

https://doi.org/10.26637/MJM0601/0027

Level subsets of bipolar valued fuzzy subhemiring of a hemiring

N. Kumaran^{1*}, K. Arjunan² and B. Ananth ³

Abstract

In this paper, we study some of the properties of (α, β) -level subsets of bipolar valued fuzzy subhemiring of a hemiring and prove some results on these.

Keywords

Bipolar valued fuzzy subset, bipolar valued fuzzy subhemiring, level subset.

¹*Department of Mathematics, GRT Institute of Engineering and Technology, Tiruttani, Tamil Nadu, India.* ²*Department of Mathematics, Alagappa Government Arts College, Karaikudi-630003, Tamilnadu, India.*

³*Department of Mathematics, H. H. The Rajah's College, Pudukkottai-622001, Tamil Nadu, India.*

***Corresponding author**: ¹ sk291166@gmail.com.com; ²arjunan.karmegam@gmail.com; ³drbaalaanandh@gmail.com

Article History: Received 24 November 2017; Accepted 27 December 2017 **COVER 18 ARTICLE 1999** (2017 MJM.

Contents

 [Introduction](#page-0-0) . 230 [Prelimaries](#page-0-1) . 230 [Properties](#page-1-0) . 231 [References](#page-4-0) . 234

1. Introduction

In 1965, Zadeh [\[15\]](#page-5-0) introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval valued fuzzy sets, vague sets, soft sets etc [\[7\]](#page-5-1). Lee [\[9\]](#page-5-2) introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to $[-1,1]$. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree $(0,1]$ indicates that elements somewhat satisfy the property and the membership degree $[-1,0)$ indicates that elements somewhat satisfy the implicit counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [\[9,](#page-5-2) [10\]](#page-5-3). Anitha.M.S., Muruganantha Prasad & K.Arjunan [\[1\]](#page-5-4) defined as bipolar valued fuzzy subgroups of a group. We introduce the concept of (α, β) -level subsets of bipolar valued fuzzy subhemirings of a hemiring are discussed. Using these concepts, some results are established.

2. Prelimaries

Definition 2.1. *A bipolar valued fuzzy set (BVFS) of X is defined as an object of the form* $A = \{ \langle x, A^+(x), A^-(x) \rangle \}$ $\forall x \in X$, *where* A^+ : X → [0,1] *and* A^- : X → [−1,0]. *The positive membership degree A* ⁺(*x*) *denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree A* [−](*x*) *denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued* $fuzzy set A. If $A^+(x) \neq 0$ and $A^-(x) = 0$, it is the situation that$ *x is regarded as having only positive satisfaction for A and if* $A^+(x) = 0$ *and* $A^-(x) \neq 0$, *it is the situation that x does not satisfy the property of A*, *but somewhat satisfies the counter property of A*. *It is possible for an element x to be such that* $A^+(x) \neq 0$ and $A^-(x) \neq 0$ when the membership function of *the property overlaps that of its counter property over some portion of X.*

Example 2.2. $A = \{, **b, 0.6, -0.3>,**$ $\langle \langle c, 0.5, -0.9 \rangle$ *is a bipolar valued fuzzy subset of* $X =$ ${a,b,c}.$

Definition 2.3. *Let R be a hemiring. A bipolar valued fuzzy subset A of R is said to be a bipolar valued fuzzy subhemiring of R (BVFSHR) if the following conditions are satisfied,*

- *(i)* $A^{+}(x+y)$ ≥ min{ $A^{+}(x), A^{+}(y)$ }
- *(ii)* $A^{+}(xy)$ ≥ min{ $A^{+}(x)$, $A^{+}(y)$ }

 (iii) *A*[−](*x*+*y*) ≤ max{*A*[−](*x*),*A*[−](*y*)}

(iv) $A^{-}(xy)$ ≤ max ${A^{-}(x), A^{-}(y)}$ *for all x and y in R.*

Example 2.4. *Let* $R = Z_3 = \{0, 1, 2\}$ *be a hemiring with respect to the ordinary addition and multiplication. Then A* = {< 0,0.6,−0.7 >,< 1,0.5,−0.6 >,< 2,0.5,−0.6 >} *is a bipolar valued fuzzy subhemiring of R.*

Definition 2.5. *Let* $A = \langle A^+, A^-\rangle$ *be a bipolar valued fuzzy subset of X. For* α *in* [0,1] *and* β *in* [−1,0], *the* (α, β) *level subset of A is the set* $A_{(\alpha,\beta)} = \{x \in X : A^+(x) \ge \alpha \}$ and $A^{-}(x) \leq \beta$ }.

Example 2.6. *Consider the set* $X = \{0, 1, 2, 3, 4\}$ *. Let* $A =$ $\{(0,0.7,-0.3),(1,0.6,-0.5),(2,0.8,-0.25),(3,0.65,-0.4),$ (4,0.4,−0.7)} *be a bipolar valued fuzzy subset of X and* $\alpha = 0.6, \beta = -0.3$ *. Then* $(0.6, -0.3)$ *-level subset of A is* $A_{(0.6,-0.3)} = \{0,1,3\}.$

Definition 2.7. *Let* $A = \langle A^+, A^-\rangle$ *be a bipolar valued fuzzy subset of* X *. For* α *in* $[0,1]$ *, the* A^+ *-level* α *-cut of* A *is the set* $P(A^+, \alpha) = \{x \in X : A^+(x) \ge \alpha\}.$

Example 2.8. *Consider the set* $X = \{0, 1, 2, 3, 4\}$ *. Let* $A =$ $\{(0,0.5,-0.1),(1,0.4,-0.3),(2,0.6,-0.05),(3,0.45,-0.2),$ $(4,0.2,-0.5)$ } *be a bipolar valued fuzzy subset of X and* $\alpha =$ 0.4. *Then* A^+ *-level* 0.4*-cut of* A *is* $P(A^+, 0.4) = \{0, 1, 2, 3\}.$

Definition 2.9. *Let* $A = \langle A^+, A^-\rangle$ *be a bipolar valued fuzzy* $subset$ *of X*. *For* $β$ *in* $[-1,0]$ *, the* A^- *-level* $β$ *-cut of* A *is the set* $N(A^-,\beta) = \{x \in X : A^-(x) \leq \beta\}.$

Example 2.10. *Consider the set* $X = \{0, 1, 2, 3, 4\}$ *. Let* $A =$ $\{(0,0.6,-0.2),(1,0.5,-0.4),(2,0.7,-0.15),(3,0.55,-0.3),$ (4,0.3,−0.6)} *be a bipolar valued fuzzy subset of X and* $\beta = -0.2$. *Then* A^- *-level* -0.2 *-cut of* A *is* $N(A^-,-0.2) =$ $\{0,1,3,4\}.$

Definition 2.11. Let *X* and *X*^{\prime} be any two sets. Let $f: X \rightarrow X'$ *be any function and let A be a bipolar valued fuzzy subset in* X, V *be a bipolar valued fuzzy subset in* $f(X) = X'$, *defined by* $V^+(y) = \sup A^+(x)$ *and* $V^-(y) = \inf A^-(x)$, *for all x* $x \in f^{-1}(y)$ $x \in f^{-1}(y)$

in X and y in X 0 *. A is called a preimage of V under f and is* $defined \ as \ A^+(x) = V^+(f(x)), A^-(x) = V^-(f(x)) \ for \ all \ x \ in$ *X* and is denoted by $f^{-1}(V)$.

3. Properties

Theorem 3.1. Let R and R' be any two hemirings. The homo*morphic image of a bipolar valued fuzzy subhemiring of R is* a bipolar valued fuzzy subhemiring of R' .

Theorem 3.2. Let R and R' be any two hemirings. The homo*morphic preimage of a bipolar valued fuzzy subhemiring of R* 0 *is a bipolar valued fuzzy subhemiring of R*.

Theorem 3.3. Let R and R' be any two hemirings. The anti*homomorphic image of a bipolar valued fuzzy subhemiring of R* is a bipolar valued fuzzy subhemiring of R'.

Theorem 3.4. Let R and R' be any two hemirings. The anti*homomorphic preimage of a bipolar valued fuzzy subhemiring of R*⁰ *is a bipolar valued fuzzy subhemiring of R*.

Theorem 3.5. Let $A = \langle A^+, A^-\rangle$ be a bipolar valued fuzzy *subhemiring of a hemiring R. Then for* α *in* [0,1] *and* β *in* $[-1,0]$ *such that* α ≤ A ⁺(*e*) *and* β ≥ A ⁻(*e*), *is a* (α , β)*-level subhemiring of R*.

Proof. For all *x* and *y* in $A_{(\alpha,\beta)}$, we have, $A^+(x) \ge \alpha$ and $A^{-}(x) \leq \beta$ and $A^{+}(y) \geq \alpha$ and $A^{-}(y) \leq \beta$. Now

$$
A^+(x+y) \ge \min\{A^+(x), A^+(y)\}\
$$

\n
$$
\ge \min\{\alpha, \alpha\}
$$

\n
$$
= \alpha,
$$

which implies that

$$
A^+(x+y)\geq \alpha.
$$

 $A^+(xy) \geq \alpha$.

 $A^{-}(x+y) \leq \beta$.

And

$$
A^+(xy) \ge \min\{A^+(x), A^+(y)\}\
$$

\n
$$
\ge \min\{\alpha, \alpha\}
$$

\n
$$
= \alpha,
$$

which implies that

Also

And

$$
A^-(x+y) \le \max\{A^-(x), A^-(y)\}\
$$

\n
$$
\le \max\{\beta, \beta\}
$$

\n
$$
= \beta,
$$

which implies that

$$
A^-(xy) \le \max\{A^-(x), A^-(y)\}\
$$

\n
$$
\le \max\{\beta, \beta\}
$$

\n
$$
= \beta,
$$

which implies that

$$
A^-(xy) \leq \beta.
$$

Therefore $x + y$, *xy* in $A_{(\alpha,\beta)}$. Hence $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of *R*. □

Theorem 3.6. *Let* $A = \langle A^+, A^-\rangle$ *be a bipolar valued fuzzy subhemiring of a hemiring R. Then for* α , δ *in* [0,1], β , ϕ *in* $[-1,0], \alpha \leq A^+(e), \delta \leq A^+(e), \beta \geq A^-(e), \phi \geq A^-(e), \delta < \alpha$ *and* $\beta < \phi$, *the two* (α, β) *-level subhemirings* $A_{(\alpha, \beta)}$ *and A*(δ,φ) *of A are equal if and only if there is no x in R such that* $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$.

Proof. Assume that $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$. Suppose there exists *x* in *R* such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$. Then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$ implies *x* belongs to $A_{(\delta,\phi)}$, but not in $A_{(\alpha,\beta)}$. This is contradiction to $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$. Therefore there is no *x* in *R* such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$. Conversely, if there is no *x* in *R* such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$. Then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$ (By the definition of (α, β) -level subset). \Box

Theorem 3.7. Let $A = \langle A^+, A^-\rangle$ be a bipolar valued fuzzy *subhemiring of a hemiring R. If any two* $(α, β)$ *-level subhemirings of A belongs to R*, *then their intersection is also* (α, β) *-level subhemiring of A in R.*

Proof. Let α, β in [0,1], β, ϕ in [-1,0], $\alpha \leq A^+(e)$, $\delta \leq A^+(e), \beta \geq A^-(e), \phi \geq A^-(e).$

Case (i): If $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$. Therefore $A_{(\alpha,\beta)} \cap A_{(\delta,\phi)} = A_{(\alpha,\beta)}$, but $A_{(\alpha,\beta)}$ is a (α, β) -level subhemiring of A.

Case (ii): If $\alpha < A^+(x) < \delta$ and $\beta > A^-(x) > 0$, then $A_{(\delta,\phi)} \subset A_{(\alpha,\beta)}$. Therefore $A_{(\alpha,\beta)} \cap A_{(\delta,\phi)} = A_{(\delta,\phi)}$, but $A_{(\delta,\phi)}$ is a (α, β) -level subhemiring of *A*.

Case (iii): If $\alpha < A^+(x) < \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\delta,\beta)} \subseteq A_{(\alpha,\phi)}$. Therefore $A_{(\delta,\beta)} \cap A_{(\alpha,\phi)} = A_{(\delta,\beta)}$, but $A_{(\delta,\beta)}$ is a (α, β) -level subhemiring of *A*.

Case (iv): If $\alpha > A^+(x) > \delta$ and $\beta > A^-(x) > \phi$, then $A_{(\alpha,\phi)} \subseteq A_{(\delta,\beta)}$. Therefore $A_{(\alpha,\phi)} \cap A_{(\delta,\beta)} = A_{(\alpha,\phi)}$, but $A_{(\alpha,\phi)}$ is a (α, β) -level subhemiring of *A*.

Case (v): If $\alpha = \alpha$ and $\beta = \beta$, then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$. In other cases are true, so, in all the cases, intersection of any two $(α, β)$ -level subhemirings is a $(α, β)$ -level subhemiring \Box of *A*.

Theorem 3.8. Let $A = \langle A^+, A^-\rangle$ be a bipolar valued fuzzy *subhemiring of a hemiring R*. *The intersection of a collection of* (α, β) *-level subhemirings of A is also a* (α, β) *-level subhemiring of A*.

Proof. It is easily proved by Theorem 3.7. \Box

Theorem 3.9. *Let* $A = \langle A^+, A^-\rangle$ *be a bipolar valued fuzzy subhemiring of a hemiring R. If any two* (α, β) *-level subhemirings of A belongs to R*, *then their union is also* (α, β) *level subhemiring of A in R*.

Proof. Let α, δ in [0,1], β, ϕ in [-1,0], $\alpha \leq A^+(e)$, $\delta \leq A^+(e), \beta \geq A^-(e), \phi \geq A^-(e).$

Case (i): If $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$. Therefore $A_{(\alpha,\beta)} \cup A_{(\delta,\phi)} = A_{(\delta,\phi)}$, but $A_{(\delta,\phi)}$ is a (α, β) -level subhemiring of *A*.

Case (ii): If $\alpha < A^+(x) < \delta$ and $\beta > A^-(x) > 0$, then $A_{(\delta,\phi)} \subset A_{(\alpha,\beta)}$. Therefore $A_{(\alpha,\beta)} \cup A_{(\delta,\phi)} = A_{(\alpha,\beta)}$, but $A_{(\alpha,\beta)}$ is a (α, β) -level subhemiring of A.

Case (iii): If $\alpha < A^+(x) < \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\delta,\beta)} \subseteq A_{(\alpha,\phi)}$. Therefore $A_{(\delta,\beta)} \cup A_{(\alpha,\phi)} = A_{(\alpha,\phi)}$, but $A_{(\alpha,\phi)}$ is a (α, β) -level subhemiring of A.

Case (iv): If $\alpha > A^+(x) > \delta$ and $\beta > A^-(x) > \phi$, then $A_{(\alpha,\phi)} \subseteq A_{(\delta,\beta)}$. Therefore $A_{(\alpha,\phi)} \cup A_{(\delta,\phi)} = A_{(\delta,\beta)}$, but $A_{(\delta,\beta)}$ is a (α, β) -level subhemiring of A.

Case (v): If $\alpha = \delta$ and $\beta = \phi$, then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$. In other cases are true, so, in all the cases, intersection of any two $(α, β)$ -level subhemirings is a $(α, β)$ -level subhemiring of *A*. П

Theorem 3.10. *Let* $A = \langle A^+, A^-\rangle$ *be a bipolar valued fuzzy subhemiring of a hemiring R*. *The union of a collection of* (α,β)*-level subhemirings of A is also a* (α,β)*-level subhemiring of A*.

Proof. It is easily proved by Theorem 3.9. \Box

Theorem 3.11. *The homomorphic image of a* (α, β) *-level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R is a* (α,β)*-level subhemiring of a bipolar valued fuzzy* subhemiring of a hemiring R'.

Proof. Let $V = f(A)$. Here $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subhemiring of *R*. By Theorem 3.1, $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subhemiring of R' . Let x and y in R . Then *f*(*x*) and *f*(*y*) in *R*^{\prime}. Let *A*_{(α, β) be a (α, β)-level subhemiring} of *A*. That is, $A^+(x) \ge \alpha$ and

$$
A^-(x) \leq \beta A^+(y) \geq \alpha
$$

and

$$
A^{-}(y) \leq \beta;
$$

\n
$$
A^{+}(x+y) \geq \alpha,
$$

\n
$$
A^{-}(x+y) \leq \beta,
$$

\n
$$
A^{+}(xy) \geq \alpha,
$$

\n
$$
A^{-}(xy) \leq \beta.
$$

We have to prove that $f(A_{(\alpha,\beta)})$ is a (α,β) -level subhemiring of *V*. Now $V^+(f(x)) \geq A^+(x) \geq \alpha$ which implies that $V^+(f(x)) \ge \alpha$; and $V^+(f(y)) \ge A^+(y) \ge \alpha$ which implies that $V^+(f(y)) \ge \alpha$. Then

$$
V^+(f(x) + f(y))
$$

= $V^+(f(x+y))$
 $\ge A^+(x+y)$
 $\ge \alpha$,

which implies that

$$
V^+(f(x)+f(y))\geq \alpha.
$$

And

$$
V^+(f(x)f(y))
$$

= $V^+(f(xy))$
 $\geq A^+(xy)$
 $\geq \alpha$,

which implies that

$$
V^+(f(x)f(y))\geq \alpha.
$$

And

$$
V^-(f(x)) \le A^-(x) \le \beta
$$

which implies that

$$
V^-(f(x)) \leq \beta;
$$

and

$$
V^-(f(y)) \le A^-(y) \le \beta
$$

which implies that

$$
V^-(f(y)) \leq \beta.
$$

Then

$$
V^-(f(x) + f(y))
$$

= $V^-(f(x+y))$
 $\leq A^-(x+y)$
 $\leq \beta$,

which implies that

$$
V^-(f(x)+f(y))\leq \beta.
$$

And

$$
V^-(f(x)f(y))
$$

=
$$
V^-(f(xy))
$$

$$
\leq A^-(xy)
$$

$$
\leq \beta,
$$

which implies that

$$
V^-(f(x)f(y)) \leq \beta.
$$

Hence $f(A_{(\alpha,\beta)})$ is a (α,β) -level subhemiring of a bipolar valued fuzzy subhemiring V of R' . \Box

Theorem 3.12. *The homomorphic pre-image of a* (α, β) *-level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R* 0 *is a* (α,β)*-level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R*.

Proof. Let $V = f(A)$. Here $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subhemiring of *R'*. By Theorem 3.2, $A = \langle A^+, A^-\rangle$ is a bipolar valued fuzzy subhemiring of *R*. Let $f(x)$ and $f(y)$ in *R'*. Then *x* and *y* in *R*. Let $f(A_{(\alpha,\beta)})$ be a (α,β) -level subhemiring of *V*. That is, $V^+(f(x)) \ge \alpha$ and $V^-(f(x)) \le$ β ; $V^+(f(y)) \ge \alpha$ and

$$
V^-(f(y)) \leq \beta;
$$

\n
$$
V^+(f(x) + f(y)) \geq \alpha,
$$

\n
$$
V^-(f(x) + f(y)) \leq \beta,
$$

\n
$$
V^+((fx)f(y)) \geq \alpha,
$$

\n
$$
V^-((fx)f(y)) \leq \beta.
$$

We have to prove that $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of *A*. Now $A^+(x) = V^+(f(x)) \ge \alpha$ which implies that $A^+(x) \ge$ α ; and $A^+(y) \ge V^+(f(y)) \ge \alpha$ which implies that $A^+(y) \ge \alpha$. Then $A^+(x+y) = V^+(f(x+y)) = V^+(f(x) + f(y)) \ge \alpha$, which implies that $A^+(x+y) \ge \alpha$. And $A^+(xy) = A^+(f(xy)) \ge$ $V^+f((x)f(y)) \ge \alpha$, which implies that $A^+(xy) \ge \alpha$. And $A^{-}(x) \le V^{-}(f(x)) \le \beta$ which implies that $A^{-}(x) \le \beta$; and $A^{-}(y) \le V^{-}(f(y)) \le \beta$ which implies that $A^{-}(y) \le \beta$. Then

$$
A^-(x+y)
$$

= $V^-(f(x+y))$
 $\leq V^-(f(x)+f(y))$
 $\leq \beta$,

which implies that

$$
A^-(x+y) \leq \beta.
$$

And

$$
A^{-}(xy) = V^{-}(f(xy)) = V^{-}(f(x)f(y)) \le \beta,
$$

which implies that $A^{-}(xy) \leq \beta$. Hence $f(A_{(\alpha,\beta)})$ is a (α,β) level subhemiring of a bipolar valued fuzzy subhemiring *A* of *R*. П

Theorem 3.13. *The anti-homomorphic image of a* (α, β) *level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R is a* (α, β) *-level subhemiring of a bipolar valued* fuzzy subhemiring of a hemiring R['].

Proof. Let $V = f(A)$. Here $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subhemiring of *R*. By Theorem 3.3, $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subhemiring of R' . Let x and y in R . Then $f(x)$ and $f(y)$ in R' . Let $A_{(\alpha,\beta)}$ be a (α,β) -level subhemiring of *A*. That is, $A^+(x) \ge \alpha$ and $A^-(x) \le \beta$; $A^+(y) \ge \alpha$ and $A^{-}(y) \leq \beta$ and $A^{+}(x+y) \geq \alpha$, $A^{-}(x+y) \leq \beta$, $A^{+}(xy) \geq$ α ,*A*⁻(*xy*) $\leq \beta$. We have to prove that $f(A_{(\alpha,\beta)})$ is a (α,β) level subhemiring of *V*. Now $V^+(f(x)) \geq A^+(x) \geq \alpha$ which implies that $V^+(f(x)) \ge \alpha$; and $V^+(f(y)) \ge A^+(y) \ge \alpha$ which implies that $V^+(f(y)) \ge \alpha$. also

$$
V^+(f(x) + f(y))
$$

= $V^+(f(y+x))$
 $\ge A^+(x+y)$
 $\ge \alpha$,

which implies that

$$
V^+(f(x)+f(y))\geq \alpha.
$$

And

$$
V^+(f(x)f(y)) = V^+(f(yx)) \ge A^+(yx) \ge \alpha,
$$

which implies that

$$
V^+(f(x)f(y))\geq \alpha.
$$

And

$$
V^-(f(x)) \le A^-(x) \le \beta
$$

which implies that

$$
V^-(f(x)) \leq \beta;
$$

and

$$
V^-(f(y)) \le A^-(y) \le \beta
$$

which implies that

$$
V^-(f(y)) \leq \beta.
$$

Then

$$
V^-(f(x) + f(y))
$$

= $V^-(f(y+x))$
 $\leq A^-(x+y)$
 $\leq \beta$,

which implies that

$$
V^-(f(x)+f(y))\leq \beta.
$$

And

$$
V^-(f(x)f(y)) = V^-(f(yx)) \le A^-(yx) \le \beta,
$$

which implies that

$$
V^-(f(x)f(y)) \leq \beta.
$$

Hence $f(A_{(\alpha,\beta)})$ is a (α,β) -level subhemiring of a bipolar valued fuzzy subhemiring V of R' . \Box

Theorem 3.14. *The anti-homomorphic pre-image of a* (α, β) *level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R* 0 *is a* (α,β)*-level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R*.

Proof. Let $V = f(A)$. Here $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subhemiring of *R'*. By Theorem 3.4, $A = \langle A^+, A^-\rangle$ is a bipolar valued fuzzy subhemiring of *R*. Let $f(x)$ and $f(y)$ in *R'*. Then *x* and *y* in *R*. Let $f(A_{(\alpha,\beta)})$ be a (α,β) -level subhemiring of *V*. That is, $V^+(f(x)) \ge \alpha$ and $V^-(f(x)) \le$ β ; $V^+(f(y)) \ge \alpha$ and

$$
V^-(f(y)) \leq \beta;
$$

\n
$$
V^+(f(y) + f(x)) \geq \alpha,
$$

\n
$$
V^-(f(y) + f(x)) \leq \beta,
$$

\n
$$
V^+(f(y)f(x)) \geq \alpha,
$$

\n
$$
V^-(f(y)f(x)) \leq \beta.
$$

We have to prove that $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of *A*. Now $A^+(x) = V^+(f(x)) \ge \alpha$ which implies that $A^+(x) \ge$ α ; and $A^+(y) \ge V^+(f(y)) \ge \alpha$ which implies that $A^+(y) \ge \alpha$. Then $A^+(x+y) = V^+(f(x+y)) = V^+(f(x) + f(y)) \ge \alpha$,

which implies that $A^+(x+y) \ge \alpha$. And $A^+(xy) = V^+(f(xy)) \ge$ $V^+f((x)f(y)) \ge \alpha$, which implies that $A^+(xy) \ge \alpha$. And $A^{-}(x) \le V^{-}(f(x)) \le \beta$ which implies that $A^{-}(x) \le \beta$; and $A^{-}(y) \le V^{-}(f(y)) \le \beta$ which implies that $A^{-}(y) \le \beta$. Then *A*[−](*x* + *y*) = *V*[−](*f*(*x* + *y*)) ≤ *V*[−](*f*(*x*) + *f*(*y*)) ≤ β, which implies that $A^{-}(x+y) \leq \beta$. And $A^{-}(f(x)f(y)) = A^{-}(xy) \leq$ $V^-(f(xy)) \leq \beta$, which implies that $A^-(xy) \leq \beta$. Hence $A_{(\alpha,\beta)}$ is a (α, β) -level subhemiring of a bipolar valued fuzzy subhemiring *A* of *R*. П

Theorem 3.15. *Let A be a bipolar valued fuzzy subhemiring of a hemiring R*. *Then for* α *in* [0,1], *A* ⁺*-level* α*-cut P*(*A* ⁺,α) *is a A⁺*-level α -cut subhemiring of R.

Proof. For all *x* and *y* in $P(A^+, \alpha)$, we have $A^+(x) \ge \alpha$ and $A^+(y) \ge \alpha$. Now

$$
A^+(x+y) \ge \min\{A^+(x), A^+(y)\}
$$

\n
$$
\ge \min\{\alpha, \alpha\}
$$

\n
$$
= \alpha,
$$

which implies that

And

$$
A^+(xy) \ge \min\{A^+(x), A^+(y)\}\
$$

$$
\ge \min\{\alpha, \alpha\}
$$

= α ,

which implies that $A^+(xy) \ge \alpha$. Therefore $x + y$, *xy* in $P(A^+, \alpha)$. Hence $P(A^+, \alpha)$ is a A^+ -level α -cut subhemiring of *R*. \Box

 $A^+(x+y) \geq \alpha$.

Theorem 3.16. *Let A be a bipolar valued fuzzy subhemiring of a hemiring R*. *Then for* β *in* [−1,0], *A* [−]*-level* β*-cut N*(*A* [−],β) *is a A*−*-level* β*-cut subhemiring of R*.

Proof. For all *x* and *y* in $N(A^-,\beta)$, we have $A^-(x) \leq \beta$ and $A^{-}(y) \leq \beta$. Now

 $A^{-}(x+y) \leq \beta$.

$$
A^-(x+y) \le \max\{A^-(x), A^-(y)\}\
$$

\n
$$
\le \max\{\beta, \beta\}
$$

\n
$$
= \beta,
$$

which implies that

And

$$
A^-(xy) \le \max\{A^-(x), A^-(y)\}\
$$

\n
$$
\le \max\{\beta, \beta\}
$$

\n
$$
= \beta,
$$

which implies that

$$
A^-(xy) \leq \beta.
$$

Therefore $x + y$, *xy* in $N(A^-,\beta)$. Hence $N(A^-,\beta)$ is a A^- -level β-cut subhemiring of *R*. \Box

References

- [1] M. S. Anitha, Muruganantha Prasad and K.Arjunan, Notes on Bipolar-valued fuzzy subgroups of a group, *Bulletin of Society for Mathematical Services and*
- *Standards,* 2(3)(2013), 52–59.
^[2] M. S. Anitha, K.L.Mu K.L.Muruganantha Prasad and K.Arjunan, Homomorphism and antihomomorphism of Bipolar valued fuzzy subgroups of a group, *International Journal of Mathematical Archive*, 4(12)(2013), , 1–4.
- [3] J. M. Anthony and H.Sherwood, fuzzy groups Redefined, *Journal of Mathematical Analysis and applications,* 69(1979), 124 –130.
- [4] Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, *World Applied Sciences Journal,* 7 (11)(2009), 1404–1411.
- [5] Azriel Rosenfeld, fuzzy groups, *Journal of Mathematical Analysis and Applications,* 35(1971), 512– 517.
- [6] F.P.Choudhury, A.B.Chakraborty and S.S.Khare, A note on fuzzy subgroups and fuzzy homomorphism, *Journal of Mathematical Analysis and Applications,* 131, 537 –553(1988).
- [7] W.L.Gau and D.J. Buehrer, Vague sets, *IEEE Transactons on Systems, Man and Cybernetics,* 23(1993), 610–614.
- [8] Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, *Bull. Malays.Math. Sci. Soc.,* (2) 32(3) (2009), 361-–373.
- [9] K.M.Lee, Bipolar-valued fuzzy sets and their operations, *Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand,* (2000), 307–312.
- [10] K.M.Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets, *J. fuzzy Logic Intelligent Systems,* 14 (2) (2004), 125– 129.
- [11] Mustafa Akgul, some properties of fuzzy groups, *Journal of Mathematical Analysis and Applications,* 133(1988), 93 –100.
- [12] Samit Kumar Majumder, Bipolar valued fuzzy sets in Γ-semigroups, *Mathematica Aeterna,* 2(3)(2012), $203 - 213$.
- [13] V. Shanmugapriya and K. Arjunan, Some translators in bipolar valued fuzzy subsemiring of a semiring, *Bulletin of Mathematics and Statistic Research,* (4)(4)(2016), 118– 123.
- [14] Young Bae Jun and Seok Zun Song, Subalgebras and closed ideals of BCH-algebras based on bipolarvalued fuzzy sets, *Scientiae Mathematicae Japonicae Online,* (2008), 427–437.
- [15] L.A.Zadeh, fuzzy sets, *Inform. And Control,* 8(1965), 338–353.

ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 ? ? ? ? ? ? ? ? ?

