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Solvability of some fractional-order three point
boundary value problems
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Abstract
In this work, we prove the existence of at least one solution of the two fractional-order three point boundary value
problems:{

Dβ u(t) + λ a(t) f (u(t)) = 0, β ∈ (1,2], t ∈ (0,1),
u(0) = 0, α u(η) = u(1), 0 < η < 1, 0 ≤ α η < 1.

and {
Dβ u(t) + λ a(t) f (u(t)) = 0, β ∈ (1,2], t ∈ (0,1),

u′(0) = 0, α u′(η) = u(1), 0 < η < 1, 0 ≤ α η < 1.

.
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1. Introduction
Let L1[a,b] denotes the space of all Lebesgue integrable func-
tions on the interval [a,b], 0≤ a < b < ∞.
Definition 1.1 The fractional (arbitrary) order integral of the
function f ∈ L1[a,b] of order β ∈ R+ is defined by (see [7],
[9] - [10] and [12])

Iβ f (t) =
∫ t

0

(t − s)β − 1

Γ(β )
f (s) ds,

where Γ(.) is the gamma function.
Definition 1.2 The Riemann-Liouville fractional-order deriva-
tive of f (t) of order α ∈ (0,1) is defined as (see [7], [9] - [10]

and [12])

∗Dα f (t) =
d
dt

I1 − α f (t), t ∈ [a,b].

Definition 1.3 The (Caputo) fractional-order derivative Dα

of order α ∈ (0,1] of the function g(t) is defined as (see [9] -
[10] and [12])

Dα g(t) = I1 − α d
dt

g(t), t ∈ [a,b].

We consider here the fractional-order three point boundary
value problems:{

Dβ u(t) + λ a(t) f (u(t)) = 0, β ∈ (1,2], t ∈ (0,1),
u(0) = 0, α u(η) = u(1), 0 < η < 1, 0 ≤ α η < 1.

(1.1)

and{
Dβ u(t) + λ a(t) f (u(t)) = 0, β ∈ (1,2], t ∈ (0,1),

u′(0) = 0, α u′(η) = u(1), 0 < η < 1, 0 ≤ α η < 1.
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(1.2)

where the function f ∈C([0,1],ℜ) and there exists a constant
K1 such that | ∂ f

∂u | ≤ K1.

The three point boundary value problem was studied by many
authors, for example; in [8] the existence of at least one posi-
tive solution of the three point boundary value problem:{

u′′ + a(t) f (u) = 0, t ∈ (0,1),
u(0) = 0, α u(η) = u(1), 0 < η < 1, α η < 1

has been studied if f is either superlinear or sublinear by
applying the fixed point theorems in cones, In [11], they con-
cerned with determining values for λ so that the three point
nonlinear second order boundary value problem:{

u′′(t) + λ a(t) f (u(t)) = 0, t ∈ (0,1),
u(0) = 0, α u(η) = u(1), 0 < η < 1, 0 < α < 1

η

has positive solutions.
And in [13] they proved the existence of nontrivial solutions
for the second order three point boundary value problem:{

u′′ + f (t,u) = 0, 0 < t < 1,
u′(0) = 0, u(1) = α u′(η),

where η ∈ (0,1),α ∈ℜ, f ∈C([0,1]×ℜ,ℜ).
Also, The nonlocal nonlinear three point boundary value prob-
lem of fractional orders was studied by many authors, for
example; in [3] they studied the nonlocal nonlinear bound-
ary value problem of a fractional-order functional differential
equation{

∗Dβ u(t) + f (t,u(φ(t))) = 0, t ∈ (0,1),
Iγ u(t)|t=0 = 0,αu(η) = u(1),0 < η < 1,0 < αηβ−1 < 1.

Where β ∈ (1,2) and γ ∈ (0,1], they proved the existence of
L1-solution such that the function f satisfies the Caratheodory
conditions and the growth condition.
And, in [4] they studied the nonlocal nonlinear boundary value
problem of fractional-order differential equation:{

∗Dβ u(t) + f (t,u(t)) = 0, β ∈ (1,2), t ∈ (0,1),
Iγ u(t)|t=0 = 0,αu(η) = u(1),0 < η < 1,0≤ αηβ−1 < 1.

they proved the existence of continuous solution such that the
function f satisfies Caratheodory conditions and growth con-
dition. Also the existence of maximal and minimal solutions
with α = 0 was studied. Also, the nonlocal conditions was
studied in [1] and [5] - [6].

Now, let us recall Schauder fixed point Theorem which will
be needed in the sequel.

Theorem 1.1. (Schauder fixed point Theorem) [2]
Let U be a convex subset of a Banach space X, and T : U→U
is compact, continuous map. Then T has at least one fixed
point in U.

2. Existence of solution
Here the space C[0,1] denotes the space of all continuous func-
tions on the interval [0,1] with the supremum norm ||u|| =
supt∈[0,1] |u(t)|.

To facilitate our discussion, let us first state the following
assumptions:

(i) |∂ f
∂u |≤ K1,

(ii) f ∈C([0,1],ℜ),

(iii) a(t) is a function which is absolutely continuous.

Definition 2.1. By a solution of the fractional-order three
point boundary value problem (1.1) or (1.2) we mean a func-
tion u ∈C1[0,1] with u′′ ∈ L1[0,1].

Firstly consider problem (1.1):

Theorem 2.2. If the above assumptions (i) - (iii) are satis-
fied, then the three point boundary value problem (1.1) has a
solution.

Proof: Firstly: we will prove the equivalence of this prob-
lem (problem (1.1)):

Dβ u(t) + λ a(t) f (u(t)) = 0, β ∈ (1,2], t ∈ (0,1), (2.1)

u(0) = 0, α u(η) = u(1), 0 < η < 1, 0 ≤ α η < 1 (2.2)

with the integral equation:

u(t) = − Iβ
λ a(t) f (u(t))

+
t

1−α η

∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− α t
1−α η

∫
η

0

(η− s)β−1

Γ(β )
λ a(s) f (u(s)) ds.

(2.3)

Indeed; operating by Iβ−1 on both sides of equation (2.1), we
get

I u′′ = − Iβ − 1
λ a(t) f (u(t)),

then

u′(t) − C1 = − Iβ − 1
λ a(t) f (u(t)).

By integration, we get

u(t) = − Iβ
λ a(t) f (u(t)) + C1 t + C2.

By (2.2), we get C2 = 0 and

C1 =
1

1−α η

(∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− α

∫
η

0

(η− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

)
.
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Therefore, the solution of problem (2.1) - (2.2) is given by the
formula (2.3).
Now define the operator T : C→C by

Tu(t) = − Iβ
λ a(t) f (u(t))

+
t

1−α η

∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− α t
1−α η

∫
η

0

(η− s)β−1

Γ(β )
λ a(s) f (u(s)) ds,

and define a convex set U ⊂ C[0,1] by U = {u ∈ C[0,1] :
||u|| ≤ 3 K |λ | ||a||

(1−α η) Γ(1+β )}, where K = supt | f (u(t))|.
The operator T is a continuous operator, indeed:

|Tu(t2)−Tu(t1)| =

∣∣∣∣−∫ t2

0

(t2− s)β−1

Γ(β )
λa(s) f (u(s)) ds

+
t2

1−αη

∫ 1

0

(1− s)β−1

Γ(β )
λa(s) f (u(s))ds

− α t2
1−α η

∫
η

0

(η− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

+
∫ t1

0

(t1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− t1
1−α η

∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

+
α t1

1−α η

∫
η

0

(η− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

∣∣∣∣

≤
∣∣∣∣∫ t2

0

(t2− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

−
∫ t1

0

(t1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

∣∣∣∣

+

∣∣∣∣ t2
1−α η

∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− t1
1−α η

∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

∣∣∣∣

+

∣∣∣∣ α t2
1−α η

∫
η

0

(η− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− α t1
1−α η

∫
η

0

(η− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

∣∣∣∣
≤

∣∣∣∣∫ t1

0

(
(t2− s)β−1

Γ(β )
− (t1− s)β−1

Γ(β )

)
λ a(s) f (u(s)) ds

+
∫ t2

t1

(t2− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

∣∣∣∣
+

K |λ | ||a||
1−α η

∫ 1

0

(1− s)β−1

Γ(β )
ds |t2− t1|

+
α K |λ | ||a||

1−α η

∫
η

0

(η− s)β−1

Γ(β )
ds |t2− t1|

≤ K |λ | ||a||
Γ(β )

( ∫ t1

0
|(t2− s)β−1 − (t1− s)β−1| ds

+
∫ t2

t1
(t2− s)β−1 ds

)
+

K|λ |||a||
(1−αη)Γ(1+β )

|t2− t1|+
αK|λ |||a||

(1−αη)Γ(1+β )
|t2− t1|

≤ K|λ |||a||
Γ(1+β )

(
2(t2− t1)β + |tβ

2 − tβ

1 |
)

+
K|λ | ||a||

(1−αη)Γ(1+β )
|t2− t1|+

αK|λ |||a||
(1−α η)Γ(1+β )

|t2− t1|.

The above inequality shows that

|Tu(t2) − Tu(t1)| → 0 as t2 → t1, (2.4)

then Tu is uniformly continuous in [0,1], and hence T :U→U
is well defined.
Also;

|Tu(t)| ≤
∫ t

0

(t− s)β−1

Γ(β )
|λ | |a(s)| | f (u(s)| ds

+
t

1−α η

∫ 1

0

(1− s)β−1

Γ(β )
|λ | |a(s)| | f (u(s))| ds

+
α t

1−α η

∫
η

0

(η− s)β−1

Γ(β )
|λ | |a(s)| | f (u(s))| ds,

||Tu|| ≤ 3 K |λ | ||a||
(1−α η) Γ(1+β )

. (2.5)

Therefore from Arzela-Ascoli Theorem it is easy to show that
T : U→U is compact, immediately we obtain from inequality
(2.5) that T (U) is uniformly bounded, while the equicontinu-
ity of T (U) follows from inequality (2.4).
Now, from Schauder fixed point Theorem (1.1), we obtain
that the operator T has a fixed point in C[0,1].

392



Solvability of some fractional-order three point boundary value problems — 393/395

Now, differentiate (2.3), we obtain

u′(t) = − Iβ−1
λ a(t) f (u(t))

+
1

1−α η

∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− α

1−α η

∫
η

0

(η− s)β−1

Γ(β )
λ a(s) f (u(s)) ds,

|u′(t)| ≤
∫ t

0

(t− s)β−2

Γ(β −1)
|λ | |a(s)| | f (u(s)| ds

+
1

1−α η

∫ 1

0

(1− s)β−1

Γ(β )
|λ | |a(s)| | f (u(s))| ds

+
α

1−α η

∫
η

0

(η− s)β−1

Γ(β )
|λ | |a(s)| | f (u(s))| ds,

||u′|| ≤
(

1
Γ(β )

+
1 + α

(1 − α η)Γ(β + 1)

)
K |λ | ||a||.

Therefore we obtain that u′ ∈C[0,1].

u′′(t) = − d
dt

Iβ−1
λ a(t) f (u(t))

= −(λ a(t) f (u(t))) |t=0
tβ−2

Γ(β −1)

− Iβ−1 d
dt

(λ a(t) f (u(t)))

= −K2
tβ−2

Γ(β −1)
−λ Iβ−1

(
a′(t) f (u(t))

+
∂ f
∂u

u′(t) a(t)
)
,

∫ 1

0
|u′′(t)| dt ≤ K2

Γ(β )
tβ−1|10

+ |λ |
∫ 1

0

∫ t

0

(t− s)β−2

Γ(β −1)

∣∣∣∣a′(s) f (u(s))

+
∂ f
∂u

u′(s) a(s)
∣∣∣∣ds dt

=
K2

Γ(β )
+ |λ |

∫ 1

0

∣∣∣∣a′(s) f (u(s))

+
∂ f
∂u

u′(s) a(s)
∣∣∣∣∫ 1

s

(t− s)β−2

Γ(β −1)
dt ds

≤ K2

Γ(β )
+
|λ |

Γ(β )

∫ 1

0

∣∣∣∣a′(s) f (u(s))

+
∂ f
∂u

u′(s) a(s)
∣∣∣∣ds,

‖u′′‖L1 ≤ K2

Γ(β )
+
|λ |

Γ(β )

(
K‖a′‖L1 +K1‖u′‖L1‖a‖

)
.

Therefore we obtain that u′′ ∈ L1[0,1].
To complete the equivalence of equation (2.3) with the fractional-
order three point boundary value problem (2.1) - (2.2), let u(t)

be a solution of (2.3), differentiate it twice we get

u′′(t) = − d
dt

Iβ−1
λ a(t) f (u(t))

= −(λ a(t) f (u(t))) |t=0
tβ−2

Γ(β −1)

− Iβ−1 d
dt

(λ a(t) f (u(t))),

and operating by I2−β on both sides of the last equation, we
get

Dβ u(t) + λ a(t) f (u(t)) = 0.

Also it is easy to prove that conditions (2.2) are satisfied.
Which proves the equivalence.

Secondly consider problem (1.2):{
Dβ u(t)+λa(t) f (u(t)) = 0,β ∈ (1,2], t ∈ (0,1),

u′(0) = 0,α u′(η) = u(1),0 < η < 1,0≤ αη < 1.
(2.6)

Theorem 2.3. If the above assumptions (i) - (iii) are satis-
fied, then the three point boundary value problem (1.2) has a
solution.

Proof: We will prove the equivalence of this problem
(problem(1.2)):

Dβ u(t)+λa(t) f (u(t)) = 0,β ∈ (1,2], t ∈ (0,1), (2.7)

u′(0) = 0,αu′(η) = u(1),0 < η < 1,0≤ αη < 1 (2.8)

with the integral equation:

u(t) = − Iβ
λ a(t) f (u(t))

+
∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− α

∫
η

0

(η− s)β−2

Γ(β −1)
λ a(s) f (u(s)) ds.

(2.9)

Indeed; as in theorem (2.2) Equation (2.7) can be reduced to
an equivalent integral equation:

u(t) = − Iβ
λ a(t) f (u(t)) + C1 t + C2.

By differentiating the last equation, we get

u′(t) = − Iβ−1
λ a(t) f (u(t)) + C1.

By (2.8), we get C1 = 0 and

C2 =
∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− α

∫
η

0

(η− s)β−2

Γ(β −1)
λ a(s) f (u(s)) ds.
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Therefore, the solution of problem (2.7) - (2.8) is given by the
formula (2.9).
Now define the operator T : C→C by

Tu(t) = − Iβ
λ a(t) f (u(t))

+
∫ 1

0

(1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

− α

∫
η

0

(η− s)β−2

Γ(β −1)
λ a(s) f (u(s)) ds.

and define a convex set U ⊂ C[0,1] by U = {u ∈ C[0,1] :
||u|| ≤ (2 + α β )

Γ(1+β ) K |λ | ||a||}, where K = supt | f (u(t))|.
The operator T is a continuous operator, indeed:

|Tu(t2)−Tu(t1)| =

∣∣∣∣−∫ t2

0

(t2− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

+
∫ t1

0

(t1− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

∣∣∣∣
≤

∣∣∣∣∫ t1

0

(
(t2− s)β−1

Γ(β )
− (t1− s)β−1

Γ(β )

)
× λ a(s) f (u(s)) ds

+
∫ t2

t1

(t2− s)β−1

Γ(β )
λ a(s) f (u(s)) ds

∣∣∣∣
≤ K |λ | ||a||

Γ(β )

( ∫ t1

0

∣∣∣∣(t2− s)β−1

− (t1− s)β−1
∣∣∣∣ ds+

∫ t2

t1
(t2− s)β−1 ds

)
≤ K |λ | ||a||

Γ(1+β )

(
2 (t2− t1)β + |tβ

2 − tβ

1 |
)
.

The above inequality shows that

|Tu(t2) − Tu(t1)| → 0 as t2 → t1, (2.10)

then Tu is uniformly continuous in [0,1], and hence T :U→U
is well defined.
Also;

|Tu(t)| ≤
∫ t

0

(t− s)β−1

Γ(β )
|λ | |a(s)| | f (u(s))| ds

+
∫ 1

0

(1− s)β−1

Γ(β )
|λ | |a(s)| | f (u(s))| ds

+ α

∫
η

0

(η− s)β−2

Γ(β −1)
|λ | |a(s)| | f (u(s))| ds,

||Tu|| ≤ (2 + α β )

Γ(1+β )
K |λ | ||a||. (2.11)

Therefore from Arzela-Ascoli Theorem it is easy to show that
T : U→U is compact, immediately we obtain from inequality
(2.11) that T (U) is uniformly bounded, while the equiconti-
nuity of T (U) follows from inequality (2.10).
Now, from Schauder fixed point Theorem (1.1), we obtain

that the operator T has a fixed point in C[0,1].

Now, differentiate (2.9), we obtain

u′(t) = − Iβ−1
λ a(t) f (u(t)),

|u′(t)| ≤
∫ t

0

(t− s)β−2

Γ(β −1)
|λ | |a(s)| | f (u(s))| ds,

||u′|| ≤ K |λ | ||a||
Γ(β )

.

Therefore we obtain that u′ ∈C[0,1].

u′′(t) = − d
dt

Iβ−1
λ a(t) f (u(t))

= −(λ a(t) f (u(t))) |t=0
tβ−2

Γ(β −1)

− Iβ−1 d
dt

(λ a(t) f (u(t)))

= −K2
tβ−2

Γ(β −1)

− λ Iβ−1
(

a′(t) f (u(t))+
∂ f
∂u

u′(t) a(t)
)
,

∫ 1

0
|u′′(t)| dt ≤ K2

Γ(β )
tβ−1|10

+ |λ |
∫ 1

0

∫ t

0

(t− s)β−2

Γ(β −1)

∣∣∣∣a′(s) f (u(s))

+
∂ f
∂u

u′(s) a(s)
∣∣∣∣ds dt

=
K2

Γ(β )
+ |λ |

∫ 1

0

∣∣∣∣a′(s) f (u(s))

+
∂ f
∂u

u′(s)a(s)
∣∣∣∣∫ 1

s

(t− s)β−2

Γ(β −1)
dt ds

≤ K2

Γ(β )
+
|λ |

Γ(β )

∫ 1

0

∣∣∣∣a′(s) f (u(s))

+
∂ f
∂u

u′(s)a(s)
∣∣∣∣ds,

‖u′′‖L1 ≤ K2

Γ(β )
+
|λ |

Γ(β )

(
K‖a′‖L1 +K1‖u′‖L1‖a‖

)
.

Therefore we obtain that u′′ ∈ L1[0,1].
To complete the equivalence of equation (2.9) with the fractional-
order three point boundary value problem (2.7) - (2.8), let u(t)
be a solution of (2.9), differentiate it twice we get

u′′(t) = − d
dt

Iβ−1
λ a(t) f (u(t))

= −(λ a(t) f (u(t))) |t=0
tβ−2

Γ(β −1)

− Iβ−1 d
dt

(λ a(t) f (u(t))),
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and operating by I2−β on both sides of the last equation, we
get

Dβ u(t) + λ a(t) f (u(t)) = 0.

Also it is easy to prove that conditions (2.8) are satisfied.
Which proves the equivalence.

References
[1] R. Chaudhary and D.N. Pandey, Existence results for

nonlinear fractional differential equation with nonlocal
integral boundary conditions, Malaya J. Mat., 4(3)(2016),
392-403.

[2] K. Deimling, Nonlinear Functional Analysis, Springer-
Verlag, 1985.

[3] A.M.A. El-Sayed and Sh. A. Abd El-Salam, Nonlocal
boundary value problem of a fractional-order functional
diffrential equation, Inter. J. of Non. Sci., 7(4)(2009),
436-442.

[4] A.M.A. El-Sayed and Sh. A. Abd El-Salam, Solvability
of a nonlocal boundary value problem of fractional-order
diffrential equation, Math. Sci. Res. J., 13(2009), 1-12.

[5] A.M.A. El-Sayed, M.Sh. Mohamed and K. M. O. Msaik,
On some boundary-value problems of functional integro-
differential equations with nonlocal conditions, Malaya J.
Mat., 5(2)(2016), 186-193.

[6] A.M.A. El-Sayed, R.O. Abd-El-Rahman and M. El-
Gendy, Continuous dependence of the solution of a
stochastic differential equation with nonlocal conditions,
Malaya J. Mat., 4(3)(2016), 488-496.

[7] K.S. Miller and B. Ross, An Introduction to the Fractional
Calculus and Fractional Differential Equations, John
Wiley, New York, 1993.

[8] R. Ma, Positive solutions of a nonlinear three point bound-
ary value problem, EJDE, 1998, 1-9.

[9] I. Podlubny and A.M.A. EL-Sayed, On two definitions of
fractional calculus, Preprint UEF 03-96 (ISBN 80-7099-
252-2), Slovak Academy of Science-Institute of Experi-
mental phys. (1996).

[10] I. Podlubny, Fractional Differential Equations, Acad.
press, San Diego-New York-London, 1999.

[11] Y. N. Raffoul, Positive solutions of three point nonlinear
second order boundary value problem, EJQTDE (2002),
No. 15, 1-15.

[12] S. Samko, A. Kilbas and O.L. Marichev, Fractional Inte-
grals and Derivatives, Gordon and Breach Science Pub-
lisher, 1993.

[13] Y.P. Sun, Nontrivial solution for a three-point boundary-
value problem, EJDE (2004), No. 111, 1-10.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

395

http://www.malayajournal.org

	Introduction
	Existence of solution
	References

