

https://doi.org/10.26637/MJM0601/0027

Level subsets of bipolar valued fuzzy subhemiring of a hemiring

N. Kumaran^{1*}, K. Arjunan² and B. Ananth ³

Abstract

In this paper, we study some of the properties of (α,β) -level subsets of bipolar valued fuzzy subhemiring of a hemiring and prove some results on these.

Keywords

Bipolar valued fuzzy subset, bipolar valued fuzzy subhemiring, level subset.

¹Department of Mathematics, GRT Institute of Engineering and Technology, Tiruttani, Tamil Nadu, India.

² Department of Mathematics, Alagappa Government Arts College, Karaikudi-630003, Tamilnadu, India.
³ Department of Mathematics, H. H. The Rajah's College, Pudukkottai-622001, Tamil Nadu, India.

Corresponding author: ¹ sk291166@gmail.com; ²arjunan.karmegam@gmail.com; ³drbaalaanandh@gmail.com

Article History: Received 24 November 2017; Accepted 27 December 2017

©2017 MJM.

Contents

 1
 Introduction
 230

 2
 Prelimaries
 230

 3
 Properties
 231

 References
 234

1. Introduction

In 1965, Zadeh [15] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval valued fuzzy sets, vague sets, soft sets etc [7]. Lee [9] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1]to [-1,1]. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the property and the membership degree [-1,0) indicates that elements somewhat satisfy the implicit counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [9, 10]. Anitha.M.S., Muruganantha Prasad & K.Arjunan [1] defined as bipolar valued fuzzy subgroups of a group. We introduce the concept of (α, β) -level subsets of bipolar valued fuzzy subhemirings of a hemiring are discussed. Using these concepts, some results are established.

2. Prelimaries

Definition 2.1. A bipolar valued fuzzy set (BVFS) of X is defined as an object of the form $A = \{ \langle x, A^+(x), A^-(x) \rangle \}$ $(x \in X)$, where $A^+ : X \to [0,1]$ and $A^- : X \to [-1,0]$. The positive membership degree $A^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree $A^{-}(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A. If $A^+(x) \neq 0$ and $A^-(x) = 0$, it is the situation that x is regarded as having only positive satisfaction for A and if $A^+(x) = 0$ and $A^-(x) \neq 0$, it is the situation that x does not satisfy the property of A, but somewhat satisfies the counter property of A. It is possible for an element x to be such that $A^+(x) \neq 0$ and $A^-(x) \neq 0$ when the membership function of the property overlaps that of its counter property over some portion of X.

Example 2.2. $A = \{ \langle a, 0.7, -0.5 \rangle, \langle b, 0.6, -0.3 \rangle, \langle c, 0.5, -0.9 \rangle \}$ is a bipolar valued fuzzy subset of $X = \{a, b, c\}$.

Definition 2.3. Let *R* be a hemiring. A bipolar valued fuzzy subset *A* of *R* is said to be a bipolar valued fuzzy subhemiring of *R* (BVFSHR) if the following conditions are satisfied,

- (i) $A^+(x+y) \ge \min\{A^+(x), A^+(y)\}$
- (*ii*) $A^+(xy) \ge \min\{A^+(x), A^+(y)\}$

(*iii*) $A^{-}(x+y) \le \max\{A^{-}(x), A^{-}(y)\}\$

(iv) $A^{-}(xy) \leq \max\{A^{-}(x), A^{-}(y)\}$ for all x and y in R.

Example 2.4. Let $R = Z_3 = \{0, 1, 2\}$ be a hemiring with respect to the ordinary addition and multiplication. Then $A = \{<0, 0.6, -0.7 >, <1, 0.5, -0.6 >, <2, 0.5, -0.6 >\}$ is a bipolar valued fuzzy subhemiring of R.

Definition 2.5. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subset of X. For α in [0,1] and β in [-1,0], the (α,β) -level subset of A is the set $A_{(\alpha,\beta)} = \{x \in X : A^+(x) \ge \alpha \text{ and } A^-(x) \le \beta\}$.

Example 2.6. Consider the set $X = \{0, 1, 2, 3, 4\}$. Let $A = \{(0, 0.7, -0.3), (1, 0.6, -0.5), (2, 0.8, -0.25), (3, 0.65, -0.4), (4, 0.4, -0.7)\}$ be a bipolar valued fuzzy subset of X and $\alpha = 0.6, \beta = -0.3$. Then (0.6, -0.3)-level subset of A is $A_{(0.6, -0.3)} = \{0, 1, 3\}$.

Definition 2.7. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subset of X. For α in [0,1], the A^+ -level α -cut of A is the set $P(A^+, \alpha) = \{x \in X : A^+(x) \ge \alpha\}.$

Example 2.8. Consider the set $X = \{0, 1, 2, 3, 4\}$. Let $A = \{(0, 0.5, -0.1), (1, 0.4, -0.3), (2, 0.6, -0.05), (3, 0.45, -0.2), (4, 0.2, -0.5)\}$ be a bipolar valued fuzzy subset of X and $\alpha = 0.4$. Then A^+ -level 0.4-cut of A is $P(A^+, 0.4) = \{0, 1, 2, 3\}$.

Definition 2.9. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subset of *X*. For β in [-1,0], the A^- -level β -cut of *A* is the set $N(A^-,\beta) = \{x \in X : A^-(x) \le \beta\}$.

Example 2.10. Consider the set $X = \{0, 1, 2, 3, 4\}$. Let $A = \{(0, 0.6, -0.2), (1, 0.5, -0.4), (2, 0.7, -0.15), (3, 0.55, -0.3), (4, 0.3, -0.6)\}$ be a bipolar valued fuzzy subset of X and $\beta = -0.2$. Then A^- -level -0.2-cut of A is $N(A^-, -0.2) = \{0, 1, 3, 4\}$.

Definition 2.11. Let X and X' be any two sets. Let $f: X \to X'$ be any function and let A be a bipolar valued fuzzy subset in X,V be a bipolar valued fuzzy subset in f(X) = X', defined by $V^+(y) = \sup_{x \in f^{-1}(y)} A^+(x)$ and $V^-(y) = \inf_{x \in f^{-1}(y)} A^-(x)$, for all x in X and y in X'. A is called a preimage of V under f and is defined as $A^+(x) = V^+(f(x)), A^-(x) = V^-(f(x))$ for all x in

3. Properties

X and is denoted by $f^{-1}(V)$.

Theorem 3.1. Let R and R' be any two hemirings. The homomorphic image of a bipolar valued fuzzy subhemiring of R is a bipolar valued fuzzy subhemiring of R'.

Theorem 3.2. Let R and R' be any two hemirings. The homomorphic preimage of a bipolar valued fuzzy subhemiring of R' is a bipolar valued fuzzy subhemiring of R. **Theorem 3.3.** Let R and R' be any two hemirings. The antihomomorphic image of a bipolar valued fuzzy subhemiring of R is a bipolar valued fuzzy subhemiring of R'.

Theorem 3.4. Let R and R' be any two hemirings. The antihomomorphic preimage of a bipolar valued fuzzy subhemiring of R' is a bipolar valued fuzzy subhemiring of R.

Theorem 3.5. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subhemiring of a hemiring R. Then for α in [0,1] and β in [-1,0] such that $\alpha \leq A^+(e)$ and $\beta \geq A^-(e)$, is a (α,β) -level subhemiring of R.

Proof. For all x and y in $A_{(\alpha,\beta)}$, we have, $A^+(x) \ge \alpha$ and $A^-(x) \le \beta$ and $A^+(y) \ge \alpha$ and $A^-(y) \le \beta$. Now

$$A^+(x+y) \ge \min\{A^+(x), A^+(y)\}$$
$$\ge \min\{\alpha, \alpha\}$$
$$= \alpha,$$

which implies that

$$A^+(x+y) \ge \alpha$$
.

 $A^+(xy) \ge \alpha$.

 $A^{-}(x+y) \leq \beta$.

And

$$A^{+}(xy) \ge \min\{A^{+}(x), A^{+}(y)\}$$
$$\ge \min\{\alpha, \alpha\}$$
$$= \alpha,$$

which implies that

Also

$$A^{-}(x+y) \leq \max\{A^{-}(x), A^{-}(y)\}$$
$$\leq \max\{\beta, \beta\}$$
$$= \beta,$$

which implies that

And

$$A^{-}(xy) \le \max\{A^{-}(x), A^{-}(y)\}$$

$$\le \max\{\beta, \beta\}$$

$$= \beta.$$

which implies that

$$A^{-}(xy) \leq \beta.$$

Therefore x + y, xy in $A_{(\alpha,\beta)}$. Hence $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of R.

Theorem 3.6. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subhemiring of a hemiring R. Then for α, δ in $[0,1], \beta, \phi$ in $[-1,0], \alpha \leq A^+(e), \delta \leq A^+(e), \beta \geq A^-(e), \phi \geq A^-(e), \delta < \alpha$ and $\beta < \phi$, the two (α, β) -level subhemirings $A_{(\alpha,\beta)}$ and $A_{(\delta,\phi)}$ of A are equal if and only if there is no x in R such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$.

Proof. Assume that $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$. Suppose there exists x in R such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$. Then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$ implies x belongs to $A_{(\delta,\phi)}$, but not in $A_{(\alpha,\beta)}$. This is contradiction to $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$. Therefore there is no x in R such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$. Conversely, if there is no x in R such that $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$. Then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$ (By the definition of (α,β) -level subset).

Theorem 3.7. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subhemiring of a hemiring *R*. If any two (α, β) -level subhemirings of *A* belongs to *R*, then their intersection is also (α, β) -level subhemiring of *A* in *R*.

Proof. Let α, β in $[0,1], \beta, \phi$ in $[-1,0], \alpha \leq A^+(e), \delta \leq A^+(e), \beta \geq A^-(e), \phi \geq A^-(e).$

Case (i): If $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$. Therefore $A_{(\alpha,\beta)} \cap A_{(\delta,\phi)} = A_{(\alpha,\beta)}$, but $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of A.

Case (ii): If $\alpha < A^+(x) < \delta$ and $\beta > A^-(x) > 0$, then $A_{(\delta,\phi)} \subset A_{(\alpha,\beta)}$. Therefore $A_{(\alpha,\beta)} \cap A_{(\delta,\phi)} = A_{(\delta,\phi)}$, but $A_{(\delta,\phi)}$ is a (α,β) -level subhemiring of A.

Case (iii): If $\alpha < A^+(x) < \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\delta,\beta)} \subseteq A_{(\alpha,\phi)}$. Therefore $A_{(\delta,\beta)} \cap A_{(\alpha,\phi)} = A_{(\delta,\beta)}$, but $A_{(\delta,\beta)}$ is a (α,β) -level subhemiring of A.

Case (iv): If $\alpha > A^+(x) > \delta$ and $\beta > A^-(x) > \phi$, then $A_{(\alpha,\phi)} \subseteq A_{(\delta,\beta)}$. Therefore $A_{(\alpha,\phi)} \cap A_{(\delta,\beta)} = A_{(\alpha,\phi)}$, but $A_{(\alpha,\phi)}$ is a (α,β) -level subhemiring of A.

Case (v): If $\alpha = \alpha$ and $\beta = \beta$, then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$. In other cases are true, so, in all the cases, intersection of any two (α,β) -level subhemirings is a (α,β) -level subhemiring of *A*.

Theorem 3.8. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subhemiring of a hemiring *R*. The intersection of a collection of (α, β) -level subhemirings of *A* is also a (α, β) -level subhemiring of *A*.

Proof. It is easily proved by Theorem 3.7. \Box

Theorem 3.9. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subhemiring of a hemiring *R*. If any two (α, β) -level subhemirings of *A* belongs to *R*, then their union is also (α, β) -level subhemiring of *A* in *R*.

Proof. Let α, δ in $[0,1], \beta, \phi$ in $[-1,0], \alpha \leq A^+(e), \delta \leq A^+(e), \beta \geq A^-(e), \phi \geq A^-(e).$

Case (i): If $\alpha > A^+(x) > \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\alpha,\beta)} \subseteq A_{(\delta,\phi)}$. Therefore $A_{(\alpha,\beta)} \cup A_{(\delta,\phi)} = A_{(\delta,\phi)}$, but $A_{(\delta,\phi)}$ is a (α,β) -level subhemiring of A.

Case (ii): If $\alpha < A^+(x) < \delta$ and $\beta > A^-(x) > 0$, then $A_{(\delta,\phi)} \subset A_{(\alpha,\beta)}$. Therefore $A_{(\alpha,\beta)} \cup A_{(\delta,\phi)} = A_{(\alpha,\beta)}$, but $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of A.

Case (iii): If $\alpha < A^+(x) < \delta$ and $\beta < A^-(x) < \phi$, then $A_{(\delta,\beta)} \subseteq A_{(\alpha,\phi)}$. Therefore $A_{(\delta,\beta)} \cup A_{(\alpha,\phi)} = A_{(\alpha,\phi)}$, but $A_{(\alpha,\phi)}$ is a (α,β) -level subhemiring of A.

Case (iv): If $\alpha > A^+(x) > \delta$ and $\beta > A^-(x) > \phi$, then $A_{(\alpha,\phi)} \subseteq A_{(\delta,\beta)}$. Therefore $A_{(\alpha,\phi)} \cup A_{(\delta,\phi)} = A_{(\delta,\beta)}$, but $A_{(\delta,\beta)}$ is a (α,β) -level subhemiring of A.

Case (v): If $\alpha = \delta$ and $\beta = \phi$, then $A_{(\alpha,\beta)} = A_{(\delta,\phi)}$. In other cases are true, so, in all the cases, intersection of any two (α,β) -level subhemirings is a (α,β) -level subhemiring of *A*.

Theorem 3.10. Let $A = \langle A^+, A^- \rangle$ be a bipolar valued fuzzy subhemiring of a hemiring *R*. The union of a collection of (α, β) -level subhemirings of *A* is also a (α, β) -level subhemiring of *A*.

Proof. It is easily proved by Theorem 3.9. \Box

Theorem 3.11. The homomorphic image of a (α, β) -level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring *R* is a (α, β) -level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring *R'*.

Proof. Let V = f(A). Here $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subhemiring of *R*. By Theorem 3.1, $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subhemiring of *R'*. Let *x* and *y* in *R*. Then f(x) and f(y) in *R'*. Let $A_{(\alpha,\beta)}$ be a (α,β) -level subhemiring of *A*. That is, $A^+(x) \ge \alpha$ and

$$A^{-}(x) \leq \beta; A^{+}(y) \geq \alpha$$

and

$$A^{-}(y) \leq \beta;$$

$$A^{+}(x+y) \geq \alpha,$$

$$A^{-}(x+y) \leq \beta,$$

$$A^{+}(xy) \geq \alpha,$$

$$A^{-}(xy) \leq \beta.$$

We have to prove that $f(A_{(\alpha,\beta)})$ is a (α,β) -level subhemiring of *V*. Now $V^+(f(x)) \ge A^+(x) \ge \alpha$ which implies that $V^+(f(x)) \ge \alpha$; and $V^+(f(y)) \ge A^+(y) \ge \alpha$ which implies that $V^+(f(y)) \ge \alpha$. Then

$$V^+(f(x) + f(y))$$

= $V^+(f(x+y))$
 $\ge A^+(x+y)$
 $\ge \alpha$,

which implies that

$$V^+(f(x)+f(y)) \ge \alpha.$$

And

$$V^{+}(f(x)f(y)) = V^{+}(f(xy)) \\ \ge A^{+}(xy) \\ \ge \alpha,$$

which implies that

$$V^+(f(x)f(y)) \ge \alpha.$$

And

$$V^{-}(f(x)) \le A^{-}(x) \le \beta$$

which implies that

$$V^{-}(f(x)) \leq \boldsymbol{\beta};$$

and

$$V^{-}(f(y)) \leq A^{-}(y) \leq \beta$$

which implies that

$$V^{-}(f(y)) \leq \beta.$$

Then

$$V^{-}(f(x) + f(y)) = V^{-}(f(x+y)) \le A^{-}(x+y) \le \beta,$$

which implies that

$$V^{-}(f(x)+f(y)) \leq \beta.$$

And

$$V^{-}(f(x)f(y)) = V^{-}(f(xy))$$
$$\leq A^{-}(xy)$$
$$\leq \beta,$$

)

which implies that

$$V^{-}(f(x)f(y)) \leq \beta$$

Hence $f(A_{(\alpha,\beta)})$ is a (α,β) -level subhemiring of a bipolar valued fuzzy subhemiring *V* of *R'*.

Theorem 3.12. The homomorphic pre-image of $a(\alpha, \beta)$ -level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R' is $a(\alpha, \beta)$ -level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R.

Proof. Let V = f(A). Here $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subhemiring of R'. By Theorem 3.2, $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subhemiring of R. Let f(x) and f(y) in R'. Then x and y in R. Let $f(A_{(\alpha,\beta)})$ be a (α,β) -level subhemiring of V. That is, $V^+(f(x)) \ge \alpha$ and $V^-(f(x)) \le \beta$; $V^+(f(y)) \ge \alpha$ and

$$\begin{split} V^{-}(f(y)) &\leq \boldsymbol{\beta}; \\ V^{+}(f(x) + f(y)) &\geq \boldsymbol{\alpha}, \\ V^{-}(f(x) + f(y)) &\leq \boldsymbol{\beta}, \\ V^{+}((fx)f(y)) &\geq \boldsymbol{\alpha}, \\ V^{-}((fx)f(y)) &\leq \boldsymbol{\beta}. \end{split}$$

We have to prove that $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of *A*. Now $A^+(x) = V^+(f(x)) \ge \alpha$ which implies that $A^+(x) \ge \alpha$; and $A^+(y) \ge V^+(f(y)) \ge \alpha$ which implies that $A^+(y) \ge \alpha$. Then $A^+(x+y) = V^+(f(x+y)) = V^+(f(x) + f(y)) \ge \alpha$, which implies that $A^+(x+y) \ge \alpha$. And $A^+(xy) = A^+(f(xy)) \ge V^+f((x)f(y)) \ge \alpha$, which implies that $A^+(xy) \ge \alpha$. And $A^-(x) \le V^-(f(x)) \le \beta$ which implies that $A^-(x) \le \beta$; and $A^-(y) \le V^-(f(y)) \le \beta$ which implies that $A^-(y) \le \beta$. Then

$$A^{-}(x+y) = V^{-}(f(x+y))$$

$$\leq V^{-}(f(x)+f(y))$$

$$\leq \beta,$$

which implies that

$$A^{-}(x+y) \leq \beta$$

And

$$A^{-}(xy) = V^{-}(f(xy)) = V^{-}(f(x)f(y)) \le \beta$$

which implies that $A^{-}(xy) \leq \beta$. Hence $f(A_{(\alpha,\beta)})$ is a (α,β) -level subhemiring of a bipolar valued fuzzy subhemiring A of *R*.

Theorem 3.13. The anti-homomorphic image of a (α, β) level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R is a (α, β) -level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R'.

Proof. Let V = f(A). Here $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subhemiring of *R*. By Theorem 3.3, $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subhemiring of *R'*. Let *x* and *y* in *R*. Then f(x) and f(y) in *R'*. Let $A_{(\alpha,\beta)}$ be a (α,β) -level subhemiring of *A*. That is, $A^+(x) \ge \alpha$ and $A^-(x) \le \beta$; $A^+(y) \ge \alpha$ and $A^-(y) \le \beta$ and $A^+(x+y) \ge \alpha, A^-(x+y) \le \beta, A^+(xy) \ge \alpha, A^-(xy) \le \beta$. We have to prove that $f(A_{(\alpha,\beta)})$ is a (α,β) -level subhemiring of *V*. Now $V^+(f(x)) \ge A^+(x) \ge \alpha$ which implies that $V^+(f(x)) \ge \alpha$; and $V^+(f(y)) \ge A^+(y) \ge \alpha$ which implies that $V^+(f(y)) \ge \alpha$. also

$$V^{+}(f(x) + f(y))$$

= $V^{+}(f(y+x))$
 $\geq A^{+}(x+y)$
 $\geq \alpha$,

which implies that

$$V^+(f(x)+f(y)) \ge \alpha.$$

And

$$V^+(f(x)f(y)) = V^+(f(yx)) \ge A^+(yx) \ge \alpha$$

which implies that

$$V^+(f(x)f(y)) \ge \alpha.$$

And

$$V^{-}(f(x)) \le A^{-}(x) \le \beta$$

which implies that

$$V^{-}(f(x)) \leq \boldsymbol{\beta};$$

and

$$V^{-}(f(y)) \le A^{-}(y) \le \beta$$

which implies that

$$V^{-}(f(y)) \leq \beta.$$

Then

$$V^{-}(f(x) + f(y))$$

= $V^{-}(f(y+x))$
 $\leq A^{-}(x+y)$
 $< \beta$,

which implies that

$$V^{-}(f(x)+f(y)) \leq \beta.$$

And

$$V^{-}(f(x)f(y)) = V^{-}(f(yx)) \le A^{-}(yx) \le \beta,$$

which implies that

$$V^{-}(f(x)f(y)) \leq \beta.$$

Hence $f(A_{(\alpha,\beta)})$ is a (α,β) -level subhemiring of a bipolar valued fuzzy subhemiring *V* of *R'*.

Theorem 3.14. The anti-homomorphic pre-image of $a(\alpha, \beta)$ level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R' is a (α, β) -level subhemiring of a bipolar valued fuzzy subhemiring of a hemiring R.

Proof. Let V = f(A). Here $V = \langle V^+, V^- \rangle$ is a bipolar valued fuzzy subhemiring of R'. By Theorem 3.4, $A = \langle A^+, A^- \rangle$ is a bipolar valued fuzzy subhemiring of R. Let f(x) and f(y) in R'. Then x and y in R. Let $f(A_{(\alpha,\beta)})$ be a (α,β) -level subhemiring of V. That is, $V^+(f(x)) \ge \alpha$ and $V^-(f(x)) \le \beta$; $V^+(f(y)) \ge \alpha$ and

$$V^{-}(f(y)) \leq \boldsymbol{\beta};$$

$$V^{+}(f(y) + f(x)) \geq \boldsymbol{\alpha},$$

$$V^{-}(f(y) + f(x)) \leq \boldsymbol{\beta},$$

$$V^{+}(f(y)f(x)) \geq \boldsymbol{\alpha},$$

$$V^{-}(f(y)f(x)) \leq \boldsymbol{\beta}.$$

We have to prove that $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of *A*. Now $A^+(x) = V^+(f(x)) \ge \alpha$ which implies that $A^+(x) \ge \alpha$; and $A^+(y) \ge V^+(f(y)) \ge \alpha$ which implies that $A^+(y) \ge \alpha$. Then $A^+(x+y) = V^+(f(x+y)) = V^+(f(x) + f(y)) \ge \alpha$, which implies that $A^+(x+y) \ge \alpha$. And $A^+(xy) = V^+(f(xy)) \ge V^+f((x)f(y)) \ge \alpha$, which implies that $A^+(xy) \ge \alpha$. And $A^-(x) \le V^-(f(x)) \le \beta$ which implies that $A^-(x) \le \beta$; and $A^-(y) \le V^-(f(y)) \le \beta$ which implies that $A^-(y) \le \beta$. Then $A^-(x+y) = V^-(f(x+y)) \le V^-(f(x)+f(y)) \le \beta$, which implies that $A^-(xy) \le \beta$. And $A^-(f(x)f(y)) = A^-(xy) \le V^-(f(xy)) \le \beta$, which implies that $A^-(xy) \le \beta$. Hence $A_{(\alpha,\beta)}$ is a (α,β) -level subhemiring of a bipolar valued fuzzy subhemiring *A* of *R*.

Theorem 3.15. Let A be a bipolar valued fuzzy subhemiring of a hemiring R. Then for α in [0,1], A^+ -level α -cut $P(A^+, \alpha)$ is a A^+ -level α -cut subhemiring of R.

Proof. For all x and y in $P(A^+, \alpha)$, we have $A^+(x) \ge \alpha$ and $A^+(y) \ge \alpha$. Now

 $A^+(x+y) > \alpha$.

$$A^{+}(x+y) \ge \min\{A^{+}(x), A^{+}(y)\}$$
$$\ge \min\{\alpha, \alpha\}$$
$$= \alpha,$$

which implies that

And

$$A^{+}(xy) \ge \min\{A^{+}(x), A^{+}(y)\}$$
$$\ge \min\{\alpha, \alpha\}$$
$$= \alpha,$$

which implies that $A^+(xy) \ge \alpha$. Therefore x + y, xy in $P(A^+, \alpha)$. Hence $P(A^+, \alpha)$ is a A^+ -level α -cut subhemiring of R. \Box

Theorem 3.16. Let A be a bipolar valued fuzzy subhemiring of a hemiring R. Then for β in [-1,0], A^- -level β -cut $N(A^-,\beta)$ is a A^- -level β -cut subhemiring of R.

Proof. For all x and y in $N(A^-, \beta)$, we have $A^-(x) \le \beta$ and $A^-(y) \le \beta$. Now

 $A^{-}(x+y) \leq \beta$.

$$A^{-}(x+y) \leq \max\{A^{-}(x), A^{-}(y)\}$$
$$\leq \max\{\beta, \beta\}$$
$$= \beta,$$

which implies that

And

$$A^{-}(xy) \le \max\{A^{-}(x), A^{-}(y)\}\$$
$$\le \max\{\beta, \beta\}\$$
$$= \beta,$$

which implies that

$$A^{-}(xy) \leq \beta$$

Therefore x + y, xy in $N(A^-, \beta)$. Hence $N(A^-, \beta)$ is a A^- -level β -cut subhemiring of R.

References

- [1] M. S. Anitha, Muruganantha Prasad and K.Arjunan, Notes on Bipolar-valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, 2(3)(2013), 52–59.
- ^[2] M. S. Anitha, K.L.Muruganantha Prasad and K.Arjunan, Homomorphism and antihomomorphism of Bipolar valued fuzzy subgroups of a group, *International Journal of Mathematical Archive*, 4(12)(2013), , 1–4.
- [3] J. M. Anthony and H.Sherwood, fuzzy groups Redefined, *Journal of Mathematical Analysis and applications*, 69(1979), 124–130.
- [4] Arsham Borumand Saeid, Bipolar-valued fuzzy BCK/BCI-algebras, World Applied Sciences Journal, 7 (11)(2009), 1404–1411.
- [5] Azriel Rosenfeld, fuzzy groups, *Journal of Mathematical Analysis and Applications*, 35(1971), 512–517.
- [6] F.P.Choudhury, A.B.Chakraborty and S.S.Khare, A note on fuzzy subgroups and fuzzy homomorphism, *Journal of Mathematical Analysis and Applications*, 131, 537–553(1988).
- [7] W.L.Gau and D.J. Buehrer, Vague sets, *IEEE Trans*actons on Systems, Man and Cybernetics, 23(1993), 610–614.
- [8] Kyoung Ja Lee, Bipolar fuzzy subalgebras and bipolar fuzzy ideals of BCK/BCI-algebras, *Bull. Malays.Math. Sci. Soc.*, (2) 32(3) (2009), 361–373.
- [9] K.M.Lee, Bipolar-valued fuzzy sets and their operations, Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307–312.
- [10] K.M.Lee, Comparison of interval-valued fuzzy sets, intuitionistic fuzzy sets and bipolarvalued fuzzy sets, *J. fuzzy Logic Intelligent Systems*, 14 (2) (2004), 125– 129.
- [11] Mustafa Akgul, some properties of fuzzy groups, Journal of Mathematical Analysis and Applications, 133(1988), 93 –100.
- [12] Samit Kumar Majumder, Bipolar valued fuzzy sets in Γ-semigroups, *Mathematica Aeterna*, 2(3)(2012), 203 – 213.
- [13] V. Shanmugapriya and K. Arjunan, Some translators in bipolar valued fuzzy subsemiring of a semiring, *Bulletin of Mathematics and Statistic Research*, (4)(4)(2016), 118–123.
- [14] Young Bae Jun and Seok Zun Song, Subalgebras and closed ideals of BCH-algebras based on bipolarvalued fuzzy sets, *Scientiae Mathematicae Japonicae Online*, (2008), 427–437.
- [15] L.A.Zadeh, fuzzy sets, *Inform. And Control*, 8(1965), 338–353.

ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

