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A computational technique for the solution of
high-order fractional Volterra integro-differential
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Abstract
The optimal q-homotopy analysis method has been employed in order to solve high-order Volterra integro-
differential equations featuring time-fractional derivative. Then, in order to illustrate the simplicity and ability of
the suggested approach, some specific and clear examples have been given. All numerical calculations in this
manuscript have been carried out with Mathematica.
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1. Introduction
We have suggested the optimal q-homotopy analysis method
to find a solution for the following high-order fractional Volterra
integro-differential equations (FVIDEs):

Dµ v(x)−µ

∫ x

0
k(x, t)G[v(t)]dt = g(x),

0 < x < b, m−1 < µ ≤ m, m ∈ Z+ (1.1)

subjected to the following condition:

v(0) = γ0, v(i)(0) = γi, v(b) = θ0, v(i)(b) = θi, (1.2)

where Dµ is the fractional derivative in the Caputo sense,
k(x, t) and g(x) are given and can be approximated by Taylor
polynomials, v(x) is the solution to be determined, G[v(x)] is

any nonlinear function, γ0, γi, θ0, θi
(
i = 2r

(r ∈ Z+,1 ≤ r < bm
2 c)
)

and µ are real constants, v(i)(∗) de-
notes the value for i-order derivative of v(x) at ∗, g is given
and can be approximated by Taylor polynomials.

The present research has been conducted in order to use
the homotopy analysis method (HAM) by Liao [1] and further
to use its application in order to solve nonlinear partial dif-
ferential equations featuring time fractional derivative. There
exists a particular auxiliary parameter h in HAM which pro-
vides us with a simple approach to adjust and control the
convergence region and rate of convergence of the series solu-
tion. Furthermore, through using the so-called h-curve, it is
easily possible to determine the valid regions of h to obtain a
convergent series solution. El-Tawil and Huseen [2] proposed
a method called q-homotopy analysis method (q-HAM) which
is considered a more general method of HAM. There exists
an auxiliary parameter n and h in q-HAM such that in the
case of n = 1, the standard homotopy analysis method can be
obtained.

Recently, a new method called optimal q-homotopy analy-
sis method (Oq-HAM) has been introduced and further devel-
oped by Huseen et al. [3]. The advantage of this method in
comparison with HAM and q-HAM is that in this method it is
not necessary to determine the h-curve.
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There are some more books related to fractional calculus
for interested readers [4, 5]. It should be noted that there are
no accurate analytical solutions for most fractional Volterra
integro-differential equations . Consequently, for such equa-
tions we have to employ some direct and iterative methods.
Researchers have used various methods to solve Volterra
integro-differential equations in recent years. Some famil-
iar methods as follows: variational iteration method [6, 7],
homotopy perturbation method [8–10], Adomian’s decom-
position method [11], homotopy analysis method [12] and
collocation method [13–15].

The organization of this paper is as follows: we have pre-
sented some basic idea of the optimal Oq-homotopy analysis
method in section 2. In section 3 the convergence of the
suggested method is explained. Following that, in section
4, the application of Oq-HAM to the high-order fractional
Volterra integro-differential equations is illustrated, and some
numerical examples are presented. Finally, in section 5, some
conclusions regarding the proposed method are drawn.

2. Description the optimal q-homotopy
analysis method

To describe the essential ideas of the Oq-HAM for PDEs
featuring time-fractional derivative, consider

N[v(x)] = f (x), (2.1)

In which N is linear and nonlinear operator, x and t signify the
independent variables, and v(x) is an indeterminate function
and Dµ denotes that Caputo fractional of order l−1 < µ ≤ l.
At first construct the zero-order deformation equation can be
written as:

(1−mq)L[φ(x, t;q)− v0(x)]qhH(x)(N[φ(x, t;q)]−
(2.2)

f (x)),

where

• m > 1,

• q ∈ [0, 1
m ] is the embedding parameter,

• h 6= 0 is an supportive parameter,

• H(x) 6= 0 is an supportive function,

• L is an supportive linear operator

• v0(x) is an primary speculation.

Obviously, when q = 0 and q = 1
m , Eq.(2.2) turns to:

φ(x, t;0) = v0(x), φ

(
x, t;

1
m

)
= v(x), (2.3)

respectively. Thus, q increases from 0 to 1
m , the solution

φ (x, t;q) varies from the primary speculation v0(x) to the

solution v(x). If v0(x), L, h and H(x) are selected suitable,
solution of Eq.(2.3) exists for q ∈

[
0, 1

m

]
.

Now consider Taylor series expression of φ (x, t;q) with re-
gard to q in

ϕ (x, t;q) =
∞

∑
n=0

vn(x)qn, (2.4)

where

ϕn(x) =
1
n!

∂ nϕn(x, t ;q)
∂qn

∣∣∣∣
q=0

. (2.5)

It is supposed that the supportive linear operator, the primary
speculation, the supportive parameter h and the supportive
function H(x) are selected such that the series (2.4) is conver-
gent when q→ 1

m , then the approximate solution (2.4) can be
represented as:

v(x) = ϕ

(
x, t;

1
m

)
=

∞

∑
n=0

vn(x)
(

1
m

)n

. (2.6)

Then we can define the vector

~vm(t) = {v0(x), v1(x), v2(x), . . . , vm(x)} . (2.7)

From (2.2), n times with regard to q, then setting q = 0, the
nth-order deformation equation [1] is achieved as

L [vn(x)−χnvn−1v(x)] = hH(x)Rn
(
~vn−1(x)

)
, (2.8)

with initial conditions

v(k)n (x) = 0, k = 0,1,2,3, . . . ,n−1, (2.9)

where

Rn
(
~vn−1(x)

)
=

1
(n−1)!

∂ n−1N(x, t ;q)
∂qn−1

∣∣∣∣
q=0
−(

f (x)− χn

m
f (x)

)
. (2.10)

and

χn =

{
0, n≤ 1,
m, n > 1. (2.11)

Operating the Rimann-Liouvile integral operator Iµ on both
side of (2.8):

vn(x) =χnvn−1(x)−χn

(
l−1

∑
k=0

v(k)n−1(x,0
+)

tk

k!

)
+

hH(x)IµRn
(
~vn−1(x)

)
. (2.12)

Remark 2.1. The vn(x) for n ≥ 1 is decreed by the linear
equation (2.8) with boundary conditions that result from the
initial problem. As a result of the existence of the factor

( 1
m

)n
,

there will be more chance for the occurrence of convergence
or even we can achieve faster convergence in comparison with
the standard HAM.
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Remark 2.2. In theory, Liao [1] and Yabushita et al. [16]
suggested optimization method to find out the optimal conver-
gence control parameters by minimum of the square residual
error integrated in the whole region having physical meaning.
Assume ∆(h) denote the square residual error of the governing
equation (2.1) and expressed as:

∆(h) =
∫

Ω

(N[un(t)])
2 dΩ, (2.13)

where

uM(t) =
M

∑
i=0

ui(t). (2.14)

The optimal value of the auxiliary parameter h is given by a
nonlinear algebraic equation

d
dh

∆(h) = 0. (2.15)

We apply square residual error (2.13), integrated in the entire
region of interest Ω, at the order of approximation M.

3. Test example
The optimal q-HAM will be employed to solve high-order
fractional Volterra integro-differential equations. All of the
plots and computations for these equations have been carried
out with Mathematica.

Example 3.1. Let us now Consider the Volterra integro-differential
equation [18]:

Dµ v(x)+
∫ x

0
v(t)dt = 1, 0≤ x≤ 1, 0≤ µ ≤ 1, (3.1)

with the initial condition

v(0) = 0. (3.2)

From Eq. (2.12) and Eqs. (3.1-3.2), the result will be:

v0(x) =0,

v1(x) =−
hxµ

Γ(µ +1)
,

v2(x) =h2xµ

(
− 1

Γ(µ +1)
− xµ+1

Γ(2µ +2)

)
− hmxµ

Γ(µ +1)
,

v3(x) = h2xµ

(
xµ+1

(
− 2h+m

Γ(2µ +2)
−

hxµ+1

Γ(3µ +3)

)
− h+m

Γ(µ +1)

)
+

m
(

h2xµ

(
− 1

Γ(µ +1)
− xµ+1

Γ(2µ +2)

)
−

hmxµ

Γ(µ +1)

)
,

. . . .

Then, considering the first four sentences with m = 1, as
estimates of solution for Eq.(3.1) is given by

v(x)≈− hxµ

Γ(µ +1)
+h2xµ

(
− 1

Γ(µ +1)
− xµ+1

Γ(2µ +2)

)
−

hmxµ

Γ(µ +1)
+h2xµ× (3.3)(

xµ+1
(
− 2h+m

Γ(2µ +2)
− hxµ+1

Γ(3µ +3)

)
− h+m

Γ(µ +1)

)
+n
(

h2xµ

(
−1

Γ(µ +1)
− xµ+1

Γ(2µ +2)

)
− hnxµ

Γ(µ +1)

)
.

The solution that we have found is equivalent to the exact
solution in a closed form v(x) = sin(x), which is the same
third order term approximate solution for Eq. (3.1)-(3.2). In
Table 1, we can see the approximate solutions for µ = 1.0,
h =−1 and m = 1, which are derived for different values of x.
With regarding to remark 2.2 for (2.10), when µ = 1, m = 1,

Table 1. Approximate result of test example 3.1.
x uV HPIM uOq−HAM Exact Absolute error
0.0 0.0 0.0 0.0 0.e
0.2 0.198669 0.198669 0.198669 2.53827e-9
0.4 0.389418 0.389419 0.389418 3.24358e-7
0.6 0.564642 0.564648 0.564642 5.5266e-6
0.8 0.717356 0.717397 0.717356 0.000041242e
1.0 0.841470 0.841667 0.841471 0.000195682e

Figure 1. Comparison of the fourth order approximate solution (3.1) with
exact solution for different value of µ

0 ≤ x ≤ 1 , the optimal value of h is determined by solving
nonlinear algebraic equation 2.2 has its minimum value at
h =−0.986376. Fig. 2 shows the h-curve at the third-order of
approximation of the O-qHAM for various values of 0≤ x≤ 1
with m = 1 and µ = 1 fixed.

Example 3.2. Let us now Consider the Volterra integro-differential
equation [18]:

Dµ v(x)−
∫ x

0
(x− t)v(t)dt = 1, 0≤ x≤ 1, 1≤ µ ≤ 2,(3.4)

with the initial condition

v(0) = 0, v′(0) = 0 . (3.5)

From Eq. (2.12) and Eqs. (3.4)-(3.5), the result will be:
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Figure 2. the h-curve at the third-order of approximation of
the O-qHAM.

Table 2. Approximate result of test example 3.2.
x uV HPIM uOq−HAM Exact Absolute error
0.0 1.0 1.0 1.0 0.e
0.2 1.020066941 1.02007 1.02007 0.e
0.4 1.081085602 1.08107 1.08107 0.e
0.6 1.185642306 1.18547 1.18547 8.88178e-15
0.8 1.338637450 1.33743 1.33743 5.0604e-13
1.0 1.548685515 1.54308 1.54308 1.1519e-11

v0(x) = 1,

v1(x) =−
hxµ

(
(µ +1)(µ +2)+ x2

)
Γ(µ +3)

,

v2(x) = h2xµ

(
xµ+2

(
2(µ +2)(2µ +3)+ x2

)
Γ(2µ +5)

−

µ2 +3µ + x2 +2
Γ(µ +3)

)
−

hmxµ
(
(µ +1)(µ +2)+ x2

)
Γ(µ +3)

,

. . . .

Then, the third order term approximate solution for Eq.(3.4)
is given by

v(x)≈ 1−
hxµ

(
(µ +1)(µ +2)+ x2

)
Γ(µ +3)

−

hmxµ
(
(µ +1)(µ +2)+ x2

)
Γ(µ +3)

+

h2xµ

(
xµ+2

(
2(µ +2)(2µ +3)+ x2

)
Γ(2µ +5)

−

µ2 +3µ + x2 +2
Γ(µ +3)

)
. (3.6)

The solution that we have found is equivalent to the exact
solution in a closed form v(x) = cosh(x),which is the same
third order term approximate solution for Eq. (3.4,3.5).
In table 2, we can see the approximate solutions for µ = 2.0
which are derived for different values of x. With regarding

Figure 3. Comparison of the fourth order approximate solution (3.4) with
exact solution for different value of µ

to remark 2.2 for (3.6), when µ = 2, m = 1, 0 ≤ x ≤ 1 , the
optimal value of h is determined by solving nonlinear alge-
braic equation 2.2 has its minimum value at h = −1.00062.
Fig. 4 shows the h-curve at the third-order of approximation
of the O-qHAM for various values of 0 ≤ x ≤ 1 with m = 1
and µ = 2 fixed.

Figure 4. the h-curve at the third-order of approximation of
the O-qHAM.

Example 3.3. Let us now Consider the Volterra integro-differential
equation [18]:

Dµ v(x)−
∫ x

0
v(t)dt =−1, 0≤ x≤ 1, 2≤ µ ≤ 3,(3.7)

with the initial condition

v(0) = v′(0) = 0, v′′(0) =−1 . (3.8)
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From Eq. (2.12) and Eqs. (3.7)-(3.8), the result will be:

v0(x) = 1+ x− x2

2
,

v1(x) =
hxµ(µ +2)(µ +3)

Γ(µ +4)
(
µ +1+ x3− (µ +3)x2− x

)
,

v3(x) =
hmxµ

Γ(µ +4)
(
(µ +1)(µ +2)(µ +3)+ x3−

(µ +3)x2− (µ +2)(µ +3)x
)
+

(µ +4)h3x2µ+1

3Γ(2µ +9)

(
(µ +5)(µ +6)(µ +7)(x5−

x6 +12x2)− (µ +2)(µ +3)(2µ +3)(2µ +5)×
(2µ +7)(48(µ +1)+24(µ +3)x)+

µ +3 µ +52µ +7
(
µ(µ +4)

(
2x4−

2(µ(µ +7)+18)x3)+6
))

,

. . . .

Then, the fourth order term approximate solution for Eq.(3.7)

Table 3. Approximate result of test example 3.3.
x uV HPIM uOq−HAM Exact Absolute error
0.0 1.0 1.0 1.0 0.e
0.1 1.094187910 1.09468 1.09484 0.000162418e
0.2 1.115612006 1.17747 1.17874 0.00126408e
0.3 1.136046057 1.24671 1.25086 0.00414319e
0.4 1.15542339 1.30096 1.31048 0.00951983e
0.5 1.285059327 1.33902 1.35701 0.0179881e

Figure 5. Comparison of the fourth order approximate solution (3.7) with
exact solution for different value of µ

is given by

v(x)≈ 1+ x− x2

2
,

hxµ(µ +2)(µ +3)
Γ(µ +4)

(
(µ +1)+ x3− (µ +3)x2−

x)+
hmxµ

Γ(µ +4)
(
(µ +1)(µ +2)(µ +3)+ x3−

(µ +3)x2− (µ +2)(µ +3)x
)
+

(µ +4)h3x2µ+1

3Γ(2µ +9)

(
(µ +5)(µ +6)(µ +7)(x5−

x6 +12x2)− (µ +2)(µ +3)(2µ +3)(2µ +5)×
(2µ +7)(48(µ +1)+24(µ +3)x)+

µ +3 µ +52µ +7
(
µ(µ +4)

(
2x4−

2(µ(µ +7)+18)x3)+6
))

. (3.9)

The solution found here for µ = 1, is consistent with the
accurate solution v(x) = cos(x)+ sin(x), which is the same
third order term approximate solution for Eq. (3.7)-(3.8).
In table 3, we can see the approximate solutions for µ = 3.0
which are derived for different values of x.

With regarding to remark 2.2 for (3.9), when µ = 3, m = 1,
0 ≤ x ≤ 1, the optimal value of h is determined by solving
nonlinear algebraic equation 2.2 has its minimum value at
h =−67.9259. Fig. 6 shows the h-curve at the third-order of
approximation of the O-qHAM for various values of 0≤ x≤ 1
with m = 1 and µ = 3 fixed.

Figure 6. the h-curve at the third-order of approximation of
the O-qHAM.

4. Conclusion
We have successfully applied Oq-HAM to obtain series solu-
tion of the high-order fractional Volterra integro-differential
equations. The result indicate that a few iteration of Oq-HAM
will result in some useful solutions.

Finally, it should be added that the suggested approach has
the potentials to be applied in solving other similar nonlinear
problems in partial differential equations of fractional order.
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