

https://doi.org/10.26637/MJM0602/0015

Solvability of some fractional-order three point boundary value problems

A. M. A. El-Sayed^{1*} and Abd El-Salam Sh. A.²

Abstract

In this work, we prove the existence of at least one solution of the two fractional-order three point boundary value problems:

$$
\begin{cases}\nD^{\beta} u(t) + \lambda a(t) f(u(t)) = 0, \beta \in (1,2], t \in (0,1), \\
u(0) = 0, \alpha u(\eta) = u(1), 0 < \eta < 1, 0 \leq \alpha \eta < 1.\n\end{cases}
$$

and

.

$$
\begin{cases}\nD^{\beta} u(t) + \lambda a(t) f(u(t)) = 0, \beta \in (1,2], t \in (0,1), \\
u'(0) = 0, \alpha u'(\eta) = u(1), 0 < \eta < 1, 0 \leq \alpha \eta < 1.\n\end{cases}
$$

Keywords

Fractional calculus; Three point boundary value problems.

AMS Subject Classification

26A33, 30E25, 34A12, 34A34, 34A37, 37C25, 45J05.

¹*Faculty of Science, Alexandria University, Alexandria, Egypt.*

²*Faculty of Science, Damanhour University, Egypt.*

***Corresponding author**: ¹ amasayed@alexu.edu.eg; ²shrnahmed@sci.dmu.edu.eg **Article History**: Received 06 September 2017; Accepted 11 January 2018 **COMBINEY 12018** C2018 MJM.

Contents

1 [Introduction](#page-0-0) . 390 2 [Existence of solution.](#page-1-0) .391 [References](#page-5-0) . 395

1. Introduction

Let $L_1[a, b]$ denotes the space of all Lebesgue integrable functions on the interval $[a, b]$, $0 \le a \le b \le \infty$.

Definition 1.1 The fractional (arbitrary) order integral of the function $f \in L_1[a, b]$ of order $\beta \in R^+$ is defined by (see [\[7\]](#page-5-1), [\[9\]](#page-5-2) - [\[10\]](#page-5-3) and [\[12\]](#page-5-4))

$$
I^{\beta} f(t) = \int_0^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f(s) ds,
$$

where $\Gamma(.)$ is the gamma function.

Definition 1.2 The Riemann-Liouville fractional-order derivative of $f(t)$ of order $\alpha \in (0,1)$ is defined as (see [\[7\]](#page-5-1), [\[9\]](#page-5-2) - [\[10\]](#page-5-3) and [\[12\]](#page-5-4))

$$
*D^{\alpha} f(t) = \frac{d}{dt} I^{1-\alpha} f(t), \quad t \in [a,b].
$$

Definition 1.3 The (Caputo) fractional-order derivative *D* α of order $\alpha \in (0,1]$ of the function $g(t)$ is defined as (see [\[9\]](#page-5-2) -[\[10\]](#page-5-3) and [\[12\]](#page-5-4))

$$
D^{\alpha} g(t) = I^{1-\alpha} \frac{d}{dt} g(t), \quad t \in [a,b].
$$

We consider here the fractional-order three point boundary value problems:

$$
\begin{cases}\nD^{\beta} u(t) + \lambda a(t) f(u(t)) = 0, \beta \in (1,2], t \in (0,1), \\
u(0) = 0, \alpha u(\eta) = u(1), 0 < \eta < 1, 0 \leq \alpha \eta < 1. \\
(1.1)\n\end{cases}
$$

and

$$
\begin{cases}\nD^{\beta} u(t) + \lambda a(t) f(u(t)) = 0, \beta \in (1,2], t \in (0,1), \\
u'(0) = 0, \alpha u'(\eta) = u(1), 0 < \eta < 1, 0 \leq \alpha \eta < 1.\n\end{cases}
$$

(1.2)

where the function $f \in C([0,1], \mathfrak{R})$ and there exists a constant *K*₁ such that $\left| \frac{\partial f}{\partial u} \right|$ $\frac{\partial f}{\partial u}$ | $\leq K_1$.

The three point boundary value problem was studied by many authors, for example; in [\[8\]](#page-5-6) the existence of at least one positive solution of the three point boundary value problem:

$$
\begin{cases}\n u'' + a(t) f(u) = 0, t \in (0,1), \\
 u(0) = 0, \alpha \, u(\eta) = u(1), 0 < \eta < 1, \alpha \, \eta < 1\n\end{cases}
$$

has been studied if *f* is either superlinear or sublinear by applying the fixed point theorems in cones, In [\[11\]](#page-5-7), they concerned with determining values for λ so that the three point nonlinear second order boundary value problem:

$$
\begin{cases}\n u''(t) + \lambda a(t) f(u(t)) = 0, t \in (0,1), \\
 u(0) = 0, \alpha u(\eta) = u(1), 0 < \eta < 1, 0 < \alpha < \frac{1}{\eta}\n\end{cases}
$$

has positive solutions.

And in [\[13\]](#page-5-8) they proved the existence of nontrivial solutions for the second order three point boundary value problem:

$$
\begin{cases}\n u'' + f(t, u) = 0, \ 0 < t < 1, \\
 u'(0) = 0, \ u(1) = \alpha \ u'(\eta),\n\end{cases}
$$

where $\eta \in (0,1), \alpha \in \mathfrak{R}, f \in C([0,1] \times \mathfrak{R}, \mathfrak{R}).$

Also, The nonlocal nonlinear three point boundary value problem of fractional orders was studied by many authors, for example; in [\[3\]](#page-5-9) they studied the nonlocal nonlinear boundary value problem of a fractional-order functional differential equation

$$
\begin{cases}\n \ _{*}D^{\beta} \ u(t) + f(t, u(\phi(t))) = 0, \ t \in (0,1), \\
\ l^{\gamma} u(t)|_{t=0} = 0, \alpha u(\eta) = u(1), 0 < \eta < 1, 0 < \alpha \eta^{\beta - 1} < 1.\n\end{cases}
$$

Where $\beta \in (1,2)$ and $\gamma \in (0,1]$, they proved the existence of L_1 -solution such that the function f satisfies the Caratheodory conditions and the growth condition.

And, in [\[4\]](#page-5-10) they studied the nonlocal nonlinear boundary value problem of fractional-order differential equation:

$$
\begin{cases}\n \ _{\ast}D^{\beta} \ u(t) + f(t, u(t)) = 0, \ \beta \in (1, 2), \ t \in (0, 1), \\
I^{\gamma}u(t)|_{t=0} = 0, \alpha u(\eta) = u(1), 0 < \eta < 1, 0 \leq \alpha \eta^{\beta - 1} < 1.\n\end{cases}
$$

they proved the existence of continuous solution such that the function *f* satisfies Caratheodory conditions and growth condition. Also the existence of maximal and minimal solutions with $\alpha = 0$ was studied. Also, the nonlocal conditions was studied in [\[1\]](#page-5-11) and [\[5\]](#page-5-12) - [\[6\]](#page-5-13).

Now, let us recall Schauder fixed point Theorem which will be needed in the sequel.

Theorem 1.1. *(Schauder fixed point Theorem) [\[2\]](#page-5-14)*

Let U be a convex subset of a Banach space X, and $T: U \rightarrow U$ *is compact, continuous map. Then T has at least one fixed point in U.*

2. Existence of solution

Here the space $C[0,1]$ denotes the space of all continuous functions on the interval [0, 1] with the supremum norm $||u|| =$ $\sup_{t \in [0,1]} |u(t)|$.

To facilitate our discussion, let us first state the following assumptions:

(i)
$$
\left|\frac{\partial f}{\partial u}\right| \leq K_1
$$
,

(ii)
$$
f \in C([0,1], \mathfrak{R}),
$$

(iii) $a(t)$ is a function which is absolutely continuous.

Definition 2.1. *By a solution of the fractional-order three point boundary value problem [\(1.1\)](#page-0-1) or [\(1.2\)](#page-0-2) we mean a function* $u \in C^1[0,1]$ *with* $u'' \in L_1[0,1]$ *.*

Firstly consider problem [\(1.1\)](#page-0-1):

Theorem 2.2. *If the above assumptions (i) - (iii) are satisfied, then the three point boundary value problem [\(1.1\)](#page-0-1) has a solution.*

Proof: Firstly: we will prove the equivalence of this problem (problem [\(1.1\)](#page-0-1)):

$$
D^{\beta} u(t) + \lambda a(t) f(u(t)) = 0, \beta \in (1,2], t \in (0,1), (2.1)
$$

$$
u(0) = 0, \, \alpha \, u(\eta) = u(1), \, 0 < \eta < 1, \, 0 \leq \alpha \, \eta < 1 \, (2.2)
$$

with the integral equation:

$$
u(t) = -I^{\beta} \lambda a(t) f(u(t))
$$

+
$$
\frac{t}{1-\alpha} \frac{1}{\eta} \int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

-
$$
\frac{\alpha t}{1-\alpha} \frac{1}{\eta} \int_0^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds.
$$
(2.3)

Indeed; operating by $I^{\beta-1}$ on both sides of equation [\(2.1\)](#page-1-1), we get

$$
I u'' = -I^{\beta-1} \lambda a(t) f(u(t)),
$$

then

$$
u'(t) - C_1 = -I^{\beta - 1} \lambda a(t) f(u(t)).
$$

By integration, we get

$$
u(t) = -I^{\beta} \lambda a(t) f(u(t)) + C_1 t + C_2.
$$

By [\(2.2\)](#page-1-2), we get $C_2 = 0$ and

$$
C_1 = \frac{1}{1-\alpha \eta} \bigg(\int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds - \alpha \int_0^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \bigg).
$$

Therefore, the solution of problem (2.1) - (2.2) is given by the formula [\(2.3\)](#page-1-3).

Now define the operator $T : C \to C$ by

$$
T u(t) = -I^{\beta} \lambda a(t) f(u(t))
$$

+
$$
\frac{t}{1-\alpha \eta} \int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

-
$$
\frac{\alpha t}{1-\alpha \eta} \int_0^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds,
$$

and define a convex set $U \subset C[0,1]$ by $U = \{u \in C[0,1]:$ $||u|| \le \frac{3 K |\lambda| ||a||}{(1-\alpha \eta) \Gamma(1+\beta)}$, where $K = \sup_t |f(u(t))|$. The operator T is a continuous operator, indeed:

$$
|Tu(t_2) - Tu(t_1)| = \left| - \int_0^{t_2} \frac{(t_2 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds + \frac{t_2}{1 - \alpha \eta} \int_0^1 \frac{(1 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right|
$$

$$
- \frac{\alpha t_2}{1-\alpha \eta} \int_0^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

+
$$
\int_0^{t_1} \frac{(t_1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

$$
- \frac{t_1}{1-\alpha \eta} \int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

+
$$
\frac{\alpha t_1}{1-\alpha \eta} \int_0^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

$$
\leq \left| \int_0^{t_2} \frac{(t_2 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right|
$$

-
$$
\int_0^{t_1} \frac{(t_1 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right|
$$

+
$$
\left| \frac{t_2}{1 - \alpha \eta} \int_0^1 \frac{(1 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right|
$$

- $\frac{t_1}{1 - \alpha \eta} \int_0^1 \frac{(1 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds$

+
$$
\left| \frac{\alpha t_2}{1 - \alpha \eta} \int_0^{\eta} \frac{(\eta - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right|
$$

\n- $\frac{\alpha t_1}{1 - \alpha \eta} \int_0^{\eta} \frac{(\eta - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right|$
\n $\leq \left| \int_0^{t_1} \left(\frac{(t_2 - s)^{\beta - 1}}{\Gamma(\beta)} - \frac{(t_1 - s)^{\beta - 1}}{\Gamma(\beta)} \right) \lambda a(s) f(u(s)) ds \right|$
\n+ $\int_{t_1}^{t_2} \frac{(t_2 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right|$
\n+ $\frac{K |\lambda| ||a||}{1 - \alpha \eta} \int_0^1 \frac{(1 - s)^{\beta - 1}}{\Gamma(\beta)} ds |t_2 - t_1|$
\n+ $\frac{\alpha K |\lambda| ||a||}{1 - \alpha \eta} \int_0^{\eta} \frac{(\eta - s)^{\beta - 1}}{\Gamma(\beta)} ds |t_2 - t_1|$
\n $\leq \frac{K |\lambda| ||a||}{\Gamma(\beta)} \left(\int_0^{t_1} |(t_2 - s)^{\beta - 1} - (t_1 - s)^{\beta - 1}| ds \right)$
\n+ $\int_{t_1}^{t_2} (t_2 - s)^{\beta - 1} ds \right)$
\n+ $\frac{K |\lambda| ||a||}{(1 - \alpha \eta) \Gamma(1 + \beta)} |t_2 - t_1| + \frac{\alpha K |\lambda| ||a||}{(1 - \alpha \eta) \Gamma(1 + \beta)} |t_2 - t_1|$
\n $\leq \frac{K |\lambda| ||a||}{\Gamma(1 + \beta)} (2(t_2 - t_1)^{\beta} + |t_2^{\beta} - t_1^{\beta}|)$
\n+ $\frac{K |\lambda| ||a||}{(1 - \alpha \eta) \Gamma(1 + \beta)} |t_2 - t_1| + \frac{\alpha K |\lambda| ||a||}{(1 - \alpha \eta) \Gamma(1 + \beta)} |t_2 - t_1|.$

The above inequality shows that

$$
|Tu(t_2) - Tu(t_1)| \to 0 \text{ as } t_2 \to t_1,
$$
 (2.4)

then *Tu* is uniformly continuous in [0, 1], and hence $T: U \to U$ is well defined.

Also;

$$
|Tu(t)| \leq \int_0^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} |\lambda| |a(s)| |f(u(s)| ds
$$

+
$$
\frac{t}{1-\alpha \eta} \int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} |\lambda| |a(s)| |f(u(s))| ds
$$

+
$$
\frac{\alpha t}{1-\alpha \eta} \int_0^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} |\lambda| |a(s)| |f(u(s))| ds,
$$

||Tu||
$$
\leq \frac{3 K |\lambda| ||a||}{(1-\alpha \eta) \Gamma(1+\beta)}.
$$
 (2.5)

Therefore from Arzela-Ascoli Theorem it is easy to show that $T: U \rightarrow U$ is compact, immediately we obtain from inequality (2.5) that $T(U)$ is uniformly bounded, while the equicontinuity of $T(U)$ follows from inequality [\(2.4\)](#page-2-1).

Now, from Schauder fixed point Theorem [\(1.1\)](#page-1-4), we obtain that the operator *T* has a fixed point in $C[0,1]$.

Now, differentiate [\(2.3\)](#page-1-3), we obtain

$$
u'(t) = -I^{\beta-1} \lambda a(t) f(u(t))
$$

+
$$
\frac{1}{1-\alpha \eta} \int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

-
$$
\frac{\alpha}{1-\alpha \eta} \int_0^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds,
$$

$$
|u'(t)| \leq \int_0^t \frac{(t-s)^{\beta-2}}{\Gamma(\beta-1)} |\lambda| |a(s)| |f(u(s)| ds
$$

+
$$
\frac{1}{1-\alpha \eta} \int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} |\lambda| |a(s)| |f(u(s))| ds
$$

+
$$
\frac{\alpha}{1-\alpha \eta} \int_0^{\eta} \frac{(\eta-s)^{\beta-1}}{\Gamma(\beta)} |\lambda| |a(s)| |f(u(s))| ds,
$$

$$
||u'|| \leq \left(\frac{1}{\Gamma(\beta)} + \frac{1+\alpha}{(1-\alpha \eta)\Gamma(\beta+1)}\right) K |\lambda| ||a||.
$$

Therefore we obtain that $u' \in C[0,1]$.

$$
u''(t) = -\frac{d}{dt} I^{\beta - 1} \lambda a(t) f(u(t))
$$

\n
$$
= -(\lambda a(t) f(u(t)))|_{t=0} \frac{t^{\beta - 2}}{\Gamma(\beta - 1)}
$$

\n
$$
= I^{\beta - 1} \frac{d}{dt} (\lambda a(t) f(u(t)))
$$

\n
$$
= -K_2 \frac{t^{\beta - 2}}{\Gamma(\beta - 1)} - \lambda I^{\beta - 1} \left(a'(t) f(u(t)) \right)
$$

\n
$$
+ \frac{\partial f}{\partial u} u'(t) a(t) ,
$$

$$
\int_0^1 |u''(t)| dt \leq \frac{K_2}{\Gamma(\beta)} t^{\beta-1} \Big|_0^1
$$

+ $|\lambda| \int_0^1 \int_0^t \frac{(t-s)^{\beta-2}}{\Gamma(\beta-1)} \Big| d'(s) f(u(s))$
+ $\frac{\partial f}{\partial u} u'(s) a(s) \Big| ds dt$
= $\frac{K_2}{\Gamma(\beta)} + |\lambda| \int_0^1 \Big| a'(s) f(u(s))$
+ $\frac{\partial f}{\partial u} u'(s) a(s) \Big| \int_s^1 \frac{(t-s)^{\beta-2}}{\Gamma(\beta-1)} dt ds$
 $\leq \frac{K_2}{\Gamma(\beta)} + \frac{|\lambda|}{\Gamma(\beta)} \int_0^1 \Big| a'(s) f(u(s))$
+ $\frac{\partial f}{\partial u} u'(s) a(s) \Big| ds$,
 $||u''||_{L_1} \leq \frac{K_2}{\Gamma(\beta)} + \frac{|\lambda|}{\Gamma(\beta)} (K ||a'||_{L_1} + K_1 ||u'||_{L_1} ||a||).$

Therefore we obtain that $u'' \in L_1[0,1]$.

To complete the equivalence of equation [\(2.3\)](#page-1-3) with the fractionalorder three point boundary value problem (2.1) - (2.2) , let $u(t)$

be a solution of [\(2.3\)](#page-1-3), differentiate it twice we get

$$
u''(t) = -\frac{d}{dt} I^{\beta - 1} \lambda a(t) f(u(t))
$$

= -(\lambda a(t) f(u(t))) |_{t=0} \frac{t^{\beta - 2}}{\Gamma(\beta - 1)}
- I^{\beta - 1} \frac{d}{dt} (\lambda a(t) f(u(t))),

and operating by $I^{2-\beta}$ on both sides of the last equation, we get

$$
D^{\beta} u(t) + \lambda a(t) f(u(t)) = 0.
$$

Also it is easy to prove that conditions [\(2.2\)](#page-1-2) are satisfied. Which proves the equivalence.

Secondly consider problem [\(1.2\)](#page-0-2):

$$
\begin{cases}\nD^{\beta}u(t) + \lambda a(t)f(u(t)) = 0, \beta \in (1,2], t \in (0,1), \\
u'(0) = 0, \alpha u'(\eta) = u(1), 0 < \eta < 1, 0 \le \alpha \eta < 1. \\
(2.6)\n\end{cases}
$$

Theorem 2.3. *If the above assumptions (i) - (iii) are satisfied, then the three point boundary value problem [\(1.2\)](#page-0-2) has a solution.*

Proof: We will prove the equivalence of this problem (problem[\(1.2\)](#page-0-2)):

$$
D^{\beta}u(t) + \lambda a(t)f(u(t)) = 0, \beta \in (1,2], t \in (0,1), (2.7)
$$

$$
u'(0) = 0, \alpha u'(\eta) = u(1), 0 < \eta < 1, 0 \le \alpha \eta < 1
$$
 (2.8)

with the integral equation:

$$
u(t) = -I^{\beta} \lambda a(t) f(u(t))
$$

+
$$
\int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

-
$$
\alpha \int_0^{\eta} \frac{(\eta-s)^{\beta-2}}{\Gamma(\beta-1)} \lambda a(s) f(u(s)) ds.
$$
 (2.9)

Indeed; as in theorem [\(2.2\)](#page-1-5) Equation [\(2.7\)](#page-3-0) can be reduced to an equivalent integral equation:

$$
u(t) = -I^{\beta} \lambda a(t) f(u(t)) + C_1 t + C_2.
$$

By differentiating the last equation, we get

$$
u'(t) = -I^{\beta-1} \lambda a(t) f(u(t)) + C_1.
$$

By [\(2.8\)](#page-3-1), we get $C_1 = 0$ and

$$
C_2 = \int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

- $\alpha \int_0^{\eta} \frac{(\eta-s)^{\beta-2}}{\Gamma(\beta-1)} \lambda a(s) f(u(s)) ds.$

Therefore, the solution of problem (2.7) - (2.8) is given by the formula [\(2.9\)](#page-3-2).

Now define the operator $T : C \to C$ by

$$
Tu(t) = -I^{\beta} \lambda a(t) f(u(t))
$$

+
$$
\int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds
$$

-
$$
\alpha \int_0^{\eta} \frac{(\eta-s)^{\beta-2}}{\Gamma(\beta-1)} \lambda a(s) f(u(s)) ds.
$$

and define a convex set $U \subset C[0,1]$ by $U = \{u \in C[0,1]:$ $||u|| \leq \frac{(2+\alpha \beta)}{\Gamma(1+\beta)} K |\lambda| ||a||$, where $K = \sup_{t} |f(u(t))|$. The operator *T* is a continuous operator, indeed:

$$
|Tu(t_2) - Tu(t_1)| = \left| - \int_0^{t_2} \frac{(t_2 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right| + \int_0^{t_1} \frac{(t_1 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right| \leq \left| \int_0^{t_1} \left(\frac{(t_2 - s)^{\beta - 1}}{\Gamma(\beta)} - \frac{(t_1 - s)^{\beta - 1}}{\Gamma(\beta)} \right) \times \lambda a(s) f(u(s)) ds + \int_{t_1}^{t_2} \frac{(t_2 - s)^{\beta - 1}}{\Gamma(\beta)} \lambda a(s) f(u(s)) ds \right| \leq \frac{K |\lambda| ||a||}{\Gamma(\beta)} \left(\int_0^{t_1} \left| (t_2 - s)^{\beta - 1} \right| ds \right) - (t_1 - s)^{\beta - 1} \left| ds + \int_{t_1}^{t_2} (t_2 - s)^{\beta - 1} ds \right) \leq \frac{K |\lambda| ||a||}{\Gamma(1 + \beta)} \left(2 (t_2 - t_1)^{\beta} + |t_2^{\beta} - t_1^{\beta}| \right).
$$

The above inequality shows that

$$
|Tu(t_2) - Tu(t_1)| \to 0 \text{ as } t_2 \to t_1, \tag{2.10}
$$

then *Tu* is uniformly continuous in [0, 1], and hence $T: U \rightarrow U$ is well defined. Also;

$$
|Tu(t)| \leq \int_0^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} |\lambda| |a(s)| |f(u(s))| ds + \int_0^1 \frac{(1-s)^{\beta-1}}{\Gamma(\beta)} |\lambda| |a(s)| |f(u(s))| ds + \alpha \int_0^{\eta} \frac{(\eta-s)^{\beta-2}}{\Gamma(\beta-1)} |\lambda| |a(s)| |f(u(s))| ds ||Tu|| \leq \frac{(2+\alpha \beta)}{\Gamma(1+\beta)} K |\lambda| ||a||.
$$
 (2.11)

Therefore from Arzela-Ascoli Theorem it is easy to show that $T: U \rightarrow U$ is compact, immediately we obtain from inequality (2.11) that $T(U)$ is uniformly bounded, while the equicontinuity of $T(U)$ follows from inequality [\(2.10\)](#page-4-1).

Now, from Schauder fixed point Theorem [\(1.1\)](#page-1-4), we obtain

that the operator *T* has a fixed point in $C[0,1]$.

Now, differentiate [\(2.9\)](#page-3-2), we obtain

$$
u'(t) = -I^{\beta-1} \lambda a(t) f(u(t)),
$$

\n
$$
|u'(t)| \le \int_0^t \frac{(t-s)^{\beta-2}}{\Gamma(\beta-1)} |\lambda| |a(s)| |f(u(s))| ds,
$$

\n
$$
||u'|| \le \frac{K |\lambda| ||a||}{\Gamma(\beta)}.
$$

Therefore we obtain that $u' \in C[0,1]$.

$$
u''(t) = -\frac{d}{dt} I^{\beta-1} \lambda a(t) f(u(t))
$$

\n
$$
= -(\lambda a(t) f(u(t)))|_{t=0} \frac{t^{\beta-2}}{\Gamma(\beta-1)}
$$

\n
$$
= I^{\beta-1} \frac{d}{dt} (\lambda a(t) f(u(t)))
$$

\n
$$
= -K_2 \frac{t^{\beta-2}}{\Gamma(\beta-1)}
$$

\n
$$
= \lambda I^{\beta-1} \left(a'(t) f(u(t)) + \frac{\partial f}{\partial u} u'(t) a(t) \right),
$$

$$
\int_0^1 |u''(t)| dt \leq \frac{K_2}{\Gamma(\beta)} t^{\beta-1} \Big|_0^1
$$

+ $|\lambda| \int_0^1 \int_0^t \frac{(t-s)^{\beta-2}}{\Gamma(\beta-1)} \Big| a'(s) f(u(s))$
+ $\frac{\partial f}{\partial u} u'(s) a(s) \Big| ds dt$
= $\frac{K_2}{\Gamma(\beta)} + |\lambda| \int_0^1 \Big| a'(s) f(u(s))$
+ $\frac{\partial f}{\partial u} u'(s) a(s) \Big| \int_s^1 \frac{(t-s)^{\beta-2}}{\Gamma(\beta-1)} dt ds$
 $\leq \frac{K_2}{\Gamma(\beta)} + \frac{|\lambda|}{\Gamma(\beta)} \int_0^1 \Big| a'(s) f(u(s))$
+ $\frac{\partial f}{\partial u} u'(s) a(s) \Big| ds$,
 $||u''||_{L_1} \leq \frac{K_2}{\Gamma(\beta)} + \frac{|\lambda|}{\Gamma(\beta)} (K ||a'||_{L_1} + K_1 ||u'||_{L_1} ||a||)$

Therefore we obtain that $u'' \in L_1[0,1]$. To complete the equivalence of equation [\(2.9\)](#page-3-2) with the fractionalorder three point boundary value problem [\(2.7\)](#page-3-0) - [\(2.8\)](#page-3-1), let *u*(*t*) be a solution of [\(2.9\)](#page-3-2), differentiate it twice we get

$$
u''(t) = -\frac{d}{dt} I^{\beta - 1} \lambda a(t) f(u(t))
$$

= -(\lambda a(t) f(u(t))) |_{t=0} \frac{t^{\beta - 2}}{\Gamma(\beta - 1)}
- I^{\beta - 1} \frac{d}{dt} (\lambda a(t) f(u(t))),

.

 $\mathbf{0}$

and operating by $I^{2-\beta}$ on both sides of the last equation, we get

$$
D^{\beta} u(t) + \lambda a(t) f(u(t)) = 0.
$$

Also it is easy to prove that conditions [\(2.8\)](#page-3-1) are satisfied. Which proves the equivalence.

References

- [1] R. Chaudhary and D.N. Pandey, Existence results for nonlinear fractional differential equation with nonlocal integral boundary conditions, *Malaya J. Mat.,* 4(3)(2016), 392-403.
- [2] K. Deimling, *Nonlinear Functional Analysis*, Springer-Verlag, 1985.
- [3] A.M.A. El-Sayed and Sh. A. Abd El-Salam, Nonlocal boundary value problem of a fractional-order functional diffrential equation, *Inter. J. of Non. Sci.,* 7(4)(2009), 436-442.
- [4] A.M.A. El-Sayed and Sh. A. Abd El-Salam, Solvability of a nonlocal boundary value problem of fractional-order diffrential equation, *Math. Sci. Res. J.,* 13(2009), 1-12.
- [5] A.M.A. El-Sayed, M.Sh. Mohamed and K. M. O. Msaik, On some boundary-value problems of functional integrodifferential equations with nonlocal conditions, *Malaya J. Mat.,* 5(2)(2016), 186-193.
- [6] A.M.A. El-Sayed, R.O. Abd-El-Rahman and M. El-Gendy, Continuous dependence of the solution of a stochastic differential equation with nonlocal conditions, *Malaya J. Mat.,* 4(3)(2016), 488-496.
- [7] K.S. Miller and B. Ross, *An Introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley, New York, 1993.
- $[8]$ R. Ma, Positive solutions of a nonlinear three point boundary value problem, *EJDE,* 1998, 1-9.
- [9] I. Podlubny and A.M.A. EL-Sayed, On two definitions of fractional calculus, *Preprint UEF 03-96 (ISBN 80-7099- 252-2), Slovak Academy of Science-Institute of Experimental phys.* (1996).
- [10] I. Podlubny, *Fractional Differential Equations*, Acad. press, San Diego-New York-London, 1999.
- [11] Y. N. Raffoul, Positive solutions of three point nonlinear second order boundary value problem, *EJQTDE* (2002), No. 15, 1-15.
- [12] S. Samko, A. Kilbas and O.L. Marichev, *Fractional Integrals and Derivatives*, Gordon and Breach Science Publisher, 1993.
- [13] Y.P. Sun, Nontrivial solution for a three-point boundaryvalue problem, *EJDE* (2004), No. 111, 1-10.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $* * * * * * * * * * *$

