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Abstract
In this paper, we study some of the properties of (α,β )-level subsets of bipolar valued fuzzy subhemiring of a
hemiring and prove some results on these.
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1. Introduction
In 1965, Zadeh [15] introduced the notion of a fuzzy sub-

set of a set, fuzzy sets are a kind of useful mathematical
structure to represent a collection of objects whose boundary
is vague. Since then it has become a vigorous area of research
in different domains, there have been a number of generaliza-
tions of this fundamental concept such as intuitionistic fuzzy
sets, interval valued fuzzy sets, vague sets, soft sets etc [7].
Lee [9] introduced the notion of bipolar valued fuzzy sets.
Bipolar valued fuzzy sets are an extension of fuzzy sets whose
membership degree range is enlarged from the interval [0,1]
to [−1,1]. In a bipolar valued fuzzy set, the membership de-
gree 0 means that elements are irrelevant to the corresponding
property, the membership degree (0,1] indicates that elements
somewhat satisfy the property and the membership degree
[−1,0) indicates that elements somewhat satisfy the implicit
counter property. Bipolar valued fuzzy sets and intuitionistic
fuzzy sets look similar each other. However, they are differ-
ent each other [9, 10]. Anitha.M.S., Muruganantha Prasad &
K.Arjunan [1] defined as bipolar valued fuzzy subgroups of
a group. We introduce the concept of (α,β )-level subsets of
bipolar valued fuzzy subhemirings of a hemiring are discussed.

Using these concepts, some results are established.

2. Prelimaries

Definition 2.1. A bipolar valued fuzzy set (BVFS) of X is
defined as an object of the form A = {< x,A+(x),A−(x) >
/x ∈ X}, where A+ : X → [0,1] and A− : X → [−1,0]. The
positive membership degree A+(x) denotes the satisfaction
degree of an element x to the property corresponding to a
bipolar valued fuzzy set A and the negative membership degree
A−(x) denotes the satisfaction degree of an element x to some
implicit counter-property corresponding to a bipolar valued
fuzzy set A. If A+(x) 6= 0 and A−(x) = 0, it is the situation that
x is regarded as having only positive satisfaction for A and if
A+(x) = 0 and A−(x) 6= 0, it is the situation that x does not
satisfy the property of A, but somewhat satisfies the counter
property of A. It is possible for an element x to be such that
A+(x) 6= 0 and A−(x) 6= 0 when the membership function of
the property overlaps that of its counter property over some
portion of X.

Example 2.2. A = {< a,0.7,−0.5 >,< b,0.6,−0.3 >,
< c,0.5,−0.9 >} is a bipolar valued fuzzy subset of X =
{a,b,c}.

Definition 2.3. Let R be a hemiring. A bipolar valued fuzzy
subset A of R is said to be a bipolar valued fuzzy subhemiring
of R (BVFSHR) if the following conditions are satisfied,

(i) A+(x+ y)≥min{A+(x),A+(y)}

(ii) A+(xy)≥min{A+(x),A+(y)}
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(iii) A−(x+ y)≤max{A−(x),A−(y)}

(iv) A−(xy)≤max{A−(x),A−(y)} for all x and y in R.

Example 2.4. Let R = Z3 = {0,1,2} be a hemiring with
respect to the ordinary addition and multiplication. Then
A = {< 0,0.6,−0.7 >,< 1,0.5,−0.6 >,< 2,0.5,−0.6 >} is
a bipolar valued fuzzy subhemiring of R.

Definition 2.5. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subset of X. For α in [0,1] and β in [−1,0], the (α,β )-
level subset of A is the set A(α,β ) = {x ∈ X : A+(x)≥ α and
A−(x)≤ β}.

Example 2.6. Consider the set X = {0,1,2,3,4}. Let A =
{(0,0.7,−0.3),(1,0.6,−0.5),(2,0.8,−0.25),(3,0.65,−0.4),
(4,0.4,−0.7)} be a bipolar valued fuzzy subset of X and
α = 0.6,β = −0.3. Then (0.6,−0.3)-level subset of A is
A(0.6,−0.3) = {0,1,3}.

Definition 2.7. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subset of X. For α in [0,1], the A+ -level α-cut of A is the set
P(A+,α) = {x ∈ X : A+(x)≥ α}.

Example 2.8. Consider the set X = {0,1,2,3,4}. Let A =
{(0,0.5,−0.1),(1,0.4,−0.3),(2,0.6,−0.05),(3,0.45,−0.2),
(4,0.2,−0.5)} be a bipolar valued fuzzy subset of X and α =
0.4. Then A+ -level 0.4-cut of A is P(A+,0.4) = {0,1,2,3}.

Definition 2.9. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subset of X . For β in [−1,0], the A− -level β -cut of A is the
set N(A−,β ) = {x ∈ X : A−(x)≤ β}.

Example 2.10. Consider the set X = {0,1,2,3,4}. Let A =
{(0,0.6,−0.2),(1,0.5,−0.4),(2,0.7,−0.15),(3,0.55,−0.3),
(4,0.3,−0.6)} be a bipolar valued fuzzy subset of X and
β = −0.2. Then A− -level −0.2-cut of A is N(A−,−0.2) =
{0,1,3,4}.

Definition 2.11. Let X and X ′ be any two sets. Let f : X→ X ′

be any function and let A be a bipolar valued fuzzy subset in
X ,V be a bipolar valued fuzzy subset in f (X) = X ′, defined by
V+(y) = sup

x∈ f−1(y)
A+(x) and V−(y) = inf

x∈ f−1(y)
A−(x), for all x

in X and y in X ′. A is called a preimage of V under f and is
defined as A+(x) =V+( f (x)),A−(x) =V−( f (x)) for all x in
X and is denoted by f−1(V ).

3. Properties

Theorem 3.1. Let R and R′ be any two hemirings. The homo-
morphic image of a bipolar valued fuzzy subhemiring of R is
a bipolar valued fuzzy subhemiring of R′.

Theorem 3.2. Let R and R′ be any two hemirings. The homo-
morphic preimage of a bipolar valued fuzzy subhemiring of
R′ is a bipolar valued fuzzy subhemiring of R.

Theorem 3.3. Let R and R′ be any two hemirings. The anti-
homomorphic image of a bipolar valued fuzzy subhemiring of
R is a bipolar valued fuzzy subhemiring of R′.

Theorem 3.4. Let R and R′ be any two hemirings. The anti-
homomorphic preimage of a bipolar valued fuzzy subhemiring
of R′ is a bipolar valued fuzzy subhemiring of R.

Theorem 3.5. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subhemiring of a hemiring R. Then for α in [0,1] and β in
[−1,0] such that α ≤ A+(e) and β ≥ A−(e), is a (α,β )-level
subhemiring of R.

Proof. For all x and y in A(α,β ), we have, A+(x) ≥ α and
A−(x)≤ β and A+(y)≥ α and A−(y)≤ β . Now

A+(x+ y)≥min{A+(x),A+(y)}
≥min{α,α}
= α,

which implies that

A+(x+ y)≥ α.

And

A+(xy)≥min{A+(x),A+(y)}
≥min{α,α}
= α,

which implies that
A+(xy)≥ α.

Also

A−(x+ y)≤max{A−(x),A−(y)}
≤max{β ,β}
= β ,

which implies that

A−(x+ y)≤ β .

And

A−(xy)≤max{A−(x),A−(y)}
≤max{β ,β}
= β ,

which implies that
A−(xy)≤ β .

Therefore x+ y,xy in A(α,β ). Hence A(α,β ) is a (α,β )-level
subhemiring of R.

Theorem 3.6. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subhemiring of a hemiring R. Then for α,δ in [0,1],β ,φ in
[−1,0],α ≤ A+(e),δ ≤ A+(e),β ≥ A−(e),φ ≥ A−(e),δ < α

and β < φ , the two (α,β )-level subhemirings A(α,β ) and
A(δ ,φ) of A are equal if and only if there is no x in R such that
α > A+(x)> δ and β < A−(x)< φ .
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Proof. Assume that A(α,β ) = A(δ ,φ). Suppose there exists x
in R such that α > A+(x) > δ and β < A−(x) < φ . Then
A(α,β ) ⊆ A(δ ,φ) implies x belongs to A(δ ,φ), but not in A(α,β ).
This is contradiction to A(α,β ) = A(δ ,φ). Therefore there is
no x in R such that α > A+(x) > δ and β < A−(x) < φ .
Conversely, if there is no x in R such that α > A+(x)> δ and
β < A−(x) < φ . Then A(α,β ) = A(δ ,φ) ( By the definition of
(α,β )-level subset ).

Theorem 3.7. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subhemiring of a hemiring R. If any two (α,β )-level sub-
hemirings of A belongs to R, then their intersection is also
(α,β )-level subhemiring of A in R.

Proof. Let α,β in [0,1],β ,φ in [−1,0],α ≤ A+(e),
δ ≤ A+(e),β ≥ A−(e),φ ≥ A−(e).

Case (i): If α > A+(x) > δ and β < A−(x) < φ , then
A(α,β ) ⊆ A(δ ,φ). Therefore A(α,β )∩A(δ ,φ) = A(α,β ), but A(α,β )

is a (α,β )-level subhemiring of A.
Case (ii): If α < A+(x) < δ and β > A−(x) > 0, then

A(δ ,φ) ⊂ A(α,β ). Therefore A(α,β )∩A(δ ,φ) = A(δ ,φ), but A(δ ,φ)

is a (α,β )-level subhemiring of A.
Case (iii): If α < A+(x) < δ and β < A−(x) < φ , then

A(δ ,β ) ⊆ A(α,φ). Therefore A(δ ,β )∩A(α,φ) = A(δ ,β ), but A(δ ,β )

is a (α,β )-level subhemiring of A.
Case (iv): If α > A+(x) > δ and β > A−(x) > φ , then

A(α,φ) ⊆ A(δ ,β ). Therefore A(α,φ)∩A(δ ,β ) = A(α,φ), but A(α,φ)

is a (α,β )-level subhemiring of A.
Case (v): If α = α and β = β , then A(α,β ) = A(δ ,φ). In

other cases are true, so, in all the cases, intersection of any
two (α,β )-level subhemirings is a (α,β )-level subhemiring
of A.

Theorem 3.8. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subhemiring of a hemiring R. The intersection of a collec-
tion of (α,β )-level subhemirings of A is also a (α,β )-level
subhemiring of A.

Proof. It is easily proved by Theorem 3.7.

Theorem 3.9. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subhemiring of a hemiring R. If any two (α,β )-level sub-
hemirings of A belongs to R, then their union is also (α,β )-
level subhemiring of A in R.

Proof. Let α,δ in [0,1],β ,φ in [−1,0],α ≤ A+(e),
δ ≤ A+(e), β ≥ A−(e),φ ≥ A−(e).

Case (i): If α > A+(x) > δ and β < A−(x) < φ , then
A(α,β ) ⊆ A(δ ,φ). Therefore A(α,β )∪A(δ ,φ) = A(δ ,φ), but A(δ ,φ)

is a (α,β )-level subhemiring of A.
Case (ii): If α < A+(x) < δ and β > A−(x) > 0, then

A(δ ,φ) ⊂ A(α,β ). Therefore A(α,β )∪A(δ ,φ) = A(α,β ), but A(α,β )

is a (α,β )-level subhemiring of A.
Case (iii): If α < A+(x) < δ and β < A−(x) < φ , then

A(δ ,β ) ⊆ A(α,φ). Therefore A(δ ,β )∪A(α,φ) = A(α,φ), but A(α,φ)

is a (α,β )-level subhemiring of A.

Case (iv): If α > A+(x) > δ and β > A−(x) > φ , then
A(α,φ) ⊆ A(δ ,β ). Therefore A(α,φ)∪A(δ ,φ) = A(δ ,β ), but A(δ ,β )

is a (α,β )-level subhemiring of A.
Case (v): If α = δ and β = φ , then A(α,β ) = A(δ ,φ). In

other cases are true, so, in all the cases, intersection of any
two (α,β )-level subhemirings is a (α,β )-level subhemiring
of A.

Theorem 3.10. Let A = 〈A+,A−〉 be a bipolar valued fuzzy
subhemiring of a hemiring R. The union of a collection of
(α,β )-level subhemirings of A is also a (α,β )-level subhemir-
ing of A.

Proof. It is easily proved by Theorem 3.9.

Theorem 3.11. The homomorphic image of a (α,β )-level
subhemiring of a bipolar valued fuzzy subhemiring of a hemir-
ing R is a (α,β )-level subhemiring of a bipolar valued fuzzy
subhemiring of a hemiring R′.

Proof. Let V = f (A). Here A = 〈A+,A−〉 is a bipolar valued
fuzzy subhemiring of R. By Theorem 3.1, V = 〈V+,V−〉 is a
bipolar valued fuzzy subhemiring of R′. Let x and y in R. Then
f (x) and f (y) in R′. Let A(α,β ) be a (α,β )-level subhemiring
of A. That is, A+(x)≥ α and

A−(x)≤ β ;A+(y)≥ α

and

A−(y)≤ β ;

A+(x+ y)≥ α,

A−(x+ y)≤ β ,

A+(xy)≥ α,

A−(xy)≤ β .

We have to prove that f (A(α,β )) is a (α,β )-level subhemir-
ing of V . Now V+( f (x)) ≥ A+(x) ≥ α which implies that
V+( f (x)) ≥ α; and V+( f (y)) ≥ A+(y) ≥ α which implies
that V+( f (y))≥ α . Then

V+( f (x)+ f (y))

=V+( f (x+ y))

≥ A+(x+ y)

≥ α,

which implies that

V+( f (x)+ f (y))≥ α.

And

V+( f (x) f (y))

=V+( f (xy))

≥ A+(xy)

≥ α,
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which implies that

V+( f (x) f (y))≥ α.

And
V−( f (x))≤ A−(x)≤ β

which implies that

V−( f (x))≤ β ;

and
V−( f (y))≤ A−(y)≤ β

which implies that

V−( f (y))≤ β .

Then

V−( f (x)+ f (y))

=V−( f (x+ y))

≤ A−(x+ y)

≤ β ,

which implies that

V−( f (x)+ f (y))≤ β .

And

V−( f (x) f (y))

=V−( f (xy))

≤ A−(xy)

≤ β ,

which implies that

V−( f (x) f (y))≤ β .

Hence f (A(α,β )) is a (α,β )-level subhemiring of a bipolar
valued fuzzy subhemiring V of R′.

Theorem 3.12. The homomorphic pre-image of a (α,β )-level
subhemiring of a bipolar valued fuzzy subhemiring of a hemir-
ing R′ is a (α,β )-level subhemiring of a bipolar valued fuzzy
subhemiring of a hemiring R.

Proof. Let V = f (A). Here V = 〈V+,V−〉 is a bipolar valued
fuzzy subhemiring of R′. By Theorem 3.2, A = 〈A+,A−〉 is
a bipolar valued fuzzy subhemiring of R. Let f (x) and f (y)
in R′. Then x and y in R. Let f (A(α,β )) be a (α,β )-level
subhemiring of V. That is, V+( f (x)) ≥ α and V−( f (x)) ≤
β ;V+( f (y))≥ α and

V−( f (y))≤ β ;

V+( f (x)+ f (y))≥ α,

V−( f (x)+ f (y))≤ β ,

V+(( f x) f (y))≥ α,

V−(( f x) f (y))≤ β .

We have to prove that A(α,β ) is a (α,β )-level subhemiring of
A. Now A+(x) =V+( f (x))≥ α which implies that A+(x)≥
α; and A+(y)≥V+( f (y))≥ α which implies that A+(y)≥ α .
Then A+(x + y) = V+( f (x + y)) = V+( f (x) + f (y)) ≥ α,
which implies that A+(x+y)≥α . And A+(xy)=A+( f (xy))≥
V+ f ((x) f (y)) ≥ α , which implies that A+(xy) ≥ α. And
A−(x) ≤ V−( f (x)) ≤ β which implies that A−(x) ≤ β ; and
A−(y)≤V−( f (y))≤ β which implies that A−(y)≤ β . Then

A−(x+ y)

=V−( f (x+ y))

≤V−( f (x)+ f (y))

≤ β ,

which implies that

A−(x+ y)≤ β .

And

A−(xy) =V−( f (xy)) =V−( f (x) f (y))≤ β ,

which implies that A−(xy)≤ β . Hence f (A(α,β )) is a (α,β )-
level subhemiring of a bipolar valued fuzzy subhemiring A of
R.

Theorem 3.13. The anti-homomorphic image of a (α,β )-
level subhemiring of a bipolar valued fuzzy subhemiring of a
hemiring R is a (α,β )-level subhemiring of a bipolar valued
fuzzy subhemiring of a hemiring R′.

Proof. Let V = f (A). Here A = 〈A+,A−〉 is a bipolar valued
fuzzy subhemiring of R. By Theorem 3.3, V = 〈V+,V−〉 is
a bipolar valued fuzzy subhemiring of R′. Let x and y in R.
Then f (x) and f (y) in R′. Let A(α,β ) be a (α,β )-level sub-
hemiring of A. That is, A+(x)≥ α and A−(x)≤ β ;A+(y)≥ α

and A−(y)≤ β and A+(x+y)≥ α,A−(x+y)≤ β ,A+(xy)≥
α,A−(xy) ≤ β . We have to prove that f (A(α,β )) is a (α,β )-
level subhemiring of V . Now V+( f (x))≥ A+(x)≥ α which
implies that V+( f (x))≥α; and V+( f (y))≥A+(y)≥α which
implies that V+( f (y))≥ α . also

V+( f (x)+ f (y))

=V+( f (y+ x))

≥ A+(x+ y)

≥ α,

which implies that

V+( f (x)+ f (y))≥ α.

And

V+( f (x) f (y)) =V+( f (yx))≥ A+(yx)≥ α,

which implies that

V+( f (x) f (y))≥ α.
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And
V−( f (x))≤ A−(x)≤ β

which implies that

V−( f (x))≤ β ;

and
V−( f (y))≤ A−(y)≤ β

which implies that

V−( f (y))≤ β .

Then

V−( f (x)+ f (y))

=V−( f (y+ x))

≤ A−(x+ y)

≤ β ,

which implies that

V−( f (x)+ f (y))≤ β .

And

V−( f (x) f (y)) =V−( f (yx))≤ A−(yx)≤ β ,

which implies that

V−( f (x) f (y))≤ β .

Hence f (A(α,β )) is a (α,β )-level subhemiring of a bipolar
valued fuzzy subhemiring V of R′.

Theorem 3.14. The anti-homomorphic pre-image of a (α,β )-
level subhemiring of a bipolar valued fuzzy subhemiring of a
hemiring R′ is a (α,β )-level subhemiring of a bipolar valued
fuzzy subhemiring of a hemiring R.

Proof. Let V = f (A). Here V = 〈V+,V−〉 is a bipolar valued
fuzzy subhemiring of R′. By Theorem 3.4, A = 〈A+,A−〉 is
a bipolar valued fuzzy subhemiring of R. Let f (x) and f (y)
in R′. Then x and y in R. Let f (A(α,β )) be a (α,β )-level
subhemiring of V. That is, V+( f (x)) ≥ α and V−( f (x)) ≤
β ;V+( f (y))≥ α and

V−( f (y))≤ β ;

V+( f (y)+ f (x))≥ α,

V−( f (y)+ f (x))≤ β ,

V+( f (y) f (x))≥ α,

V−( f (y) f (x))≤ β .

We have to prove that A(α,β ) is a (α,β )-level subhemiring of
A. Now A+(x) =V+( f (x))≥ α which implies that A+(x)≥
α; and A+(y)≥V+( f (y))≥ α which implies that A+(y)≥ α .
Then A+(x + y) = V+( f (x + y)) = V+( f (x) + f (y)) ≥ α,

which implies that A+(x+y)≥α . And A+(xy)=V+( f (xy))≥
V+ f ((x) f (y)) ≥ α , which implies that A+(xy) ≥ α. And
A−(x) ≤ V−( f (x)) ≤ β which implies that A−(x) ≤ β ; and
A−(y)≤V−( f (y))≤ β which implies that A−(y)≤ β . Then
A−(x + y) = V−( f (x + y)) ≤ V−( f (x) + f (y)) ≤ β , which
implies that A−(x+ y)≤ β . And A−( f (x) f (y)) = A−(xy)≤
V−( f (xy))≤ β , which implies that A−(xy)≤ β . Hence A(α,β )

is a (α,β )-level subhemiring of a bipolar valued fuzzy sub-
hemiring A of R.

Theorem 3.15. Let A be a bipolar valued fuzzy subhemiring
of a hemiring R. Then for α in [0,1], A+-level α-cut P(A+,α)
is a A+-level α-cut subhemiring of R.

Proof. For all x and y in P(A+,α), we have A+(x)≥ α and
A+(y)≥ α. Now

A+(x+ y)≥min{A+(x),A+(y)}
≥min{α,α}
= α,

which implies that

A+(x+ y)≥ α.

And

A+(xy)≥min{A+(x),A+(y)}
≥min{α,α}
= α,

which implies that A+(xy)≥α . Therefore x+y,xy in P(A+,α).
Hence P(A+,α) is a A+-level α-cut subhemiring of R.

Theorem 3.16. Let A be a bipolar valued fuzzy subhemir-
ing of a hemiring R. Then for β in [−1,0], A−-level β -cut
N(A−,β ) is a A−-level β -cut subhemiring of R.

Proof. For all x and y in N(A−,β ), we have A−(x)≤ β and
A−(y)≤ β . Now

A−(x+ y)≤max{A−(x),A−(y)}
≤max{β ,β}
= β ,

which implies that

A−(x+ y)≤ β .

And

A−(xy)≤max{A−(x),A−(y)}
≤max{β ,β}
= β ,

which implies that
A−(xy)≤ β .

Therefore x+y,xy in N(A−,β ). Hence N(A−,β ) is a A−-level
β -cut subhemiring of R.
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