

https://doi.org/10.26637/MJM0601/0028

Interval valued anti-fuzzy soft subhemiring of a hemiring

N. Anitha^{1*} and V. Lambodharan²

Abstract

In this paper, we have studied the various operations of interval valued anti fuzzy soft subhemirings of a hemiring to establish their basic properties. We have discussed different algebraic structures of interval valued anti-fuzzy soft subhemirings of a hemiring under the restricted and extended operations. Product and strongest relation have also been made in order to give a complete overview of these structures.

Keywords

Interval valued anti-fuzzy soft subhemiring of a hemiring , product of Interval valued anti-fuzzy soft subhemiring of a hemiring, strongest relation of Interval valued anti-fuzzy soft subhemiring of a hemiring.

AMS Subject Classification 03E72, 06D72, 08A72.

1, 2*Department of Mathematics, Periyar University PG Extension Center, Dharmapuri-636 705, Tamil Nadu, India.* ***Corresponding author**: ¹ anithaarenu@gmail.com; ²mathslambo@gmail.com **Article History**: Received 01 November 2017; Accepted 17 December 2017 **COMBER 18 And COVID-18 And Article History**: C 2017 MJM.

Contents

 [Introduction](#page-0-0) . 236 [Preliminaries](#page-0-1) . 236 [Properties of interval valued anti-fuzzy soft subhemir](#page-1-0)[ing of a hemiring](#page-1-0) . 237

[References](#page-4-0) . 240

1. Introduction

While modeling most of the real world problems, vagueness or fuzziness of data creates difficulties and we do not get the required results. This inaccuracy and imprecision cause problems in the successful implementation of a mathematical model. To handle these uncertainties, different theories and approaches have been adapted so far. L.A. Zadeh [\[19\]](#page-5-0) introduced his revolutionary concept of a fuzzy set in 1965.Fuzzy set theory is applied in almost all the branches of mathematics. Molodtsov [\[12\]](#page-5-1) introduced the concept of soft set as a new mathematical tool for dealing with uncertainties that is free from the difficulties that have troubled the usual theoretical approaches. Molodtsov pointed out several directions for the applications of soft sets. At present, works on the soft set theory are progressing rapidly. Maji et al. [\[9\]](#page-5-2) described the application of soft set theory to a decision making problem. Maji et al. [\[11\]](#page-5-3) also studied several operations on the theory of soft sets. Chen et al. [\[6\]](#page-4-1) presented a new definition of soft

set parameterizations reduction, and compared this definition to the related concept of attributes reduction in rough set theory. In this paper, we introduce the concept of interval valued anti-fuzzy soft subhemiring of a hemiring and establish some results on these. We also made an attempt to study the some properties of interval valued anti-fuzzy soft subhemiring of hemiring.

2. Preliminaries

Definition 2.1. *Let* $(R, +, \cdot)$ *be a hemiring. A interval valued fuzzy soft subset* [*F*,*A*] *of Ris said to be an interval valued anti-fuzzy soft subhemiring (IAFSSHR) of R if it satisfies the following conditions:*

(i)

$$
\mu_{(F,A)}(x_{(F,A)} + y_{(F,A)})
$$

\n
$$
\leq \max\{\mu_{(F,A)}(x_{(F,A)}), \mu_{(F,A)}(y_{(F,A)})\},
$$

(ii)

$$
\mu_{(F,A)}(x_{(F,A)}y_{(F,A)})
$$

\n
$$
\leq \max\{\mu_{(F,A)}(x_{(F,A)}), \mu_{(F,A)}(y_{(F,A)})\},
$$

for all $x_{(F,A)}$ and $y_{(F,A)}$ in R.

Definition 2.2. Let $(R, +, \cdot)$ be a hemiring. An interval val*ued anti-fuzzy soft subhemiring* [*F*,*A*] *of R is said to be an interval valued anti-fuzzy interval valued soft normal subhemiring(IAFSNSHR) of R if*

$$
\mu_{(F,A)}(x_{(F,A)}y_{(F,A)}) = \mu_{(F,A)}(y_{(F,A)}x_{(F,A)})
$$

for all $x_{(F,A)}$ and $y_{(F,A)}$ in R.

Definition 2.3. *Let* [*F*,*A*] *and* [*G*,*B*] *be fuzzy interval valued soft subsets of sets G and H*, *respectively. The interval valued anti-product of* $[F,A]$ *and* $[G,B]$ *, denoted by* $[F,A]) \times [G,B]$ *, is defined as*

$$
[F,A] \times [G,B]
$$

= { $\langle (x_{(F,A)}, y_{(F,A)}), \mu_{[F,A] \times [G,B]}(x_{(F,A)}, y_{(G,B)}) \rangle / \text{ for }$

all x(*F*,*A*) *in G and in H*, *where*

$$
\mu_{[F,A]\times [G,B]} = \max\{\mu_{(F,A)}(x_{(F,A)}), \mu_{(F,B)}(y_{(G,B)})\}.
$$

Definition 2.4. *Let* [*F*,*A*] *be a interval valued fuzzy soft subset in a set S*, *the interval valued anti-strongest fuzzy soft relation on S*, *that is a interval valued fuzzy soft relation on* [*F*,*A*] *is* [*G*,*V*] *given by*

$$
\mu_{[G,V]}(x_{(F,A)},y_{(F,A)}) = \max\{\mu_{(F,A)}(x_{(F,A)}),\mu_{(F,A)}(y_{(F,A)})\},\
$$

for all $x_{(F,A)}$ *and* $y_{(F,A)}$ *in S*.

Definition 2.5. *An interval valued anti-fuzzy soft subhemiring* [*F*,*A*] *of a hemiring R is called an interval valued antifuzzy soft characteristic subhemiring of R if* $\mu_{(F,A)}(x_{(F,A)}) =$ $\mu_{(F,A)}(f(x_{(F,A)})),$ *for all* $x_{(F,A)}$ *in R and f in Aut*(*R*).

Definition 2.6. Let $(R, +, \cdot)$ and $(R', +, \cdot)$ be any two hemir*ings. Let* $f : R \to R'$ *be any function and* $[F, A]$ *be an interval valued anti-fuzzy soft subhemiring in R*, [*G*,*V*] *be an interval valued anti-fuzzy soft subhemiring in* $f(R) = R'$, *defined by* $\mu_{[G,V]}(y) = \inf_{x \in f^{-1}(y)} \mu_{(F,A)}(x_{(F,A)}),$ *for all* $x_{(F,A)}$ *in R and y in*

 R' . Then $[F, A]$ *is called a preimage of* $[G, V]$ *under* f *and is denoted by* $f^{-1}([G, V])$.

Definition 2.7. *Let* [*F*,*A*] *and* [*G*,*B*] *be two soft sets over a common universe U*. *The union of* [*F*,*A*] *and* [*G*,*B*] *is defined as the soft set* [*H*,*C*] *satisfying the following conditions:*

- *(i)* $C = A ∪ B$
- *(ii) For all* $x \in C$,

$$
H(x) = \begin{cases} (F(x) & \text{if } x \in A - B, \\ G(x) & \text{if } x \in B - A, \\ F(x) \cup G(x) & \text{if } x \in A \cap B, \end{cases}
$$

This is denoted by $[F,A] \cup [G,B] = [H,C]$ *.*

Definition 2.8. *Let* [*F*,*A*] *be a an interval valued anti –fuzzy soft subset of* X *. For* α *in* [0,1], *the lower level soft subset of* $[F, A]$ *is the set* $[F, A]_{\alpha} = \{x \in X : \mu_{(F,A)}(x_{(F,A)}) \leq \alpha\}.$

Definition 2.9. *Let* [*F*,*A*] *be an interval valued anti –fuzzy soft subhemiring ofa hemiring R*.*Then* [*F*,*A*] 0 *is defined as* $[F, A]^0(x_{(F,A)}) = [F, A](x_{(F,A)})/[F, A](0),$ *for all* $x_{(F,A)} \in R$.

3. Properties of interval valued anti-fuzzy soft subhemiring of a hemiring

Theorem 3.1. *Union of any two interval valued anti-fuzzy softsubhemiring of a hemiring R is an interval valued antifuzzy soft subhemiring of R*.

Proof. Let [*F*,*A*] and [*F*,*B*] be any two interval valued antifuzzy soft subhemirings of a hemiring *R* and *x* and *y* in *R*. Let $[F, A] = \{(\mu_{(F,A)}, \mu_{(F,A)}(x_{(F,A)}))/x_{(F,A)} \in R\}$ and $[G, B] =$ $\{(x_{[G,B]}, \mu_{[G,B]}(x_{[G,B]}))/x_{[G,B]} \in R\}$ and also let

$$
[H, C] = [F, A] \cup [G, B]
$$

= { $(x_{[H,C]}, \mu_{[H,C]}(x_{[H,C]}))/x_{[H,C]} \in R$ },

where

$$
\max \{ \mu_{(F,A)}(x_{(F,A)}), \mu_{[G,B]}(x_{[G,B]}) \}
$$

= $\mu_{[H,C]}(x_{[H,C]}).$

Where

$$
\max \{ x_{(F,A)}(x_{(F,A)}), \mu_{[G,B]}(x_{[G,B]}) \}
$$

= $\mu_{[H,C]}(x_{[H,C]}).$

It is clear the

 $[$ *F*,*A* $] ∪ [$ *G*,*B* $](x) = [$ *F*,*A* $](x)$

When $\mu_{(F,A)}(x_{(F,A)}) \neq 0$ and

$$
\mu_{[G,B]}(x_{[G,B]}) = 0.
$$

Also,

$$
[[F,A] \cup [G,B]](x) = [G,B](x)
$$

When $\mu_{(F,A)}(x_{(F,A)}) = 0$ and

$$
\mu_{[G,B]}(x_{[G,B]})\neq 0.
$$

It is enough to prove that

$$
\begin{aligned} [[F,A] \cup [G,B]](x) \\ &= \max \{ \mu_{(F,A)}(x_{(F,A)}), \mu_{[G,B]}(x_{[G,B]}) \} . \end{aligned}
$$

Now,

$$
[\mu_{[H,C]}](x_{[H,C]} + y_{[H,C]})
$$

= max{ $\mu_{[F,A)}(x_{(F,A)} + y_{(F,A)}), \mu_{[G,B]}(x_{[G,B]} + y_{[G,B]})$ }
 \leq max{ $\max{\mu_{[F,A)}(x_{(F,A)}), \mu_{(F,A)}(y_{(F,A)})}$ },
 max{ $\mu_{[G,B]}(x_{[G,B]}), \mu_{[G,B]}(y_{[G,B]})$ }}
= max{ $\max{\mu_{[F,A)}(x_{(F,A)}), \mu_{[G,B]}(x_{[G,B]})}$ },
 max{ $\mu_{[F,A)}(y_{(F,A)}), \mu_{[G,B]}(y_{[G,B]})$ }
= max{ $\mu_{[H,C]}(x_{[H,C]}, y_{[H,C]}(y_{[H,C]})).$

Therefore,

$$
\mu_{[H,C]}(x_{[H,C]} + y_{[H,C]})
$$

\n
$$
\leq \max{\{\mu_{[H,C]}(x_{[H,C]}), \mu_{[H,C]}(y_{[H,C]})\}},
$$

for all $x_{[H,C]}$ and $y_{[H,C]}$ in *R*. And,

$$
\mu_{[H,C]}(x_{[H,C]}y_{[H,C]})
$$
\n
$$
= \max \{ \mu_{(F,A)}(x_{[F,A]}y_{[F,A]}),
$$
\n
$$
\mu_{[G,B]}(x_{[G,B]}y_{[G,B]}) \}
$$
\n
$$
\leq \max \{ \max \{ \mu_{(F,A)}(x_{(F,A)}), \mu_{(F,A)}(y_{(F,A)}) \},
$$
\n
$$
\max \{ \mu_{[G,B]}(x_{[G,B]}), \mu_{[G,B]}(y_{[G,B]}) \} \}
$$
\n
$$
= \max \{ \max \{ \mu_{(F,A)}(x_{(F,A)}), \mu_{[G,B]}(x_{[G,B]}) \},
$$
\n
$$
\max \{ \mu_{(F,A)}(y_{(F,A)}), \mu_{[G,B]}(y_{[G,B]}) \} \}
$$
\n
$$
= \max \{ \mu_{[H,C]}(x_{[H,C]}), \mu_{[H,C]}(y_{[H,C]}) \}.
$$

Therefore,

$$
(\mu_{[H,C]})(x_{[H,C]}y_{[H,C]})
$$

\n
$$
\leq \max{\{\mu_{[H,C]}(x_{[H,C]}), \mu_{[H,C]}(y_{[H,C]})\}},
$$

for all $x_{[H,C]}$ and $y_{[H,C]}$ in *R*. Therefore $[H,C]$ is an interval valued anti-fuzzy soft subhemiring of a hemiring *R*. Hence the union of any two interval valued anti-fuzzy softsubhemirings of a hemiring R is an interval valued anti-fuzzy soft subhemiring of *R*. \Box

Theorem 3.2. *The union of a family of interval valued antifuzzy soft subhemirings of hemiring R is an interval valued anti-fuzzy soft subhemiring of R*.

Proof. Let $\{[F, V_i] : i \in I\}$ be a family of interval valued antifuzzysoft subhemirings of a hemiring *R* and let $[F, A] = i \in IV_i$ Let *x* and *y* in *R*. Then,

$$
\mu_{(F,A)}(x_{(F,A)} + y_{(F,A)})
$$
\n
$$
= \sup_{i \in I} \mu_{[F,V_i]}(x_{(F,A)} + y_{(F,A)})
$$
\n
$$
\leq \sup_{i \in I} \max \{ \mu_{[F,V_i]}(x_{(F,A)}),
$$
\n
$$
\mu_{[F,V_i]}(y_{(F,A)}) \}
$$
\n
$$
= \max \{ \sup_{i \in I} \mu_{[F,V_i]}(x_{(F,A)}),
$$
\n
$$
\sup_{i \in I} \mu_{[F,V_i]}(y_{(F,A)}) \}
$$
\n
$$
= \max \{ \mu_{[F,V_i]}(x_{(F,A)}), \mu_{[F,V_i]}(y_{(F,A)}) \}.
$$

Therefore,

$$
\mu_{(F,A)}(x_{(F,A)} + y_{(F,A)})
$$

\n
$$
\leq \max\{\mu_{(F,A)}x_{(F,A)}\}, \mu_{(F,A)}(y_{(F,A)})\},
$$

for all
$$
x_{(F,A)}
$$
 and $y_{(F,A)}$ in R . And,

$$
\mu_{(F,A)}(x_{(F,A)}y_{(F,A)})
$$
\n
$$
= \mu_{[F,V_i]}(x_{(F,A)}y_{(F,A)})
$$
\n
$$
\leq \max\{\mu_{[F,V_i]}(x_{(F,A)}), \mu_{[F,V_i]}(y_{(F,A)})\}
$$
\n
$$
= \max\{\mu_{[F,V_i]}(x_{(F,A)}), \mu_{[F,V_i]}(y_{(F,A)}])\}
$$
\n
$$
= \max\{\mu_{(F,A)}(x_{(F,A)}), \mu_{(F,A)}(y_{(F,A)})\}.
$$

Therefore,

$$
\mu_{(F,A)}(x_{(F,A)}y_{(F,A)})\n\leq \max\{\mu_{(F,A)}(x_{(F,A)}),\mu_{(F,A)}(y_{(F,A)})\},
$$

for all $x_{(F,A)}$ and $y_{(F,A)}$ in *R*. That is, $[F,A]$ is an interval valued anti-fuzzy softsubhemiring of a hemiring *R*. Hence, the union of a family of interval valued anti-fuzzy soft subhemirings of *R* is an anti-fuzzy soft subhemiring of *R*.

 \Box

Theorem 3.3. *If* [*F*,*A*] *and* [*G*,*B*] *are any two interval valued anti-fuzzy soft subhemirings of the hemirings* R_1 *and* R_2 *respectively, then anti-product* $[F,A] \times [G,B]$ *is an interval valued anti-fuzzy soft subhemiring of* $R_1 \times R_2$.

Proof. Let $[F, A]$ and $[G, B]$ be two interval valued anti-fuzzy soft subhemirings of the hemirings R_1 and R_2 respectively. Let *x*_{[*F*,*A*]1 and *x*_{[*F*,*A*]2 be in *R*₁, *y*_{[*G*,*B*]1 and *y*_{[*G*,*B*]2 be in *R*₂. Then}}}} $(x_{[F,A]1}, y_{[G,B]1})$ and $(x_{[F,A]2}, y_{[G,B]2})$ are in $R_1 \times R_2$. Now,

$$
\mu_{[F,A] \times [G,B]}[(x_{[F,A]1}, y_{[G,B]1})\n+ (x_{[F,A]2}, y_{[G,B]2)}]\n= $\mu_{[F,A] \times [G,B]}(x_{[F,A]1} + x_{[F,A]2},$
\n $y_{[G,B]1} + y_{[G,B]2})$
\n= max{ $\mu_{[F,A]}(x_{[F,A]1} + x_{[F,A]2}),$
\n $\mu_{[G,B]}(y_{[G,B]1} + y_{[G,B]2})$ }
\n \leq max{ $\max{\mu_{[F,A]}(x_{[F,A]1}), \mu_{[F,A]}(x_{[F,A]2})}$,
\n $\max{\mu_{[G,B]}(y_{[G,B]1}), \mu_{[G,B]}(y_{[G,B]2})}$ }
\n= max{ $\max{\mu_{[F,A]}(x_{[F,A]1}), \mu_{[G,B]}(y_{[G,B]1})}$,
\n $\max{\mu_{[F,A]}(x_{[F,A]2}), \mu_{[G,B]}(y_{[G,B]2})}$
\n= max{ $\mu_{[F,A] \times [G,B]}(x_{[F,A]1}, y_{[G,B]1})$,
\n $\mu_{[F,A] \times [G,B]}(x_{[F,A]2}, y_{[G,B]2})$.
$$

Therefore,

 $\mu_{[F,A] \times [G,B]}[(x_{[F,A]1},y_{[G,B]1})]$ $+ (x_{[F,A]2}, y_{[G,B]2})]$ \leq max $\{\mu_{[F,A]\times [G,B]}\}(x_{[F,A]1}, y_{[G,B]1}),$ $\{\mu_{[F,A]\times [G,B]}\}(x_{[F,A]2},y_{[G,B]2})\}.$

Also,

$$
\mu_{[F,A] \times [G,B]}[(x_{[F,A]1},\ny_{[G,B]1})(x_{[F,A]2},y_{[G,B]2})]
$$
\n
$$
= \mu_{[F,A] \times [G,B]}(x_{[F,A]1 \times [F,A]2},\ny_{[G,B]1 \times [G,B]2})
$$
\n
$$
= \max{\mu_{[F,A]}(x_{[F,A]1 \times [F,A]2}),\n\mu_{(GxB)}(y_{[G,B]1y[G,B]2})}
$$
\n
$$
\leq \max{\max{\mu_{[F,A]}(x_{[F,A]1}),\n\mu_{[F,A]}(x_{[F,A]2})},\max{\mu_{(G \times B)}(y_{[G,B]1}),\n\mu_{(G \times B)}(y_{[G,B]2})}
$$
\n
$$
= \max{\max{\mu_{[F,A]}(x_{[F,A]1)},\mu_{(G \times B)}(y_{[G,B]1})},\n\max{\mu_{[F,A]}(x_{[F,A]2}),\mu_{(GxB)}(y_{[G,B]2})}}
$$
\n
$$
= \max{\mu_{[F,A] \times [G,B]}(x_{[F,A]1},y_{[G,B]1}),\n\mu_{[F,A] \times [G,B]}(x_{[F,A]2},y_{[G,B]2})}.
$$

Therefore,

$$
\mu_{[F,A]\times[G,B]}[(x_{[F,A]1},y_{[G,B]1})(x_{[F,A]2},y_{[G,B]2})]
$$

\n
$$
\leq \max \{ \mu_{[F,A]\times[G,B]}(x_{[F,A]1},y_{[G,B]1}),
$$

\n
$$
\mu_{[F,A]\times[G,B]}(x_{[F,A]2},y_{[G,B]2})\}.
$$

Hence $[F, A] \times [G, B]$ is an interval valued anti-fuzzy soft subhemiring of hemiring of $R_1 \times R_2$. \Box

Theorem 3.4. *Let* [*F*,*A*] *be a interval valued fuzzy interval valued soft subset of a hemiring R and* [*G*,*V*] *be the strongest interval valued anti-fuzzy interval valued soft relation of R*. *Then* [*F*,*A*] *is an interval valued anti-fuzzy soft subhemiring of R if and only if* [*G*,*V*] *is an interval valued anti-fuzzy interval valued soft subhemiring of* $R \times R$ *.*

Proof. Suppose that [*F*,*A*] is an interval valued anti-fuzzy subhemiring of a hemiring *R*. Then for any $x = (x_{[F,A]1}, x_{[F,A]2})$ and $y = (y_{[F,A]1}, y_{[F,A]2})$ are in $R \times R$. We have,

$$
\mu_{[G,V]}(x_{[G,V]} + y_{[G,V]})
$$
\n
$$
= \mu_{[G,V]}[(x_{[G,V]1}, x_{[G,V]2}) + (y_{[G,V]1}, y_{[G,V]2})]
$$
\n
$$
= \mu_{[G,V]}(x_{[G,V]1} + y_{[G,V]1}, x_{[G,V]2} + y_{[G,V]2})
$$
\n
$$
= \max\{\mu_{[F,A]}(x_{[F,A]1} + y_{[F,A]1}),
$$
\n
$$
\mu_{[F,A]}(x_{[F,A]2} + y_{[F,A]2})\}
$$
\n
$$
\leq \max\{\max\{\mu_{[F,A]}(x_{[F,A]1}), \mu_{[F,A]}(y_{[F,A]1})\},
$$
\n
$$
\max\{\mu_{[F,A]}(x_{[F,A]2}), \mu_{[F,A]}(y_{[F,A]2})\}\}
$$
\n
$$
= \max\{\max\{\mu_{[F,A]}(y_{[F,A]1}), \mu_{[F,A]}(x_{[F,A]2})\},
$$
\n
$$
\max\{\mu_{[F,A]}(y_{[F,A]1}), \mu_{[F,A]}(y_{[F,A]2})\}\}
$$
\n
$$
= \max\{\mu_{[G,V]}(x_{[G,V]1}, x_{[G,V]2}), \mu_{[G,V]}(y_{[G,V]1}, y_{[G,V]2})\}
$$
\n
$$
= \max\{\mu_{[G,V]}(x_{[G,V]}), \mu_{[[G,V]}(y_{[G,V]})).
$$

Therefore,

$$
\mu_{[G,V]}(x_{[G,V]} + y_{[G,V]})
$$

\n
$$
\leq \max \{ \mu_{[G,V]}(x_{[G,V]}),
$$

\n
$$
\mu_{[G,V]}(y_{[G,V]})\},
$$

for all $x_{[G,V]}$ and $y_{[G,V]}$ in $R \times R$. And,

$$
\mu_{[G,V]}(x_{[G,V]}y_{[G,V]})
$$
\n
$$
= \mu_{[G,V]}[(x_{[G,V]1},x_{[G,V]2})(y_{[G,V]1},y_{[G,V]2})]
$$
\n
$$
= \mu_{[G,V]}(x_{[G,V]1}y_{[G,V]1},x_{[G,V]2}y_{[G,V]2})
$$
\n
$$
= \max\{\mu_{[F,A]}(x_{[F,A]1}y_{[F,A]1}),\mu_{[F,A]}(x_{[F,A]2}y_{[F,A]2})\}
$$
\n
$$
\leq \max\{\max\{\mu_{[F,A]}(x_{[F,A]1}),\mu_{[F,A]}(y_{[F,A]1})\},\max\{\mu_{[F,A]}(x_{[F,A]2}),\mu_{[F,A]}(y_{[F,A]2})\}
$$
\n
$$
= \max\{\max\{\mu_{[F,A]}(x_{[F,A]1}),\mu_{[F,A]}(x_{[F,A]2})\},\max\{\mu_{[F,A]}(y_{[F,A]1}),\mu_{[F,A]}(y_{[F,A]2})\}\}
$$
\n
$$
= \max\{\mu_{[G,V]}(x_{[G,V]1},x_{[G,V]2}),\mu_{[G,V]}(y_{[G,V]1},y_{[G,V]2})\}
$$
\n
$$
= \max\{\mu_{[G,V]}(x_{[G,V]}),\mu_{[G,V]}(y_{[G,V]})\}.
$$

Therefore,

 $\mu_{[G,V]}(x_{[G,V]}y_{[G,V]})$ \leq max { $\mu_{[G,V]}(x_{[G,V]}), \mu_{[G,V]}(y_{[G,V]}),$

for all $x_{[G,V]}$ and $y_{[G,V]}$ in $R \times R$. This proves that $[G,V]$ is an interval valued anti-fuzzy soft subhemiring of $R \times R$. Conversely assume that $[G, V]$ is an interval valued anti-fuzzy soft subhemiring of $R \times R$, then for any $x = (x_{[G,V]1}, x_{[G,V]2})$ and $y = (y_{[G,V]1}, y_{[G,V]2})$ are in $R \times R$, we have

$$
\max \{ \mu_{[F,A]}(x_{[F,A]1} + y_{[F,A]1}), \mu_{[F,A]}(x_{[F,A]2} + y_{[F,A]2}) \}
$$
\n
$$
= \mu_{[G,V]}(x_{[G,V]1} + y_{[G,V]1}, x_{[G,V]2} + y_{[G,V]2})
$$
\n
$$
= \mu_{[G,V]}[(x_{[G,V]1}, x_{[G,V]2}) + (y_{[G,V]1}, y_{[G,V]2})]
$$
\n
$$
= \mu_{[G,V]}(x_{[G,V]} + y_{[G,V]})
$$
\n
$$
\leq \max \{ \mu_{[G,V]}(x_{[G,V]}), \mu_{[G,V]}(y_{[G,V]}) \}
$$
\n
$$
= \max \{ \mu_{[G,V]}(x_{[G,V]1}, x_{[G,V]2}), \mu_{[G,V]}(y_{[G,V]1}, y_{[G,V]2}) \}
$$
\n
$$
= \max \{ \max \{ \mu_{[F,A]}(x_{[F,A]1}), \mu_{[F,A]}(x_{[F,A]2}) \},
$$
\n
$$
\max \{ \mu_{[F,A]}(y_{[F,A]}(y_{[F,A]2}) \}.
$$

If

 $\mu_{[F,A]}(x_{[F,A]1} + y_{[F,A]1})$ $\geq \mu_{[F,A]}(x_{[F,A]2} + y_{[F,A]2}), \mu_{[F,A]}(x_{[F,A]1})$ $\geq \mu_{[F,A]}(x_{[F,A]2}), \mu_{[F,A]}(y_{[F,A]1})$ $\geq \mu_{[F,A]}(y_{[F,A]2}),$

we get,

 $\mu_{[F,A]}(x_{[F,A]1} + y_{[F,A]1})$ \leq max $\{\mu_{[F,A]}(x_{[F,A]1}), \mu_{[F,A]}(y_{[F,A]1})\},\$

for all $x_{[F,A]1}$ and $y_{[F,A]1}$ in *R*. And,

$$
\max\{\mu_{[F,A]}(x_{[F,A]1}y_{[F,A]1}),\mu_{[F,A]}(x_{[F,A]2}y_{[F,A]2})\}
$$

$$
= \mu_{[G,V]}(x_{[G,V]1}y_{[G,V]1},x_{[G,V]2}y_{[G,V]2})
$$

$$
= \mu_{[G,V]}[(x_{[G,V]1},x_{[G,V]2})(y_{[G,V]1},y_{[G,V]2})]
$$

$$
=\mu_{[G,V]}(x_{[G,V]}y_{[G,V]})
$$

$$
\leq \max\{\mu_{[G,V]}(x_{[G,V]}),\mu_{[G,V]}(y_{[G,V]})\}
$$

 $=$ max { $\mu_{[G,V]}(x_{[G,V]1}, x_{[G,V]2}), \mu_{[G,V]}(y_{[G,V]1}, y_{[G,V]2})$ }

$$
= \max\{\max\{\mu_{[F,A]}(x_{[F,A]1}),\mu_{[F,A]}(x_{[F,A]2})\},\
$$

 $\max\{\mu_{[F,A]}(y_{[F,A]1}), \mu_{[F,A]}(y_{[F,A]2})\}.$

If

$$
\mu_{[F,A]}(x_{[F,A]1}y_{[F,A]1})
$$
\n
$$
\geq \mu_{[F,A]}(x_{[F,A]2}y_{[F,A]2}), \mu_{[F,A]}(x_{[F,A]1})
$$
\n
$$
\geq \mu_{[F,A]}(x_{[F,A]2}), \mu_{[F,A]}(y_{[F,A]1})
$$
\n
$$
\geq \mu_{[F,A]}(y_{[F,A]2}),
$$

we get

$$
\mu_{[F,A]}(x_{[F,A]1}y_{[F,A]1})\n\leq \max\{\mu_{[F,A]}(x_{[F,A]1}), \mu_{[F,A]}(y_{[F,A]1})\},\
$$

for all $x_{[F,A]1}$ and $y_{[F,A]1}$ in *R*. Therefore $[F,A]$ is an interval valued anti-fuzzy soft subhemiring of *R*. \Box

Theorem 3.5. [*F*,*A*] *is an interval valued anti-fuzzy soft subhemiring of a hemiring* (*R*,+,·) *if and only if* $\mu_{[F,A]}(x_{[F,A]} + y_{[F,A]}) \le \max{\mu_{[F,A]}(x_{[F,A]}), \mu_{[F,A]}(y_{[F,A]})},$ $\mu_{[F,A]}(x_{[F,A]}y_{[F,A]}) \le \max\{\mu_{[F,A]}(x_{[F,A]}),\mu_{[F,A]}(y_{[F,A]})\},$ *for all* $x_{[F,A]}$ *and* $y_{[F,A]}$ *in R*.

Proof. It is trivial.

Theorem 3.6. *If* [*F*,*A*] *is an interval valued anti-fuzzy soft subhemiring of a hemiring* $(R, +, \cdot)$, *then* $H = \{x_{[F,A]}/x_{[F,A]} \in$ $R: \mu_{[F,A]}(x_{[F,A]}) = 0$ } *is either empty or is a subhemiring of R*.

Proof. If no element satisfies this condition, then *H* is empty. If $x_{[F,A]}$ and $y_{[F,A]}$ in *H*, then

$$
\mu_{[F,A]}(x_{[F,A]} + y_{[F,A]})
$$

\n
$$
\leq \max\{\mu_{[F,A]}(x_{[F,A]}), \mu_{[F,A]}(y_{[F,A]})\}
$$

\n
$$
= \max\{0,0\}
$$

\n
$$
= 0.
$$

Therefore,

 $\mu_{[F,A]}(x_{[F,A]} + y_{[F,A]}) = 0.$

And

$$
\mu_{[F,A]}(x_{[F,A]}\mathcal{Y}_{[F,A]})
$$
\n
$$
\leq \max\{\mu_{[F,A]}(x_{[F,A]}), \mu_{[F,A]}(\mathcal{Y}_{[F,A]})\}
$$
\n
$$
= \max\{0,0\}
$$
\n
$$
= 0.
$$

Therefore,

We get

$$
x_{[F,A]} + y_{[F,A]}, x_{[F,A]}y_{[F,A]}
$$

 $\mu_{[F,A]}(x_{[F,A]}y_{[F,A]}) = 0.$

in *H*. Therefore, *H* is a subhemiring of *R*. Hence *H* is either empty or is a subhemiring of *R*. П

Theorem 3.7. *Let* [*F*,*A*] *be an interval valued anti-fuzzy soft* subhemiring of a hemiring $(R, +, \cdot)$. If $\mu_{[F,A]}(x_{[F,A]} + y_{[F,A]}) =$ 1, *then either* $\mu_{[F,A]}(x_{[F,A]}) = 1$ *or* $\mu_{[F,A]}(y_{[F,A]}) = 1$, *for all* $x_{[F,A]}$ *and* $y_{[F,A]}$ *in R*.

Proof. Let $x_{[F,A]}$ and $y_{[F,A]}$ in *R*. By the definition

$$
\mu_{[F,A]}(x_{[F,A]} + y_{[F,A]})
$$

\n
$$
\leq \max{\{\mu_{[F,A]}(x_{[F,A]}), \mu_{[F,A]}(y_{[F,A]})\}},
$$

which implies that

$$
1 \leq \max\{\mu_{[F,A]}(x_{[F,A]}), \mu_{[F,A]}(y_{[F,A]})\}.
$$

Therefore, either

or

 \Box

$$
\mu_{[F,A]}(y_{[F,A]})=1.
$$

 $\mu_{[F,A]}(x_{[F,A]}) = 1$

 \Box

References

- [1] M. Akram and K.H.Dar On fuzzy d-algebras, *Punjab University Journal of Mathematics,* 37, 61– 76(2005).
- [2] Azriel Rosenfeld, Fuzzy Groups, *Journal of Mathematical Analysis and Applications,* 35, 512–517 (1971).
- [3] K. Atanassov, Operators over interval valued intuitionistic fuzzy sets, *Fuzzy Sets and Systems,* 64 (1994) 159–174.
- [4] R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, *Fuzzy Sets and Systems,* 35(1990), 121–124.
- [5] M. Borah, T. J. Neog and D. K. Sut, A study on some operations of fuzzy soft sets, *International Journal of Modern Engineering Research (IJMER),* 2(2)(2012), 219–225.
- [6] D. Chen, E. C. C. Tsang, D. S. Yeung and X. Wang, The parameterization reduction of soft sets and its applications, *Comput. Math. Appl.* 49 (2005) 757— 763.
- [7] F. Feng, C. Li, B. Davvaz and M. I. Ali, Soft sets combined with fuzzy sets and Rough sets, *tentative Approach, Soft Computing,* 14(2010), 899–911.
- [8] Kumud Borgohain and Chittaranjan Gohain, Some New operations on Fuzzy Soft Sets, *International Journal of Modern Engineering Research (IJMER),* 4(4)(2014),65-68.

- [9] P. K. Maji, R. Biswas and A.R. Roy, Fuzzy soft sets, *The J. Fuzzy Math.,* 9(2001), 589–602.
- [10] P. K. Maji, A. R. Roy and R. Biswas, An application of soft sets in decision making problem, *Comput. Math. Appl.,* 44 (8–9) (2002).
- [11] P. K. Maji, R. Biswas and A. R. Roy Soft set theory, *Comput. Math. Appl.,* 45 (2003) 555—562.
- [12] D. Molodtsov, Soft set theory results, *Comput. Math. Appl.,* 37 (4–5) (1999), 19–31.
- [13] T. J. Neog and D. K. Sut, On Union and Intersection of Fuzzy Soft Sets, *Int.J. Comp. Tec. Appl.,* 2 (5) 1160–1176.
- [14] Osman kazanci, sultan yamark and serife yilmaz On intuitionistic fuzzy - Subgroups of near rings,*International Mathematical Forum,* 2(59)(2001), 2899–2910.
- [15] A. Sezgin and A. O. Atagun, on operations of soft sets, *Comput. Math. Appl.,* 61 (2011), 1467–1475.
- [16] A. Solairaju and R.Nagarajan, Charactarization of interval valued Anti fuzzy Left h-ideals over Hemirings, *Advances in Fuzzy Mathematics,* 4(2), 129– 136(2006).
- [17] A. Solairaju and R.Nagarajan, fuzzy left *R*subgroups of near rings w.r.t *T*-norms, *Antarctica Journal of Mathematics,* 5(2008)1–2.
- [18] A. Solairaju and R.Nagarajan, A new structure and construction of fuzzy groups, *Advances in Fuzzy Mathematics,* 4(1)(2009), 23–29.
- [19] L. A. Zadeh, Fuzzy Sets, *Information and Control,* 8 (1965) 338–353.

 $* * * * * * * * * * *$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $* * * * * * * * * * *$

