and B be the T-fuzzy subsets of the Γ near ring R has defined as $(A \cap B)(x) = A(x)TB(x)$.

Definition 2.13. ([6]) Let L- subset A and $B \in L^R$ be T-fuzzy *TL*- ideal of Γ - near ring R. Then the direct product of T-fuzzy ideals is defined by, $(A \times B)(x, y) = A(x)TB(y)$ for all $x, y \in R$.

Definition 2.14. A *L*- subset *T*-fuzzy *TL*-ideal $A \in L^R$ of a Γ -near ring *R* is said to be normal if their exist an element $a \in R$ such that A(a) = 1.

If A is normal of a Γ -near ring R if and only if A(1) = 1.

Definition 2.15. Let *R* be a Γ – near ring. Let ρ be a fuzzy set of a *T*-fuzzy ideal of *R* and *f* be a function defined on *R*, then the fuzzy set $\rho^f(y) = \sup_{x \in f^{-1}(y)} \rho(x)$ for all $y \in f(R)$ and

is called as the image of ρ under f. Similarly, if λ is a fuzzy set in f(R), then $\rho = \lambda \circ f$ in R is defined as $\rho(x) = \lambda(f(x))$ for all $x \in R$ and is called the pre image of λ under f.

3. *T*-fuzzy *TL*-ideal of Γ -near ring

Let *R* be a near-ring and *L* be a complete lattice.

Theorem 3.1. If *L*- subset of $A \in L^R$ is a *T*-fuzzy *TL*-ideal of *R* then, $A(x-y) \ge A(0) \Rightarrow A(x) = A(y)$ for all $x, y \in R$.

Proof. Let *L*- subset of *A* is a *T*-fuzzy *TL*-ideal of *R* then we have, $A(x-y) \ge A(0)$. But, $A(0) \le A(x-y)$. Thus, A(x-y) = A(0). Now consider,

$$A(x) = A(y+x-y)$$

= $A((y+(x-y)))$
 $\geq A(y)TA(x-y)$
 $\geq A(y)TA(0)$
 $> A(y).$

Similarly we can prove that $A(y) \ge A(x)$. Hence A(x) = A(y) for all $x, y \in R$.

Theorem 3.2. If L-subset of A and $B \in L^R$ are T-fuzzy TL-ideal of a Γ -near ring R then $A \cap B$ is a T-fuzzy TL-ideal of R.

Proof. (i)

 $(A \cap B)(0) \ge A(0)TB(0) = 1$

(ii)

$$(A \cap B)(-x)$$

$$\geq A(-x)TB(-x)$$

$$\geq A(0-x)TB(0-x)$$

$$\geq A(0)TA(x)TB(0)TB(x)$$

$$\geq A(x)TB(x)$$

$$\geq (A \cap B)(x)$$

(iii)

$$(A \cap B)(x - y)$$

$$\geq A(x - y)TB(x - y)$$

$$\geq A(x)TA(y)TB(x)TB(y)$$

$$\geq (A(x)TB(x))(A(y)TB(y))$$

$$\geq (A \cap B)(x)T(A \cap B)(y)$$

(iv)

 $(A \cap B)(y + x - y)$ $\geq A(y + x - y)TB(y + x - y)$ $\geq A(x)TB(x)$ $\geq (A \cap B)(x)$

(v)

$$(A \cap B)(x\alpha y)$$

$$\geq A(x\alpha y)TB(x\alpha y)$$

$$\geq A(y)TB(y)$$

$$\geq (A \cap B)(y)$$

(vi)

$$(A \cap B)[(x\alpha(z+y)-x\alpha y)]$$

$$\geq A[(x\alpha(z+y)-x\alpha y)]TB[(x\alpha(z+y)-x\alpha y)]$$

$$\geq A(z)TB(z) \geq (A \cap B)(z).$$

Hence $A \cap B$ is a *T*-fuzzy *TL*-ideal of *R*. This completes the proof.

Theorem 3.3. Let L- subset of $A \in L^R$ be a T-fuzzy TL-ideal of a Γ - near ring R and L- subset of $A^* \in L^R$ be a fuzzy set in R then A^* defined by, $A^* = \frac{A(x)}{A(1)} \forall x \in R$. Then A^* is a normal T-fuzzy TL-ideal of R contains A.

Proof. Let *L*- subset of $A \in L^R$ be a *T*-fuzzy *TL*-ideal of a Γ -near ring *R*. For any $x, y, z \in R$ and $\alpha \in \Gamma$. We have, (i)

$$A^*(0) = \frac{A(0)}{A(1)} \ge 1.$$

(ii)

$$\begin{aligned} A^{*}(-x) &= \frac{A(-x)}{A(1)} \\ &= \frac{A(0-x)}{A(1)} \\ &\geq \frac{A(0)TA(x)}{A(1)} \\ &\geq \frac{A(0)}{A(1)}T\frac{A(x)}{A(1)} \\ &\geq A^{*}(0)TA^{*}(x) \\ &\geq A^{*}(x). \end{aligned}$$

(iii)

$$A^*(x-y) = \frac{A(x-y)}{A(1)}$$

$$\geq \frac{A(x)TA(y)}{A(1)}$$

$$\geq A(x)A(1)T\frac{A(y)}{A(1)}$$

$$\geq A^*(x)TA^*(y).$$

(iv)

$$A^*(y+x-y) = \frac{A(y+x-y)}{A(1)}$$
$$\geq \frac{A(x)}{A(1)}$$
$$\geq A^*(x).$$

(v)

$$A^*(x\alpha y) = \frac{A(x\alpha y)}{A(1)}$$
$$\geq \frac{A(y)}{A(1)}$$
$$\geq A^*(y).$$

(iv)

$$A^*[x\alpha(z+y)-x\alpha y] = \frac{A[x\alpha(z+y)-x\alpha y]}{A(1)}$$
$$\geq \frac{A(z)}{A(1)}$$
$$\geq A^*(z).$$

Hence A^* is a normal *T*-fuzzy *TL*-ideal of *R* contains *A*. \Box

Theorem 3.4. Let L- subset of $A \in L^R$ be a T-fuzzy TL-ideal of a Γ - near ring R and let L- subset of $A^+ \in L^R$ be a fuzzy set in R then A^+ is defined by, $A^+(x) = A(x) + 1 + A(1)$ for all $x \in R$. Then A^+ is a T-fuzzy TL-ideal of Γ -near ring R containing A.

Proof. Let *L*- subset of $A \in L^R$ be a *T*- fuzzy *TL*- ideal of a Γ -near ring *R*. For any $x, y, z \in R$ and $\alpha \in \Gamma$.

(i)

$$A^+(0) = A(0) + 1 + A(1) = 1$$

(ii)

$$A^{+}(-x) = A(0-x) + 1 + A(1)$$

$$\geq (A(0) + 1 + A(1))T(A(x) + 1 + A(1))$$

$$\geq A(x) + 1 + A(1)$$

$$\geq A^{+}(x)$$

(iii)

$$A^{+}(x-y) = A(x-y) + 1 + A(1)$$

$$\geq (A(x)TA(y)) + 1 + A(1)$$

$$\geq (A(x) + 1 + A(1))T(A(y) + 1 + A(1))$$

$$\geq A^{+}(x)TA^{+}(y).$$

(iv)

$$A^{+}(y+x-y) = A(y+x-y) + 1 + A(1)$$

$$\geq A(x) + 1 + A(1)$$

$$\geq A^{+}(x).$$

(v)

$$A^{+}(x\alpha y)$$

= $A(x\alpha y) + 1 + A(1)$
 $\geq A(y) + 1 + A(1)$
 $\geq A^{+}(y).$

(vi)

$$A^{+}[x\alpha(z+y)-x\alpha y]$$

= $A[x\alpha(z+y)-x\alpha y] + 1 + A(1)$
 $\geq A(z) + 1 + A(1)$
 $\geq A(z).$

Hence A^+ is a *T*-fuzzy *TL*-ideal of Γ - near ring *R* containing *A*.

Theorem 3.5. An onto homomorphic image of a *T*-fuzzy *TL*-ideal with sup property is a *T*-fuzzy *TL*-ideal.

Proof. Let *M* and *N* are Γ - near rings. Let $f: M \to N$ be epimorphism and *L*- subset of $A \in L^R A$ be a *T*-fuzzy *TL*-ideal of *R* with sub property. Let $x, y \in N, x_0 \in f'(x), y_0 \in f'(y)$ and $z_0 \in f'(z)$ be such that $A(x_0) = \sup_{n \in f'(x)} A(n), A(y_0) =$

 $\sup_{n \in f'(y)} A(n) \text{ and } A(z_0) = \sup_{n \in f'(z)} A(n) \text{ respectively. Then for any } \alpha \in A, \text{ we have,}$

(i)

$$A^{f}(0) = \sup_{z \in f'(0)} A(z) \ge A(0) = 1.$$

(ii)

$$A^{f}(-x)$$

$$= \sup_{z \in f'(0)} A(z)$$

$$\geq A(x_{0})$$

$$\geq [\sup_{n \in f'(x)} A(n)]$$

$$= A^{f}(x).$$

(iii)

$$A^{f}(x-y)$$

$$= \sup_{z \in f'(x-y)} A(z)$$

$$\geq A(x_{0} - y_{0})$$

$$\geq A(x_{0})TA(y_{0})$$

$$\geq [\sup_{n \in f'(x)} A(n)]T[\sup_{n \in f'(y)} A(n)]$$

$$= A^{f}(x)TA^{f}(y).$$

(iv)

$$A^{f}(y+x-y)$$

$$= \sup_{z \in f'(y+x-y)} A(z)$$

$$\geq A(x_{0})$$

$$\geq [\sup_{n \in f'(x)} A(n)]$$

$$= A^{f}(x).$$

(v)

$$A^{f}(x\alpha y)$$

$$= \sup_{z \in f'(x\alpha y)} A(z)$$

$$\geq A(y_{0})$$

$$\geq [\sup_{n \in f'(y)} A(n)]$$

$$= A^{f}(y).$$

(vi)

$$A^{f}[x\alpha(z+y)-x\alpha y] = \sup_{[x\alpha(z+y)-x\alpha y]} A(z)$$

$$\geq A(z_{0})$$

$$\geq [\sup_{n \in f'(z)} A(n)]$$

$$= A^{f}(z).$$

This completes the proof.

Theorem 3.6. An epimorphic pre image of a T-fuzzy TL-ideal of a Γ -near ring is a T-fuzzy TL-ideal of R.

Proof. Let *M* and *N* be Γ near rings. Let $f : M \to N$ is an epimorphism. Let *L*- subset of $\lambda \in L^R$ be the *T*-fuzzy *TL*-ideal of *N* and ρ be the pre image of λ under *f*. Then for any $x, y, z \in M$ and $\alpha \in \Gamma$. We have,

= 1.

(i)

$$\boldsymbol{\rho}(0) = (\boldsymbol{\lambda} \circ f)(0) = \boldsymbol{\lambda}(f(0))$$

(ii)

$$\rho(-x) = (\lambda \circ f)(-x)$$
$$= \lambda(f(-x))$$
$$\geq \lambda(f(x))$$
$$\geq (\lambda \circ f)(x)$$
$$\geq \rho(x)$$

(iii)

$$\rho(x-y) = (\lambda \circ f)(x-y)$$

= $\lambda(f(x-y))$
 $\geq \lambda(f(x)Tf(y))$
 $\geq \lambda(f(x))T\lambda(f(y))$
 $\geq (\lambda \circ f)(x)T(\lambda \circ f)(y)$
 $\geq \rho(x)T\rho(y).$

(iv)

$$\rho(y+x-y) = (\lambda \circ f)(y+x-y)$$
$$= \lambda(f(y+x-y))$$
$$\geq \lambda(f(x))$$
$$\geq (\lambda \circ f)(x)$$
$$\geq \rho(x).$$

(v)

$$\lambda(x\alpha y) = (\lambda \circ f)(x\alpha y)$$
$$= \lambda(f(x\alpha y))$$
$$\geq \lambda(f(y))$$
$$\geq (\lambda \circ f)(y)$$
$$\geq \rho(y).$$

(vi)

$$\rho[x\alpha(z+y) - x\alpha y]$$

$$= (\lambda \circ f)[x\alpha(z+y) - x\alpha y]$$

$$= \lambda(f[x\alpha(z+y) - x\alpha y])$$

$$\geq \lambda(f(z))$$

$$\geq (\lambda \circ f)(z)$$

$$\geq \rho(x).$$

Hence ρ is a *T*-fuzzy *TL*-ideal of Γ - near ring.

Theorem 3.7. Let M and N be Γ - near rings. If L-subset of A_1 and $A_2 \in L^R$ be T-fuzzy TL-ideal of Γ -near rings of M and N respectively, then $A = A_1XA_2$ is a T-fuzzy TL-ideal of the direct product of MXN.

Proof. Let L- subset of A_1 and $A_2 \in L^R$ be T-fuzzy TL-ideal of Γ -near rings of M and N respectively. Let $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in MXN$ and $\alpha \in \Gamma$. Then,

(i)

$$A(0) = A_1 X A_2(0) = 1.$$

(ii)

$$\begin{aligned} A(-(x_1, x_2)) \\ &= A_1 X A_2(-(x_1, x_2)) \\ &= A_1(-(x_1, x_2)) T A_2(-(x_1, x_2)) \\ &\geq A_1(x_1, x_2) T A_2(x_1, x_2) \\ &\geq A_1 X A_2(x_1, x_2) \\ &\geq A(x_1, x_2). \end{aligned}$$

(iii)

 $\begin{aligned} A((x_1, x_2) - (y_1, y_2)) \\ &= A_1 X A_2(x_1 - y_1, x_2 - y_2) \\ &= A_1(x_1 - y_1) T A_2(x_2 - y_2) \\ &\geq A_1(x_1) T A_1(y_1) T A_2(x_2) T A_2(y_2) \\ &\geq A_1(x_1) T A_2(x_2) T A_1(y_1) T A_2(y_2) \\ &\geq (A_1 X A_2)(x_1, x_2) T (A_1 X A_2)(y_1, y_2) \\ &\geq A(x_1, x_2) T A(y_1, y_2). \end{aligned}$

(iv)

$$\begin{aligned} A((x_1, x_2)\alpha(y_1, y_2)) \\ &= A_1 X A_2((x_1, x_2)\alpha(y_1, y_2)) \\ &= A_1((x_1, x_2)\alpha(y_1, y_2)) T A_2((x_1, x_2)\alpha(y_1, y_2)) \\ &\geq A_1(y_1, y_2) T A_2(y_1, y_2) \\ &\geq (A_1 X A_2)(y_1, y_2) \\ &\geq A((y_1, y_2) + (x_1, x_2) - (y_1, y_2)) \\ &= A_1 X A_2((y_1, y_2) + (x_1, x_2) - (y_1, y_2)) \\ &= A_1((y_1, y_2) + (x_1, x_2) - (y_1, y_2)) \\ &\quad (\times) T A_2((y_1, y_2) + (x_1, x_2) - (y_1, y_2)) \\ &\geq A_1(x_1, x_2) T A_2(x_1, x_2) \\ &\geq A_1 X A_2(x_1, x_2) \\ &\geq A(x_1, x_2). \end{aligned}$$

(vi)

$$\begin{aligned} A[(x_1, x_2)\alpha((z_1, z_2) + (y_1, y_2)) \\ &- ((x_1, x_2)\alpha(y_1, y_2)) \\ &= A_1 X A_2[(x_1, x_2)\alpha((z_1, z_2) + (y_1, y_2)) \\ &- ((x_1, x_2)\alpha(y_1, y_2))] \\ &= A_1[(x_1, x_2)\alpha((z_1, z_2) + (y_1, y_2)) \\ &- ((x_1, x_2)\alpha(y_1, y_2))] T A_2[(x_1, x_2)\alpha((z_1, z_2) \\ &+ (y_1, y_2)) - ((x_1, x_2)\alpha(y_1, y_2))] \\ &\geq A_1(z_1, z_2) T A_2(z_1, z_2) \\ &\geq A_1 X A_2(z_1, z_2) \\ &\geq A(z_1, z_2). \end{aligned}$$

Hence $A = A_1 X A_2$ is a *T*-fuzzy *TL*-ideal of *R*.

Notation ([11]) Let *L*-subset $\mu \in L^R$ be a *T*-fuzzy *TL*ideal of a Γ - near ring *R*. We define $\varphi_{\mu} = \frac{R}{\mu} \rightarrow [0, 1]$ by $\varphi_{\mu}(x + \mu) = \mu(x)$ for all $x \in R$.

Theorem 3.8. If L-subset $\mu \in L^R \mu$ is a T-fuzzy TL-ideal of a Γ - near ring R, then φ_{μ} is a T-fuzzy TL-ideal of a Γ - near ring.

Proof. Let *L*- subset $\mu \in L^R$ be a *T*-fuzzy *TL*-ideal of a Γ -near ring *R* and $x, y \in R$. Suppose that, $(x + \mu) = (y + \mu)$. Then $\mu(x - y) = 0$. This implies that, $\mu(x) = \mu(y) \cdot \varphi_{\mu}(x + \mu) = \varphi_{\mu}(y + \mu)$. Let $x + \mu, y + \mu, z + \mu \in \frac{R}{\mu}$ and $\alpha \in \Gamma$. Then,

(i)

$$\varphi_{\mu}(0+\mu) = \mu(0) = 1.$$

(ii)

$$\varphi_{\mu}((-x) + \mu) = \mu(-x)$$

$$\geq \mu(x)$$

$$\geq \varphi_{\mu}(x + \mu)$$

(iii)

$$\varphi_{\mu}((x+\mu)-(y+\mu))$$

$$=\varphi_{\mu}((x-y)+\mu)$$

$$=\mu(x-y)$$

$$\geq\mu(x)T\mu(y)$$

$$\geq\varphi_{\mu}(x+\mu)T\varphi_{\mu}(y+\mu).$$

(iv)

$$\varphi_{\mu}[(x+\mu)\alpha(y+\alpha)] = \varphi_{\mu}(x\alpha y + \alpha) = \mu(x\alpha y + \mu) \\ \ge \mu(y) \\ \ge \varphi_{\mu}(y+\mu).$$

(v)

$$\begin{aligned} \varphi_{\mu}((y+\mu)+(x+\mu)-(y+\mu)) \\ &= \varphi_{\mu}[(y+x-y)+\mu] \\ &= \mu(y+x-y) \geq \mu(x) \\ &\geq \varphi_{\mu}(x+\mu). \end{aligned}$$

(vi)

$$\varphi_{\mu}[((x+\mu)\alpha(z+\mu)+(y+\mu))-((x+\mu)\alpha(y+\mu))]$$

= $\varphi_{\mu}[(x\alpha(z+y)-x\alpha y)]$
= $\mu[(x\alpha(z+y)-x\alpha y)]$
 $\geq \mu(z)$
 $\geq \varphi_{\mu}(z+\mu).$

Hence φ_{μ} is a *T*-fuzzy *TL*-ideal of a Γ -near ring $\frac{R}{\mu}$.

References

- S. Abou Zaid, Fuzzy Sub near rings and ideals (1991), 139–146.
- M. Akgul, Properties of Fuzzy Groups, *Journal of Mathematical Analysis and Applications*, 133 (1988), 93 100.
- [3] G. L. Booth, A note on Γ- Near rings, *Studia*, *Sci*. *Math. Hungar.*, 23 (1988), 471 – 475.
- [4] G. L. Booth, Radicals in general Γ- near rings, Quaestiones Mathematicae, 14(2)(1991),117 – 127.
- [5] Y. U. Cho and Y. B. Jun, Fuzzy Algebras on K(G) Algebras, *Journal of Appl. Math. Compute.*, 22 (2006), 549 — 555.
- P. Deena and G. Monhanraj, T-fuzzy ideals in rings, International journal of Computational Cognition, 2 (2011), 98 — 101.
- [7] J. Goguen, L Fuzzy Sets, Journal of Mathematical Analysis and Applications, 18(1967), 145 — 174.

- [8] P. Gunter, *Near Rings*, North Holland, Amsterdam, 1983.
- [9] M. A. Ozturk, M. Uckan and Y. B. Jun, Characterizations of Artinian and Notherian Gamma Rings in terms of fuzzy ideals, *Turkish. J. Math.*, 26 (2002), 199 — 205.
- [10] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1971),512 - 517.
- [11] B. H. Satyanarayana, K. Syam Prasad, On fuzzy cosets in Gamma-near rings, / / Turk. T. Math., 11 — 22(2005).
- [12] B. H. Satyanarayana, Contributions to near ring theory, Doctorial thesis, Nagarjuna University, India 1984.
- [13] T. Srinivas and T. Nagaiah, Some results on *T*-fuzzy ideals of Γ-near rings, *Annals of Fuzzy Mathematics* and Informatics, 305 — 319(2012).
- ^[14] J. D. Yadav and Y. S. Pawar, *TL*-ideals of Near ring communicated.
- [15] L. A. Zadeh, Fuzzy sets, *Information and control*, 8(1995), 338 — 353.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********

