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Abstract
In this work, we prove the existence of at least one solution of the two fractional-order three point boundary value
problems:

Dﬁ () +Aa() (ut)) = aﬁ € (172]at € (Oal)a

u(0) =0, cu(n) = u(1),0 <n <1,0< an <1
and

DPu(t) + A a(t) f(u()) = 0, B € (1,2], ¢ € (0,1),

W0) =0, au(n) =ul),0<n <1,0<an < 1.
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1. Introduction

Let L;[a,b] denotes the space of all Lebesgue integrable func-
tions on the interval [a,b], 0 < a < b < eo.

Definition 1.1 The fractional (arbitrary) order integral of the
function f € Ly[a,b] of order § € R™ is defined by (see [7],
[9] - [10] and [12])

v (f_ B 1
Iﬁf(f) :/0 %f

where I'(.) is the gamma function.
Definition 1.2 The Riemann-Liouville fractional-order deriva-
tive of f(¢) of order & € (0, 1) is defined as (see [7], [9] - [10]

(s) ds,

and [12])

d

D f) = 1),

Definition 1.3 The (Caputo) fractional-order derivative D*
of order o € (0,1] of the function g(¢) is defined as (see [9] -
[10] and [12])

€ [a,b].

d

— g(t), t € [a,b].

D(X t :Il—(X
8() 7

We consider here the fractional-order three point boundary
value problems:

{ DP u(t) + Aa(r) f(u(r)) = 0, B € (1,2],1 € (0,1),
u(0) =0, aun) =u(l),0 <n <1,0<an <1
(1.1

and
(1,2], 1 € (0,1),

{ DP u(t) + Aa(t) fu(t)) = 0, B €
W(0) =0, 0d(n) =u(1),0 < <,0< an < 1.
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1.2)

where the function f € C([0, 1],R) and there exists a constant
K, such that \%| <Kj.

The three point boundary value problem was studied by many
authors, for example; in [8] the existence of at least one posi-
tive solution of the three point boundary value problem:

{ W+ a(t) flu) = 0,1 € (0,1),
u0) =0, au(n) =u(l),0 <n <l,an <1

has been studied if f is either superlinear or sublinear by
applying the fixed point theorems in cones, In [11], they con-
cerned with determining values for A so that the three point
nonlinear second order boundary value problem:

{ u'(t) + Aa@) f(u(t)) = 0,1 € (0,1), 1

ul),0 < n <1,0 < a < =

u(0) = 0, au(n) 0

has positive solutions.
And in [13] they proved the existence of nontrivial solutions
for the second order three point boundary value problem:

W+ f(tu) = 0,0 <t <,
(0) =0, u(l) = aul(n),

where ) € (0,1), 00 € R, f € C([0,1] x R, R).

Also, The nonlocal nonlinear three point boundary value prob-
lem of fractional orders was studied by many authors, for
example; in [3] they studied the nonlocal nonlinear bound-
ary value problem of a fractional-order functional differential
equation

{ DP u(t) + f(t,u(9(r)) = 0,1 € (0,1),
1"u(t)|=o = 0,au(n) =u(1),0 <n < 1,0 < anP-1 < 1.

Where 8 € (1,2) and y € (0, 1], they proved the existence of
L;-solution such that the function f satisfies the Caratheodory
conditions and the growth condition.

And, in [4] they studied the nonlocal nonlinear boundary value
problem of fractional-order differential equation:

{ DB u(t) + ftu@t)) =0, Be(1,2),t € (0,1),
1"u(t)|—o = 0,au(n) =u(1),0 <n < 1,0 < anf-! < 1.

they proved the existence of continuous solution such that the
function f satisfies Caratheodory conditions and growth con-
dition. Also the existence of maximal and minimal solutions
with a = 0 was studied. Also, the nonlocal conditions was
studied in [1] and [5] - [6].

Now, let us recall Schauder fixed point Theorem which will
be needed in the sequel.

Theorem 1.1. (Schauder fixed point Theorem) [2]

Let U be a convex subset of a Banach space X, and T : U — U
is compact, continuous map. Then T has at least one fixed
pointinU.
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2. Existence of solution

Here the space C[0, 1] denotes the space of all continuous func-
tions on the interval [0, 1] with the supremum norm ||u|| =

SUP;co,1] |u(1)].

To facilitate our discussion, let us first state the following
assumptions:

J
Q) |a_£|§ K,
(i) f € C([0,1],%R),

(iii) a(t) is a function which is absolutely continuous.

Definition 2.1. By a solution of the fractional-order three
point boundary value problem (1.1) or (1.2) we mean a func-
tion u € C'[0,1] with u" € L1]0,1].

Firstly consider problem (1.1):

Theorem 2.2. If the above assumptions (i) - (iii) are satis-
fied, then the three point boundary value problem (1.1) has a
solution.

Proof: Firstly: we will prove the equivalence of this prob-
lem (problem (1.1)):

DPu(t) + Aa(r) fu(t)) =0, B € (1,2],¢ € (0,1), (2.1)

u(0) =0,au(n) =u(1),0<n <L,0<an <1 (22
with the integral equation:
u(t) = —1° dalr) flu(t))

t I (1—s)B-1
! 1—an‘4 A a(s) f(u(s)) ds

)
ot n(n _S)B—l
l—an /0 ) Aa(s) f(u(s)) ds.
2.3)

Indeed; operating by I B=1 on both sides of equation (2.1), we
get

I = — 1P~ 2 a() fu()),
then

W) — C = — 1P~ La@) fu()).
By integration, we get

u(t) = — 1P A a@t) fu(t)) + Cit + C.
By (2.2), we get C> = 0 and

R
6 = e ([ U e sty
R
-« /on(nr([s)) A als) f(u(s))ds).
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Therefore, the solution of problem (2.1) - (2.2) is given by the
formula (2.3).
Now define the operator 7 : C — C by

Tu(t) = —1% La(t) f(u(t))
1 —sﬁ’I
- l—tan/o (lr(l;> A a(s) f(u(s)) ds
_g)B-1
- [ el st ds

and define a convex set U C C[0,1] by U = {u € C[0,1] :

4] < (e riigy . where K = sup, |f(u(1)).

The operator T is a continuous operator, indeed:

0 (ty — s)B—
- - e

15} 1 (1 75)13_1
1—an /0 T(B) Aa(s) f(u(s))ds

|Tu(t2) — Tu(n)| a(s) f(u(s)) ds

at n (n—s)P!
B l—an/o r'(B)

n(1) _s)ﬁ—l
+ ) g Al Slats)) ds

IN
O\»
)
—~
-~
|38
=)
—
==
=5
|
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T

T 3;1 n /O" . 1:(;3);_1 halo) o) ds

_ A“(@;&x'_(“&251>Adﬂfw&ﬁds
. Kfoz{gslzdwfw&»ds

N ﬁ@gg”ola;gﬁldsh—ﬁ

. af_llol |T|1a|| 0” (Tlr—(gfl ds |t —1]

KA Hall (™~ 0B=1 (0 0B-1] g
ST (ﬁ (=P — (n—s5)Pd

+ /Iltz(fz—s)ﬁ*l dS)

KA l|all aK|All|all

th—t th—t

T a2 T g 2"
K|Al]all BB _B

< _ _

< i) (2(t2 n)P +lt; —1 |)

o KAl KRl
(1—an)l(1+p) (I—anmI(1+p)

The above inequality shows that

ITu(ty) — Tu(t))] — 0 as t, — 1, (2.4)

then Tu is uniformly continuous in [0, 1], and hence T : U — U
is well defined.

Also;
ol < [ R Ao o) as
bt [ e o) s
b [ A ) s s,
[ Tul] SKIA| llall 2.5)

- (I—an)T(1+p)

Therefore from Arzela-Ascoli Theorem it is easy to show that
T : U — U is compact, immediately we obtain from inequality
(2.5) that T (U) is uniformly bounded, while the equicontinu-
ity of T (U) follows from inequality (2.4).

Now, from Schauder fixed point Theorem (1.1), we obtain
that the operator T has a fixed point in C[0, 1].

o
L0,
Ssa2ez
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Now, differentiate (2.3), we obtain

J) = 1P ) f)
b [ A st s
[T ) stats) as,
WOl < [ U M) s
b [ U A o) s
b [ ) s s
W< (g * e )X P el

Therefore we obtain that u’ € C[0,1].

W't = _%15—1 Aa(t) f(u(t))
P2
= —(Aa(t) f(u())) li=o TE-1)

_ % (A a(r) F(u(r)))

B-2
T = <a'<r> Flu(t))
+ % ' (1) a(t)),

/' W) dr - < a

0 - F(B) 0

) f(uls))

! t(t_s)ﬁ_z /
n \M/O/Oma(s

+ g—i u'(s) a(s)

ds dt

U (t—s)B2
1)

d'(s) f(u(s))

n %u/(s)a(s) /

K AL
=1t F(ﬁ)-/o
+ 8£ '()a(s) ds,

KAl

F(ﬁ) T(B)

Therefore we obtain that u” € L;[0, 1].

dt ds

A

[ P

To complete the equivalence of equation (2.3) with the fractional-

order three point boundary value problem (2.1) - (2.2), let u(z)

] (Kllall, + Kallad || all) -

be a solution of (2.3), differentiate it twice we get
d

— 1P 2a() fu(n))

P2
= —(Aaf(t) f(u))) li=o TBE-1)

_ % (A alt) f(u(1))),

and operating by I~# on both sides of the last equation, we
get

u'(t) =

DP u(t) + A a(t) f(u(t)) = 0.

Also it is easy to prove that conditions (2.2) are satisfied.
Which proves the equivalence. B

Secondly consider problem (1.2):

{ DBu(r) + Aa(t) f(u(t)) = 0,8 € (1,2],r € (0,1),
W(0)=0,au'(n)=u(l),0<n<1,0<an <.

(2.6)
Theorem 2.3. If the above assumptions (i) - (iii) are satis-

fied, then the three point boundary value problem (1.2) has a
solution.

Proof: We will prove the equivalence of this problem
(problem(1.2)):

DPu(t)+Aa(t) f(u(t)) = 0,8 € (1,2],t € (0,1), (2.7)

u'(0)=0,au'(n)=u(1),0<n<1,0<an <1 (2.8)

with the integral equation:

ut) = —1P Aa() flu(r))
1

I (1—s)B-
+ /0 Srgy M) () ds
m(n—s)P
o /0 m }, (l(S) f(u(s)) ds
2.9)

Indeed; as in theorem (2.2) Equation (2.7) can be reduced to
an equivalent integral equation:

u(t) = —1P L a(t) f(u(t)) + Ci1 t + C.
By differentiating the last equation, we get

W) = —1P7" La(t) f(u(t)) + C.
By (2.8), we get C; =0 and

_ B
o= 1“F()xa<s> Fu(s)) ds

B)

n(n—s)P2
— a/o A

TG 1) a(s) f(u(s)) ds.

o
L0,
Ssa2ez
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Therefore, the solution of problem (2.7) - (2.8) is given by the  that the operator T has a fixed point in C[0, 1].
formula (2.9).

Now define the operator 7 : C — C by Now, differentiate (2.9), we obtain
Tu(t) = —1P L a(t) f(u(t)) W) = —IB" La@) fu@)),
1 (1—S)ﬁ71 t —s -2
+ /0 gyt el) fuls) ds ()| < /O(Iﬂ(ﬁ)_l)|x|a(s)||f(u(s))ds,
L [T =P , K (2] |l
a/o BT A e Sul) ds. Wl < S

: !
and define a convex set U C C[0,1] by U = {u € C[0,1] : Therefore we obtain that u’ € C[0, 1].
| < B 2BIK |A][fal[}. where K = sup, |£(u(®))].

" 1
The operator T is a continuous operator, indeed: wi(t) = _E P a(t) f(u(r))
- B2
- _ | e = —(Ral) fw®)) o 55—
\Tu(ty) — Tu(t)] = b T(B) A a(s) f(u(s)) ds rg-1
d
1 _ \B-1 o p—-1 “
[MO= 5 ) s as P12 (2 atr) fu))
0 F(B) tﬁ72
/‘1 <(tz—s)‘“ CEDL = Koy
— [Jo () ()
— A () )+ Lty ),
x  Aa(s) fu(s)) ds du
0 (1, — s)B—1
o [T e ) as
1 1 K
KA " " 2 B-1y1
S |r(|ﬁ)|a|| (/0 (1 )P [wana < g
= = wom [ ) )
- (n—9) ds+ , (2 —s) ds) o Jo T(B—1)
of
K |A| [[a]] PRY; . + == u/(s) a(s)|ds dt
< Ti+p) (2 (—n)" + |t2 f |). 3Ku |
= o [l fws)
The above inequality shows that T(B) 0
af , L (f_ )2
ITu(ty) — Tu(n)| — 0 as 1, — 1, (2.10) + afiu (s)a(s) / (F(ﬁs)_l)dt ds
then Tu is uniformly continuous in [0, 1], and hence T : U — U K> Al / H
is well defined. < @) T b ¢ W)
Also; J
T(t—=s)F
Tu)| < [ gy Al ()] ds R S
' ==~ 4 o + :
| (1 g lullz, < T(p) 1ﬂ(ﬁ)( e llz, +Killu'llL, llall)
[ S Al la(s) | (us) | ds |
0 (B) Therefore we obtain that u” € L;]0,1].
m(n-—s) To complete the equivalence of equation (2.9) with the fractional-
T a /0 rB-1) AL la(s)] 1/ (u(s))] ds. order three point boundary value problem (2.7) - (2.8), let u(t)
2+ ap) be a solution of (2.9), differentiate it twice we get
Il < S K1 . @11) )
. . u"(6) = —— 17 La(t) f(u())
Therefore from Arzela-Ascoli Theorem it is easy to show that dt
T :U — U is compact, immediately we obtain from inequality B A P2
(2.11) that T(U) is uniformly bounded, while the equiconti- = ~(al) fu®) -0 FE=y
nuity of 7'(U) follows from inequality (2.10). L d
Now, from Schauder fixed point Theorem (1.1), we obtain ~- 1P ar (Aa(t) f(u())),

o
L0,
Ssa2ez
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and operating by 12~ on both sides of the last equation, we

get

DP u(t) 4+ A a(t) f(u(t)) = 0.

Also it is easy to prove that conditions (2.8) are satisfied.
Which proves the equivalence.l
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