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Increasing the order of convergence for iterative
methods in Banach space under weak conditions
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Abstract
We study the method considered in Xiao and Yin (2015), for solving systems of nonlinear equations, modified
suitably to include the nonlinear equations in Banach spaces. The novelty of this study lies in the fact that our
conditions are weaker than the conditions used in earlier studies. This way we extend the applicability of the
method. Numerical examples are also given in this study where earlier results cannot apply to solve equations
but our results can apply.
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1. Introduction
Let H : Ω⊆B1−→B2 be a continuous Fréchet-differentiable

operator between the Banach spaces B1 and B2 and Ω be a
convex set. In this study, we consider the problem of approxi-
mating a solution x∗ of nonlinear equation

H(x) = 0. (1.1)

We consider the following method from [19] for increasing
the order of convergence of iterative methods to solve (1.1):

yn = xn−αH ′(xn)
−1H(xn)

zn = ϕ(xn,yn)

xn+1 = zn−AnH(zn), (1.2)

where x0 ∈Ω is an initial point α ∈ R−{0}, ϕ : Ω×Ω−→
X is a continuous operator and An := [ 1

α
H ′(yn)

−1 + (1−

1
α
)H ′(xn)

−1]. Let U(a,ρ),Ū(a,ρ) stand respectively for the
open and closed balls in B1 with center a ∈B1 and of radius
ρ > 0.

The study of convergence of iterative algorithms is usually
centered into two categories: semi-local and local conver-
gence analysis. The semi-local convergence is based on the
information around an initial point, to obtain conditions en-
suring the convergence of these algorithms, while the local
convergence is based on the information around a solution to
find estimates of the computed radii of the convergence balls.
Local results are important since they provide the degree of
difficulty in choosing initial points.

Finding solution of the equation (1.1) is an important
problem in mathematics due to its wide applications. So
improving the order of convergence of iterative method for
solving (1.1) is also an important problem in mathematics. In
[19] the existence of the Fréchet derivative of H of order up
to the fourth was used for the convergence analysis of method
(1.2). This assumption on the higher order Fréchet derivatives
of the operator H restricts the applicability of method (1.2).
For example consider the following;

EXAMPLE 1.1. Let B1 = B2 =C[0,1],Ω = B̄(x∗,1). Con-
sider the nonlinear integral equation of the mixed Hammerstein-
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type [1, 2, 6–9, 12] defined by

x(s) =
∫ 1

0
G(s, t)(x(t)3/2 +

x(t)2

2
)dt,

where the kernel G is the Green’s function defined on the
interval [0,1]× [0,1] by

G(s, t) =
{

(1− s)t, t ≤ s
s(1− t), s≤ t.

The solution x∗(s) = 0 is the same as the solution of equation
(1.1), where H : C[0,1]−→C[0,1]) is defined by

H(x)(s) = x(s)−
∫ 1

0
G(s, t)(x(t)3/2 +

x(t)2

2
)dt.

Notice that

‖
∫ 1

0
G(s, t)dt‖ ≤ 1

8
.

Then, we have that

H ′(x)y(s) = y(s)−
∫ 1

0
G(s, t)(

3
2

x(t)1/2 + x(t))dt,

so since H ′(x∗(s)) = I,

‖H ′(x∗)−1(H ′(x)−H ′(y))‖ ≤ 1
8
(

3
2
‖x− y‖1/2 +‖x− y‖).

One can see that, higher order than one derivatives of H
do not exist in this example.

Our goal is to weaken the assumptions in [19] and apply
the method for solving equation (1.1) in Banach spaces, so
that the applicability of the method (1.2) can be extended.
This approach can be applied on other iterative methods [1–
19]. Notice that earlier studies [1–19] also use hypotheses on
higher order than two derivatives of H although these deriva-
tives do not appear in the method. We also provide computable
radius of convergence error bounds on the distances ‖xn−x∗‖
and a uniqueness result based on Lipschitz-type conditions
not given in [19] or related methods [1–18].

The rest of the paper is organized as follows. In Section 2
we present the local convergence analysis. We also provide a
radius of convergence, computable error bounds and unique-
ness result. Special cases and numerical examples are given
in the last section.

2. Local Convergence analysis

We introduce some functions and parameters for the local
convergence analysis of method (1.2). Let w0 : [0,+∞)−→
[0,+∞) be a continuous and non-decreasing function satisfy-
ing w0(0) = 0. Define the parameter r0 by

r0 = sup{t ≥ 0 : w0(t)< 1}. (2.1)

Let also α ∈ R − {0}, p ≥ 2, w : [0,r0) −→ [0,+∞),
v : [0,r0) −→ [0,+∞) and ψ : [0,r0) −→ [0,+∞) be contin-
uous and nondecreasing functions, so that w(0) = 0. Define
functions g1,h1,g2 and h2 on the interval [0,r0) by

g1(t) =
∫ 1

0 w((1−θ)t)dθ + |1−α|
∫ 1

0 v(θ t)dθ

1−w0(t)
,

h1(t) = h1(t)−1,

g2(t) = ψ(t)t p−1

and
h2(t) = g2(t)−1.

Suppose that

|1−α|v(0)< 1 (2.2)

and

h2(t)−→+∞ or some positive number β as t −→ r−0 . (2.3)

We have that h1(0) = |1−α|v(0)−1 < 0 and h1(t)→+∞ as
t→ r−0 by (2.1). By applying the intermediate value theorem
on the interval [0,r0] for function h1, we deduce that function
h1 has a zero in the interval (0,r0). Denote by r1 the smallest
such zero. Moreover, we get that h2(0) =−1 and h2(t)−→
+∞ or β > 0 as t −→ r−0 . Denote by r2 the smallest zero
of function h2 on the interval (0,r0). Furthermore, define
parameter r̄0 by

r̄0 = max{t ∈ [0,r0] : g1(t)t < 1}. (2.4)

Finally, define functions p,g3 and h3 on the interval [0, r̄0) by

p(t) =
1
|α|

w0(t)+w0(g1(t)t)
(1−w0(t))(1−w0(g1(t)t))

+
1

1−w0(t)
,

g3(t) = (1+ p(t)
∫ 1

0
v(θg2(t)t)dθ)ψ(t)t p−1

and
h3(t) = g3(t)−1.

We obtain that h3(0) =−1< 0 and h3(t)−→+∞ as t −→ r̄−0 .
Denote by r3 the smallest zero of h3 in the interval (0, r̄0).
Define the radius of convergence r by

r = min{ri} i = 1,2,3. (2.5)

Then, we have for each t ∈ [0,r)

0≤ gi(t)< 1, i = 1,2,3. and 0≤ p(t). (2.6)

Next, the local convergence analysis of method (1.2) is
shown using the preceding notation.
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THEOREM 2.1. Let H : Ω ⊂B1→B2 be a continuously
Fréchet-differentiable operator, ϕ : Ω×Ω−→B1 be a con-
tinuous operator, α ∈ R−{0} and p > 1. Suppose:

there exist x∗ ∈Ω and function w0 : [0,+∞)−→ [0,+∞)
continuous and non-decreasing with w0(0) = 0 such that

H(x∗) = 0, H ′(x∗)−1 ∈ L(B2,B1), (2.7)

and

‖H ′(x∗)−1(H ′(x)−H ′(x∗))‖≤w0(‖x−x∗‖), for each x∈Ω;
(2.8)

Set Ω0 = Ω∩U(x∗,r0). There exist functions w : [0,r0) −→
[0,+∞),v : [0,r0)−→ [0,+∞), ψ : [0,r0)−→ [0,+∞) contin-
uous and nondecreasing with w(0) = 0 such that for each
x,y ∈Ω0

‖H ′(x∗)−1(H ′(x)−H ′(y)‖ ≤ w(‖x− y‖), (2.9)

‖H ′(x∗)−1H ′(x)‖ ≤ v(‖x− x∗‖), (2.10)

‖z−x∗‖= ‖ϕ(x,y)−x∗‖ ≤ψ(‖x−x∗‖)‖x−x∗‖p, (2.11)

(2.2), (2.3) hold and

Ū(x∗,r)⊆Ω, (2.12)

where z = ϕ(x,y), the convergence radius r is given by (2.5)
and r0 is defined in (2.1). Then, the sequence {xn} gener-
ated for x0 ∈U(x∗,r)−{x∗} by method (1.2) is well defined
in U(x∗,r), remains in U(x∗,r) for each n = 0,1,2, . . . and
converges to x∗. Moreover, the following estimates hold

‖yn−x∗‖≤ g1(‖xn−x∗‖)‖xn−x∗‖≤ ‖xn−x∗‖< r, (2.13)

‖zn−x∗‖ ≤ g2(‖xn−x∗‖)‖xn−x∗‖ ≤ ‖xn−x∗‖ (2.14)

and

‖xn+1−x∗‖ ≤ g3(‖xn−x∗‖)‖xn−x∗‖ ≤ ‖xn−x∗‖, (2.15)

where the functions gi, i = 1,2,3 are defined previously. Fur-
thermore, if there exists R ∈ [r,r0] such that

∫ 1

0
w0(θR)dθ < 1, (2.16)

then the limit point x∗ is the only solution of equation H(x)= 0
in Ω1 = Ω∩Ū(x∗,R).

Proof. We present a proof based on mathematical induc-
tion. By hypothesis x0 ∈U(x∗,r)−{x∗}, (2.1) and (2.8), we
have that

‖H ′(x∗)−1(H ′(x0)−H ′(x∗)‖≤w0(‖x0−x∗‖)≤w0(r)< 1.
(2.17)

The Banach Lemma on invertible operators [2, 4, 15] and (2.7)
guarantee that H ′(x0)

−1 ∈ L(B2,B1) and

‖H ′(x0)
−1H ′(x∗)‖ ≤ 1

1−w0(‖x0− x∗‖)
. (2.18)

The points y0 and z0 are also well defined by the first substep
of method (1.2) for n = 0. We can write by (2.7) that

H(x0)=H(x0)−H(x∗)=
∫ 1

0
H ′(x∗+θ(x0−x∗))(x0−x∗)dθ .

(2.19)

Notice that ‖x∗+θ(x0− x∗)− x∗‖= θ‖x0− x∗‖< r, so x∗+
θ(x0−x∗)∈U(x∗,r) for each θ ∈ [0,1]. In view of (2.10) and
(2.19), we get that

‖H ′(x∗)−1H ′(x0)‖≤
∫ 1

0
v(θ‖x0−x∗‖)dθ‖x0−x∗‖. (2.20)

We can also write by the first substep of method (1.2) that

y0−x∗= x0−x∗−H ′(x0)
−1H(x0)+(1−α)H ′(x0)

−1H(x0).

(2.21)

Then, using (2.5), (2.6) (for i = 1), (2.7), (2.9), (2.18), (2.20)
and (2.21), we obtain in turn that

‖y0− x∗‖
≤ ‖x0− x∗−H ′(x0)

−1H ′(x0)‖+ |1−α|‖H ′(x0)
−1H ′(x∗)‖

≤ ‖H ′(x0)
−1H ′(x∗)‖‖

∫ 1

0
H ′(x∗)−1(H ′(x∗+θ(x0− x∗))

−H ′(x0))(x0− x∗)dθ‖ (2.22)
+|1−α|‖H ′(x0)

−1H ′(x∗)‖‖H ′(x∗)−1H(x0)‖

≤
∫ 1

0 w((1−θ)‖x0− x∗‖)dθ‖x0− x∗‖
1−w0(‖x0− x∗‖)

+|1−α|
∫ 1

0 v(θ‖x0− x∗‖)dθ‖x0− x∗‖
1−w0(‖x0− x∗‖)

= g1(‖x0− x∗‖)‖x0− x∗‖ ≤ ‖x0− x∗‖< r, (2.23)

which shows (2.13) for n = 0 and y0 ∈ B(x∗,r). Moreover, by
(2.5), (2.6) (for i = 2) and (2.11) we get that

‖z0− x∗‖
= ‖ϕ(x0,y0)− x∗‖ ≤ ψ(‖x0− x∗‖)‖x0− x∗‖p

≤ g2(‖x0− x∗‖)‖x0− x∗‖ ≤ ‖x0− x∗‖< r, (2.24)
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which shows (2.14) for n = 0 and z0 ∈ U(x∗,r). Next, we
must show that A0 is well defined. As in (2.18) for x0 = y0 we
get that H ′(y0)

−1 ∈ L(B2,B1),

‖H ′(y0)
−1H ′(x∗)‖

≤ 1
1−w0(‖y0− x∗‖))

≤ 1
1−w0(g1(‖x0− x∗‖)‖x0− x∗‖)

, (2.25)

so A0 and x1 are well defined. We also have by (2.7), (2.18)
and (2.25) that

‖A0H ′(x∗)‖

= ‖ 1
α
(H ′(y0)

−1−H ′(x0)
−1)H ′(x∗)+H ′(x0)

−1H ′(x∗)‖

= ‖ 1
α
[H ′(y0)

−1H ′(x∗)][H ′(x∗)−1(H ′(x0)−H ′(x∗))

+H ′(x∗)−1(H ′(x∗)−H ′(y0))]H ′(x0)
−1H ′(x∗)

+H ′(x0)
−1H ′(x∗)‖

≤ w0(‖x0− x∗‖)+w0(g1(‖x0− x∗‖)‖x0− x∗‖)
|α|(1−w0(g1(‖x0− x∗‖)‖x0− x∗‖))(1−w0(‖x0− x∗‖))

+
1

1−w0(‖x0− x∗‖)
= p(‖x0− x∗‖). (2.26)

Furthermore, using (2.5), (2.6) (for i = 3) (2.20) (for x0 = z0),
(2.26) and the last substep of method (1.2) for n= 0, we obtain
that

‖x1− x∗‖
≤ ‖z0− x∗−A0F(z0)‖
≤ ‖z0− x∗‖+‖A0F ′(x∗)‖‖F ′(x∗)−1F(z0)‖

≤ ‖z0− x∗‖+ p(‖x0− x∗‖
∫ 1

0
v(θ‖z0− x∗‖)dθ)‖z0− x∗‖

= (1+ p(‖x0− x∗‖)

×
∫ 1

0
v(θg2(‖x0− x∗‖)‖x0− x∗‖)dθ)‖x0− x∗‖

= g3(‖x0− x∗‖)‖x0− x∗‖ ≤ ‖x0− x∗‖< r, (2.27)

which shows (2.15) for n = 0 and x1 ∈U(x∗,r). The induction
is completed if, we replace x0,y0,z0,x1 by xk,yk,zk,xk+1 in
the preceding estimates. Then, from the estimates

‖xk+1− x∗‖ ≤ c‖xk− x∗‖< r, (2.28)

where c = g3(‖x0− x∗‖) ∈ [0,1), we deduce that lim
k→∞

xk = x∗

and xk+1 ∈U(x∗,r). Finally to show the uniqueness part, let
T =

∫ 1
0 H ′(x∗+θ(y∗−x∗))dθ where y∗ ∈Ω2 with H(y∗) = 0.

Using (2.9), we obtain that

‖H ′(x∗)−1(T −H ′(x∗))‖ ≤
∫ 1

0 w0(θ‖x∗− y∗‖)dθ

≤
∫ 1

0 w0(θR∗)dθ < 1,
(2.29)

Hence, we have that T−1 ∈ L(B2,B1). Then, from the iden-
tity 0=H(y∗)−H(x∗)=T (y∗−x∗), we conclude that x∗= y∗.
�

REMARK 2.2. (a) In the case when w0(t) = L0t,w(t) =
Lt and Ω0 = Ω, the radius rA = 2

2L0+L was obtained
by Argyros in [2] as the convergence radius for New-
ton’s method under condition (2.7)-(2.9). Notice that
the convergence radius for Newton’s method given inde-
pendently by Rheinboldt [15] and Traub [18] is given
by

ρ =
2

3L
< rA.

Let us consider, as an example, the function H(x)= ex−
1 with x∗ = 0. Set Ω= B(0,1). Then, we have that L0 =

e−1 < L = e
1

L0 , so ρ = 0.3827 < rA = 0.324947231.

Moreover, the new error bounds [2] are:

‖xn+1− x∗‖ ≤ L
1−L0‖xn− x∗‖

‖xn− x∗‖2,

whereas the old ones [5, 7]

‖xn+1− x∗‖ ≤ L
1−L‖xn− x∗‖

‖xn− x∗‖2.

Clearly, the new error bounds are more precise, if L0 <
L. Clearly, we do not expect the radius of convergence
of method (1.2) given by r3 to be larger than rA.

(b) The local results can be used for projection methods
such as Arnoldi’s method, the generalized minimum
residual method(GMREM), the generalized conjugate
method(GCM) for combined Newton/finite projection
methods and in connection to the mesh independence
principle in order to develop the cheapest and most
efficient mesh refinement strategy [1–5].

(c) The results can be also be used to solve equations where
the operator H ′ satisfies the autonomous differential
equation [2–4]:

H ′(x) = P(H(x)),

where P is a known continuous operator. Since H ′(x∗)=
P(H(x∗)) = P(0), we can apply the results without
actually knowing the solution x∗. Let as an example
H(x) = ex−1. Then, we can choose P(x) = x+1 and
x∗ = 0.

(d) It is worth noticing that method (1.2) are not changing
if, we use the new instead of the old conditions [19].
Moreover, for the error bounds in practice we can use
the computational order of convergence (COC)

ξ =
ln ‖xn+2−x∗‖
‖xn+1−x∗‖

ln ‖xn+1−x∗‖
‖xn−x∗‖

, for each n = 1,2, . . .

or the approximate computational order of convergence
(ACOC)

ξ
∗ =

ln ‖xn+2−xn+1‖
‖xn+1−xn‖

ln ‖xn+1−xn‖
‖xn−xn−1‖

, for each n = 0,1,2, . . . .
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(e) In view of (2.4) and the estimate

‖H ′(x∗)−1H ′(x)‖ = ‖H ′(x∗)−1(H ′(x)−H ′(x∗))+ I‖
≤ 1+‖H ′(x∗)−1(H ′(x)−H ′(x∗))‖ ≤ 1+w0(‖x− x∗‖)

condition (2.6) can be dropped and can be replaced by

v(t) = 1+w0(t)

or
v(t) = 1+w0(r0),

since t ∈ [0,r0).

(f) Condition (2.2) can be dropped as follows: Define pa-
rameter R0 by

R0 = g1(r4)r4, r4 = min{r2,r3}. (2.30)

Moreover, replace (2.2), (2.13), respectively by

Ū(x∗,R∗)⊆Ω, (2.31)

and

‖yn− x∗‖ ≤ g2(r4)r4 = R0, (2.32)

where
R∗ = max{R0,r4}.

Then, the conclusions of Theorem 2.1 hold with these
modifications.

(g) Let us choose α = 1 and ϕ(x,y) = y−F ′(y)−1F(y).
Then, we have in (2.23) with xk replaced by yk

‖ϕ(xk,yk)−x∗‖≤
∫ 1

0 w((1−θ)‖yk− x∗‖)dθ‖yk− x∗‖
1−w0(g1(‖xk− x∗‖)‖xk− x∗‖)

,

so we can choose p = 1 and

ψ(t) =
∫ 1

0 w((1−θ)g1(t)t)dθg1(t)
1−w0(t)

.

3. Numerical Examples
We present two examples in this section. We choose α =
1, p = 1 and ψ as in Remark 2.2 (g) in both examples.

EXAMPLE 3.1. Let B1 =B2 =R3,D= Ū(0,1),x∗=(0,0,0)T .
Define function H on D for w = (x,y,z)T by

H(w) = (ex−1,
e−1

2
y2 + y,z)T .

Then, the Fréchet-derivative is given by

H ′(v) =

 ex 0 0
0 (e−1)y+1 0
0 0 1

 .
Using (2.5)–(2.7), we can choose w0(t)=L0t,w(t)= e

1
L0 t,v(t)=

e
1

L0 ,L0 = e−1.
Then, the radius of convergence r is given by

r1 = r2 = 0.3827, r3 = 0.0432 = r.

EXAMPLE 3.2. Returning back to the motivational example
given at the introduction of this study, we can choose (see
also Remark 2.2 (5) for function v) w0(t) = w(t) = 1

8 (
3
2

√
t +

t) and v(t) = 1+w0(r0),r0 w 4.7354. Then, the radius of
convergence r is given by

r = r1 = r2 = 2.6302,r3 = 4.7311 = r.

We choose r = 1, to also satisfy (2.12).

4. Conclusion
We use Lipschitz-type conditions and hypotheses only on
the first Fréchet-derivative to provide a local convergence
analysis for method (1.2) in a Banach space setting. Our
analysis includes computable radius of convergence. error
bounds and a uniqueness result not given in [19] or earlier
similar works [1–18] using higher than one order Fréchet
derivatives although these derivatives do not appear in the
methods. Hence, we extend the applicability of these methods
under weaker conditions.
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