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A geometric modeling of 2-dimensional parabolic
problem with periodic boundary condition
F. Kanca1*, I. Baglan2 and G. Öztürk2

Abstract
In this work, we tried to find the solution of a linear 2-dimensional parabolic equation with periodic boundary
conditions. It showed the existence, uniqueness of solution by theoretical. Also we consider numerical solution
for this problem by using finite differences method. Finally, we give a geometric modeling of the solution which
corresponds to a surface.
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1. Introduction
Geometric modeling is a speedily widening area of study with
significant practices in graphics, manufacturing and designing
with computer. Geometric modeling is the guide of projecting
geometric models, which are geometric assets such as curves,
surfaces. In geometric modeling one can see two methods
used , that are parametric modeling and implicit modeling.
In implicit modeling, the surface is given with level sets, i.e.,
with the form H(x1,x2,x3) = 0. In parametric one, it is simple
to produce points on surfaces and curves, and this makes it a
very useful way in computer aided design. Total arguments
of geometric modeling can be analyzed from [1]. In [5],
parametric equation of a surface in R3 is constructed with

X(s,θ) = (x1(s,θ),x2(s,θ),x3(s,θ)) , (s,θ)∈ [s1,s2] × [θ1,θ2]

where the coordinates x1, x2, x3 are differentiable maps with
the parameters s and θ . In R2, a curve can be defined with the
parameter s by decreasing the third coordinate.

Boundary conditions loaded around the sides of the sur-
face control the shape of it. Then we ask how we can take
the boundary conditions to generate a surface. The answer is
to choose boundary conditions for riching a hoped form. In
partial differential equation method, boundary conditions are
generally united with the boundary curves in 3-dimensional
space.

Many scientists are interested in two dimensional parabolic
equation [2, 4, 8–10, 12]. These problems with non-local
boundary conditions are becoming more difficult, especially,
periodic boundary conditions [2, 7, 9].

Numerical solutions of such problems have been stud-
ied extensively for non-local boundary value problems in
1-dimension . For solving such problems, the following meth-
ods have been tried, finite difference method, finite element
method etc. Among which the most commonly used is the
explicit and implicit schemes of the finite difference method
[2, 3].

Aim of this study is to find solution of parabolic partial
differential 2-dimensional equation with non-local boundary
conditions using Fourier series and finite difference method.

In recent work, we cope with the problem:

∂v
∂ t

=
∂ 2v
∂ s2 +

∂ 2v
∂θ 2 +g(s,θ , t) , (1.1)

(s,θ , t) ∈ Ω := {0 < s < π, 0 < θ < π, 0 < t < T}
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v(0,θ , t) = v(π,θ , t) , t ∈ [0,T ]
v(s,0, t) = v(s,π, t) , t ∈ [0,T ] (1.2)

vs(s,0, t) = vs(s,π, t) , t ∈ [0,T ]
vθ (s,0, t) = vθ (s,π, t) , t ∈ [0,T ] (1.3)

v(s,θ , t) = ϑ(s,θ) ,s ∈ [0,π] (1.4)

for a parabolic 2-dimensional equation with the periodic
boundary conditions. The function ϑ(s,θ) and g(s,θ , t) are
given functions on [0,π] and Ω respectively. We denote the so-
lution of problem (1.1)-(1.4) by v(s,θ , t). The first condition
means initial condition, the other condition means periodic
Dirichlet and Neumann condition [7]. We prove the exis-
tence, uniqueness and build an numerical iteration algorithm
for the solution. We use Fourier method for the considered
problem (1.1)-(1.4) and give the stability of method for the
solution. Also, we investigate an example for the solution of
problem (1.1)-(1.4). Finally, we give a geometric modeling
of the solution of problem (1.1)-(1.4) with initial conditions
which corresponds to a surface known as a translation surface
(particular egg box surface).

2. Existence and uniqueness of the
solution

Now, we stand the solution of (1.1)-(1.4) by

v(s,θ , t) =
v0(t)

4
+

∞

∑
m,n=1

(vcmn cosms cosnθ + vcsmn cosms sinnθ (2.1)

+vscmn sinmscosnθ + vsmn sinmssinnθ)

where ϑ(s,θ) in (1.1) has to be the type

ϑ(s,θ) =
ϑ0

4
+

∞

∑
m,n=1

(ϑcmn cosmscosnθ +ϑcsmn cosmssinnθ (2.2)

+ϑscmn sinmscosnθ +ϑsmn sinmssinnθ) .

Then we carry out the Fourier series, we get Fourier coef-
ficients:

v0(t) = ϑ0(0,0)+
4

π2

t∫
0

gcmn(τ)dτ

vcmn(t) = ϑcmn(0,0)+
4

π2

t∫
0

e−
[
(2m)2+(2n)2

]
(t−τ)gcmn(τ)dτ

vcsmn(t) = ϑcsmn(0,0)+
4

π2

t∫
0

e−
[
(2m)2+(2n)2

]
(t−τ)gcsmn(τ)dτ (2.3)

vscmn(t) = ϑscmn(0,0)+
4

π2

t∫
0

e−
[
(2m)2+(2n)2

]
(t−τ)gscmn(τ)dτ

vsmn(t) = ϑsmn(0,0)+
4

π2

t∫
0

e−
[
(2m)2+(2n)2

]
(t−τ)gsmn(τ)dτ

where

ϑ0(0,0) = v0(0,0), ϑcmn(0,0) = vcmn(0,0)e−[(2m)2+(2n)2]t ,

ϑcsmn(0,0) = vcsmn(0,0)e−[(2m)2+(2n)2]t , (2.4)

ϑscmn(0,0) = vscmn(0,0)e−[(2m)2+(2n)2]t ,

ϑsmn(0,0) = vsmn(0,0)e−[(2m)2+(2n)2]t ,

gcmn(t) =
4

π2

π∫
0

π∫
0

g(ξ ,η ,τ)cosmξ cosnη dξ dη

gcsmn(t) =
4

π2

π∫
0

π∫
0

g(ξ ,η ,τ)cosmξ sinnη dξ dη

gscmn(t) =
4

π2

π∫
0

π∫
0

g(ξ ,η ,τ)sinmξ cosnη dξ dη (2.5)

gsmn(t) =
4

π2

π∫
0

π∫
0

g(ξ ,η ,τ)sinmξ sinnη dξ dη .

Let find the solution of system (1.1) by

v(s,θ , t) =
1
4

ϑ0(0,0)+
4

π2

t∫
0

π∫
0

π∫
0

g(ξ ,η ,τ)dξ dηdτ


+

∞

∑
m,n=1

ϑcmn(0,0)cosmscosnθ

+
∞

∑
m,n=1

 4

π2

t∫
0

π∫
0

π∫
0

e
−
[
(2m)2+(2n)2

]
(t−τ)

g(ξ ,η ,τ)cosmξ cosnη dξ dηdτ

cosmscosnθ

+
∞

∑
m,n=1

ϑcsmn(0,0)cosmssinnθ

+
∞

∑
m,n=1

 4

π2

t∫
0

π∫
0

π∫
0

e
−
[
(2m)2+(2n)2

]
(t−τ)

g(ξ ,η ,τ)cosmξ sinnη dξ dηdτ

cosmssinnθ

+
∞

∑
m,n=1

ϑscmn(0,0)sinmscosnθ

+
∞

∑
m,n=1

 4

π2

t∫
0

π∫
0

π∫
0

e
−
[
(2m)2+(2n)2

]
(t−τ)

g(ξ ,η ,τ)sinmξ cosnη dξ dηdτ

sinmscosnθ

+
∞

∑
m,n=1

ϑsmn(0,0)sinmssinnθ

+
∞

∑
m,n=1

 4

π2

t∫
0

π∫
0

π∫
0

e
−
[
(2m)2+(2n)2

]
(t−τ)

g(ξ ,η ,τ)sinmξ sinnη dξ dηdτ

sinmssinnθ .

Theorem 2.1. Let g(s,θ , t) , ϑ(s,θ) be continuous functions
according to all parameters then the solution of system (1.1)
has unique solutions.

Here ϑ(s,θ)εC ([0,π]× [0,π])) and g(s,θ , t)εC
(
Ω
)
. The

equation (2.10) and
∞

∑
k=1

∂

∂ s ,
∞

∑
k=1

∂

∂θ
are convergent uniformly

in ∂Ω then their majorizing sums are absolutely convergent.
Therefore their sums v(s,θ) ,vs(s, t) and vθ (s, t) are continu-

ous in Ω. In addition,
∞

∑
k=1

∂

∂ t and
∞

∑
k=1

∂ 2

∂ s2 ,
∞

∑
k=1

∂ 2

∂θ 2 are uniformly

convergent . Finally, vt(s, t) is continuous in Ω because the

majorizing sum of
∞

∑
k=1

∂

∂ t is absolutely convergent.

So v(s,θ , t) has unique solution.

Definition 2.2. v(s,θ , t)∈C2,2,1 (Ω)∩C1,1,0
(
Ω
)

is called the
classical solution of two dimensional parabolic equation.
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3. Finite Differences Method for
Discretizing

In this section, we use implicit finite-difference method for
discreazing problem (1.1)-(1.3):

1
τ

(
vk+1

i, j − vk
i, j

)
=

1
h2

(
vk+1

i−1, j−2vk+1
i, j + vk+1

i+1, j

)
+

1
h2

(
vk+1

i, j−1−2vk+1
i, j + vk+1

i, j+1

)
+gk

i, j , (3.1)

v0
i, j = φi, (3.2)

vk
0, j = vk

M+1, j, vk
M+1, j =

vk
1, j− vk

M, j

2
(3.3)

vk
i,0 = vk

i,M+1,v
k
i,M+1 =

vk
i,1− vk

i,M

2
where, we discretize the computing domain [0,π]× [0,π]×
[0,T ] by si = ih, i = 0,1, ...,M, θ j = jh, j = 0,1, ...,M and
tk = kτ, k = 0,1, ...,N, where h = π/M and τ = T/N are
the space and time steps, respectively and M, N are positive
integers, vk

i, j = v(si,θ j, tk),gk
i, j = g(si,θ j, tk).

4. Visualization
In R3, a surface can be defined with Monge patch. That is, at
a point (s,θ), a surface is given by a differentialable function
x3(s,θ).

The translation surface is one of the surprising surface in
R3 with the following definition as a Monge patch constructed
by x3(s,θ) = f1(s)+ f2(θ), where f1 and f2 are differential
functions:

Definition 4.1. A surface in R3 given with the parametriza-
tion

X : U ⊂ R2→ R3 : (s,θ) 7→ (s,θ , f1(s)+ f2(θ)),

is called a translation surface, where x3(s,θ) = f1(s)+ f2(θ),
f1 and f2 are differentialable functions.

It can be seen that translation surface is constructed by
two curves. For this reason, researchers use the translation
surface to design in architecture, see [6]. A translation surface
which is minimal, but not flat was found by H. Scherk in 1835
and it is known as Scherk’s surface [11].

Now, in order to illustrate the behavior of our numerical
method, we consider the following examples:

Example 4.2. Let

ϑ(s,θ) = sin2s+ cos2θ

g(s,θ , t) =
9
2
(sin2s+ cos2θ)exp(t)

be the functions which satisfies the initial condition. Then we
have the analytical solution

v(s,θ , t) = (sin2s+ cos2θ)exp(t).

The step sizes are h = 0.0393, τ = 0.005.

Let us take T = 1.
The comparisons between the analytical solution and the

approximate solution are shown in Figures 1,2.
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Figure 1: The analytical and approximate solutions of v( π

2 ,θ ,1).
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Figure 2: The analytical and approximate solutions of v(s, π

2 ,1).

In Figure 3, we give the graph of the solution of problem
(1.1)-(1.4) which corresponds to the translation surface. This
surface is known as egg box surface.
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Figure 3: Translation surface corresponds the solution of v(s,θ ,1) (egg box
surface).

Example 4.3. Let

ϑ(s,θ) = exp(sin2s)+ exp(cos2θ)

g(s,θ , t) = exp(t + sin2s)(1−4(cos2 2s− sin2s))

+exp(t + cos2θ)(1−4(sin2 2θ − cos2θ))

be the functions which satisfies the initial condition. Then we
have the analytical solution

v(s,θ , t) = (exp(sin2s)+ exp(cos2θ))exp(t).

The step sizes are h = 0.0393, τ = 0.005.

Let us take T = 1.

The comparisons between the exact solution and the nu-
merical finite difference solution are shown in Figures 4,5.
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Figure 4: The analytical and approximate solutions of v( π

2 ,θ ,1).
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Figure 5: The analytical and approximate solutions of v(s, π

2 ,1).

Finally, in Figure 6, we give the graph of the solution
of problem (1.1)-(1.4) which corresponds to the translation
surface.
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Figure 6: Translation surface corresponds the solution of v(s,θ ,1).
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