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Global dynamics of (1,2)− type systems of
difference equations
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Abstract
We study the global dynamics of following (1,2)− type systems of difference equations:

xn+1 =
ηyn−1

1+µxp
n−2

, yn+1 =
µxn−1

1+ηyp
n−2

,

xn+1 =
ηyn−1

1+µyp
n−2

, yn+1 =
µxn−1

1+ηxp
n−2

,

where η , µ, p and initial conditions xl , yl , l = −2,−1,0 are non-negative real numbers. Several numerical
simulations are provided to support obtained results.

Keywords
(1,2)− type systems of difference equations; equilibrium point; stability; rate of convergence

AMS Subject Classification
39A10, 40A05.

1,2Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan.
*Corresponding author: 1 nqureshi58@gmail.com; 2abdulqadeerkhan1@gmail.com
Article History: Received 06 January 2018; Accepted 20 March 2018 c©2018 MJM.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 408

2 Main Finding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
2.1 Existence of equilibrium and local stability . . . 409
2.2 Global stability about equilibrium O(0,0) . . . . 409
2.3 Prime period two-solutions . . . . . . . . . . . . . . 410
2.4 Rate of convergence . . . . . . . . . . . . . . . . . . 410

3 Discussion and numerical simulations . . . . . . . . . . . 413

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

1. Introduction
Difference equations and systems of rational difference

equations play a vital role in the development of different
sciences ranging from life to decision sciences. This made the
study of qualitative behavior of difference equations an active
area of research (see [1–17] and references cited therein).
For instance, Touafek and Elsayed [18, 19] investigated the
behavior of following systems of difference equations:

xn+1 =
yn

xn−1(±1± yn)
, yn+1 =

xn

yn−1(±1± xn)
,

and

xn+1 =
xn−3

±1± xn−3yn−1
, yn+1 =

yn−3

±1± yn−3xn−1
.

Kalabuŝić et. al. [20] investigated the behavior of following
systems of difference equations:

xn+1 =
α1 +β1xn

A1 + yn
, yn+1 =

γ2yn

A2 +B2xn + yn
.

Kurbanli et. al. [21] investigated the behavior of following
system of difference equation:

xn+1 =
xn−1

ynxn−1 +1
, yn+1 =

yn−1

xnyn−1 +1
.

El-Owaidy et. al. [22] studied the behavior of following dif-
ference equations:

xn+1 =
αxn−1

β + γyp
n−2

,

with positive parameters as well as initial conditions.
Recently, Gümüş and Soykan [23] investigated the behav-

ior of following system of difference equations:

un+1 =
αun−1

β + γvp
n−2

, vn+1 =
α1vn−1

β1 + γ1up
n−2

,
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where α, β , γ, α1, β1, γ1, p and u−2, u−1, u0, v−2, v−1, v0
are positive real numbers. Motivated from above said work,
this paper deals with the study of global dynamics of following
(1,2)−type systems of difference equations:

un+1 =
αvn−1

β + γup
n−2

, vn+1 =
α1un−1

β1 + γ1vp
n−2

, (1.1)

un+1 =
αvn−1

β + γvp
n−2

, vn+1 =
α1un−1

β1 + γ1vp
n−2

, (1.2)

where α, β , γ, α1, β1, γ1, p and u−2, u−1, u0, v−2, v−1, v0
are positive real numbers. It is noted that using following
transformations:

un =

(
ββ1

γγ1

) 1
p

xn, vn =

(
ββ1

γγ1

) 1
p

yn

systems (1.1) and (1.2) then becomes

xn+1 =
ηyn−1

1+µxp
n−2

, yn+1 =
µxn−1

1+ηyp
n−2

, (1.3)

xn+1 =
ηyn−1

1+µyp
n−2

, yn+1 =
µxn−1

1+ηxp
n−2

, (1.4)

where
η =

α

β
, µ =

α1

β1
.

2. Main Finding

This section deals with the study of main results. Before
giving the following Theorems regarding the local stability
about O(0,0), we construct corresponding linearized form of
systems (1.3) and (1.4). The corresponding Jacobian matrix
of system (1.3) about (x̄, ȳ) is

J(x̄,ȳ)=



0 0 −ηµ pȳx̄p−1

(1+µ x̄p)2 0 η

1+µ x̄p 0
1 0 0 0 0 0
0 1 0 0 0 0

0 µ

1+η ȳp 0 0 0 −ηµ px̄ȳp−1

(1+η ȳp)2

0 0 0 1 0 0
0 0 0 0 1 0


.

Similarly, the Jacobian matrix of system (1.4) about (x̄, ȳ) is

J(x̄,ȳ)=



0 0 0 0 η

1+µ ȳp − ηµ pȳp

(1+µ ȳp)2

1 0 0 0 0 0
0 1 0 0 0 0
0 µ

1+η x̄p − ηµ px̄p

(1+η x̄p)2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0



2.1 Existence of equilibrium and local stability

Theorem 2.1. For all parameter values η and µ , systems
(1.3) and (1.4) have a unique equilibrium point O(0,0).

Both the above Jacobian matrices have the same eigenval-
ues at O: λ1,2. Consequently we have the following result:

Theorem 2.2. (i) For system (1.3) following hold:

(i.1) O is locally asymptotically stable if η < 1 and
µ < 1 ;

(i.2) O is unstable if η > 1 or µ > 1.

(ii) For system (1.4) following hold:

(ii.1) O is locally asymptotically stable if η < 1 and
µ < 1;

(ii.2) O is unstable if η > 1 or µ > 1.

Proof. (i.1). The linearized system of (1.3) about O is

ϖn+1 = J(0,0)ϖn,

where

ϖn =


xn

xn−1
xn−2
yn

yn−1
yn−2

, J(0,0) =


0 0 0 0 η 0
1 0 0 0 0 0
0 1 0 0 0 0
0 µ 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

.

The roots of characteristic equation of J(0,0) about O are

κ1,2 = 0, κ3,4 =± 4
√

ηµ, κ5,6 =±ι 4
√

ηµ.

If η < 1 and µ < 1 then all eigenvalues of J(0,0) lie in |κ|< 1.
Hence the proof.

(i.2). It is easy to see that if η > 1 or µ > 1 then O of
system (1.3) is unstable.

(ii). Similarly one can prove (ii).

Now, we will study the global dynamics of systems (1.3)
and (1.4) about the equilibrium point O(0,0).

2.2 Global stability about equilibrium O(0,0)

Theorem 2.3. (i) O of system (1.3) is globally asymptoti-
cally stable if η < 1 and µ < 1.

(ii) O of system (1.4) is globally asymptotically stable if
η < and µ < 1.

Proof. (i) In view of Theorem 2.2, it suffices to prove that

lim
n→∞

(xn,yn) = (0,0).

It is evident from (1.3) that

0≤ xn+1 =
ηyn−1

1+µxp
n−2

< ηyn−1,
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and

0≤ yn+1 =
µxn−1

1+ηyp
n−2

< µxn−1.

Induction then implies that

x4n−1 < (ηµ)nx−1 and x4n < (ηµ)nx0,

and
y4n−1 < (ηµ)ny−1 and y4n < (ηµ)ny0.

Thus for η < 1 and µ < 1,

lim
n→∞

(xn,yn) = (0,0).

Similarly part (ii) can be proved.

2.3 Prime period two-solutions

Theorem 2.4. System (1.3) and (1.4) has no prime period-two
solutions.

Proof. Assuming

· · · ,(a,b),(c,d),(a,b),(c,d), · · · ,

prime period two solutions of the system (1.3) such that
a, b, c, d 6= 0 and a 6= c, b 6= d. Then

a =
ηb

1+µcp , b =
µa

1+ηdp , (2.1)

and

c =
ηd

1+µap , d =
µc

1+ηbp . (2.2)

A calculation then leads to:

(a+ c)2−4ac = 0,

and
(b+d)2−4bd = 0,

But it is contrary to our assumption and therefore system (1.3)
has no prime period-two solutions.

2.4 Rate of convergence
Consider

ϖn+1 = [G+D(n)]ϖn, (2.3)

where G ∈Ck×k is a constant matrix, and D : Z+→Ck×k is a
matrix function satisfying

‖D(n)‖→ 0 (2.4)

as n→ ∞.

Proposition 2.5. [24] If ϖn is a solution of (2.3) such that
(2.4) holds. Then following holds:

(i) Either ϖn = 0, ∀ n > N or lim
n→∞

(‖ϖn‖)1/n exists and is

equal to the modulus of one of the eigenvalues of matrix
C.

(ii) Either ϖn = 0, ∀ n > N or lim
n→∞

‖ϖn+1‖
‖ϖn‖ exists and is

equal to the modulus of one of the eigenvalues of matrix
C.

The following Theorem give the rate of convergence of
systems (1.3) and (1.4).

Theorem 2.6. (i) If conditions (i) of Theorem 2.3 hold

then error vector εn =


ε1

n
ε1

n−1
ε1

n−2
ε2

n
ε2

n−1
ε2

n−2

 of every solution

of system (1.3) about O satisfies the both asymptotic
relations:

lim
n→∞

(‖εn‖)
1
n = |κ1,2JO|,

lim
n→∞

‖εn+1‖
‖εn‖

= |κ1,2JO|,

where |κ1,2JO| is equal to one of the eigenvalues of JO
evaluated at O.

(ii) If conditions (ii) of Theorem 2.3 hold then error vector

εn =


ε1

n
ε1

n−1
ε1

n−2
ε2

n
ε2

n−1
ε2

n−2

 of every solution of system (1.4) about

O satisfies the both asymptotic relations:

lim
n→∞

(‖εn‖)
1
n = |κ1,2JO|,

lim
n→∞

‖εn+1‖
‖εn‖

= |κ1,2JO|,

where |κ1,2JO| is equal to one of the eigenvalues of JO
evaluated at O.

Proof. (i) Let {(xn,yn)} be any solution of system (1.3) such
that limn→∞ xn = x̄, and limn→∞ yn = ȳ. Then
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xn+1− x̄ =
ηyn−1

1+µxp
n−2
− η ȳ

1+µ x̄p

=−
ηµ ȳ(xp

n−2− x̄p)(
1+µxp

n−2

)
(1+µ x̄p)(xn−2− x̄)

(xn−2− x̄)+
η

1+µxp
n−2

(yn−1− ȳ) ,

yn+1− ȳ =
µxn−1

1+ηyp
n−2
− µ x̄

1+η ȳp

=
µ

1+ηyp
n−2

(xn−1− x̄)−
ηµ x̄(yp

n−2− ȳp)(
1+ηyp

n−2

)
(1+η ȳp)(yn−2− ȳ)

(yn−2− ȳ) ,

that is

xn+1− x̄ =−
ηµ ȳ(xp

n−2− x̄p)(
1+µxp

n−2

)
(1+µ x̄p)(xn−2− x̄)

(xn−2− x̄)+
η

1+µxp
n−2

(yn−1− ȳ) ,

yn+1− ȳ =
µ

1+ηyp
n−2

(xn−1− x̄)−
ηµ x̄(yp

n−2− ȳp)(
1+ηyp

n−2

)
(1+η ȳp)(yn−2− ȳ)

(yn−2− ȳ) .

(2.5)

Setting
ε

1
n = xn− x̄, ε

2
n = yn− ȳ,

system (2.5) can also be expressed as

ε
1
n+1 = gnε

1
n−2 +hnε

2
n−1,

ε
2
n+1 = inε

1
n−1 + jnε

2
n−2,

where

gn =−
ηµ ȳ(xp

n−2− x̄p)(
1+µxp

n−2

)
(1+µ x̄p)(xn−2− x̄)

, hn =
η

1+µxp
n−2

,

in =
µ

1+ηyp
n−2

, jn =−
ηµ x̄(yp

n−2− ȳp)(
1+ηyp

n−2

)
(1+η ȳp)(yn−2− ȳ)

.

Taking the limits of gn, hn, in and jn, we obtain

lim
n→∞

gn =−
ηµ pȳx̄p−1

(1+µ x̄p)2 , lim
n→∞

hn =
η

1+µ x̄p ,

lim
n→∞

in =
µ

1+η ȳp , lim
n→∞

jn =−
ηµ px̄ȳp−1

(1+η ȳp)2 ,

that is

gn =−
ηµ pȳx̄p−1

(1+µ x̄p)2 +An−2, hn =
η

1+µ x̄p +Bn−1,

in =
µ

1+η ȳp +Cn−1, jn =−
ηµ px̄ȳp−1

(1+η ȳp)2 +Dn−1,

where An−2, Bn−1, Cn−1, Dn−1→ 0 as n→ ∞.

Now we have system of the form (2.3)

εn+1 = [G+D(n)]εn,

where

G=



0 0 −ηµ pȳx̄p−1

(1+µ x̄p)2 0 η

1+µ x̄p 0
1 0 0 0 0 0
0 1 0 0 0 0

0 µ

1+η ȳp 0 0 0 −ηµ px̄ȳp−1

(1+η ȳp)2

0 0 0 1 0 0
0 0 0 0 1 0


,

D(n) =


0 0 An−2 0 Bn−1 0
1 0 0 0 0 0
0 1 0 0 0 0
0 Cn−1 0 0 0 Dn−1
0 0 0 1 0 0
0 0 0 0 1 0

 ,

and

‖D(n)‖→ 0,n→ ∞.

The limiting system of error terms about (x̄, ȳ) is

411
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
ε1

n+1
ε1

n
ε1

n−1
ε2

n+1
ε2

n
ε2

n−1

=



0 0 −ηµ pȳx̄p−1

(1+µ x̄p)2 0 η

1+µ x̄p 0
1 0 0 0 0 0
0 1 0 0 0 0

0 µ

1+η ȳp 0 0 0 −ηµ px̄ȳp−1

(1+η ȳp)2

0 0 0 1 0 0
0 0 0 0 1 0




ε1

n
ε1

n−1
ε1

n−2
ε2

n
ε2

n−1
ε2

n−2

 .

This is similar to linearized system of (1.3) about (x̄, ȳ). In
particular, the limiting system of error term about O of system
(1.3) is given by

ε1
n+1
ε1

n
ε1

n−1
ε2

n+1
ε2

n
ε2

n−1

=


0 0 0 0 η 0
1 0 0 0 0 0
0 1 0 0 0 0
0 µ 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




ε1

n
ε1

n−1
ε1

n−2
ε2

n
ε2

n−1
ε2

n−2

 .

This is similar to the linearized system of (1.3) about O.
(ii). Let {(xn,yn)} be any solution of system (1.4) such

that limn→∞ xn = x̄, and limn→∞ yn = ȳ. Then

xn+1− x̄ =
ηyn−1

1+µyp
n−2
− η ȳ

1+µ ȳp

=
η

1+µyp
n−2

(yn−1− ȳ)−
ηµ ȳ(yp

n−2− ȳp)(
1+µyp

n−2

)
(1+µ ȳp)(yn−2− ȳ)

(yn−2− ȳ) ,

yn+1− ȳ =
µxn−1

1+ηxp
n−2
− µ x̄

1+η x̄p

=
µ

1+ηxp
n−2

(xn−1− x̄)−
ηµ x̄(xp

n−2− x̄p)(
1+ηxp

n−2

)
(1+η x̄p)(xn−2− x̄)

(xn−2− x̄) ,

that is

xn+1− x̄ =
η

1+µyp
n−2

(yn−1− ȳ)−
ηµ ȳ(yp

n−2− ȳp)(
1+µyp

n−2

)
(1+µ ȳp)(yn−2− ȳ)

(yn−2− ȳ) ,

yn+1− ȳ =
µ

1+ηxp
n−2

(xn−1− x̄)−
ηµ x̄(xp

n−2− x̄p)(
1+ηxp

n−2

)
(1+η x̄p)(xn−2− x̄)

(xn−2− x̄) .

(2.6)

Setting
ε

1
n = xn− x̄, ε

2
n = yn− ȳ,

system (2.6) can also be expressed as

ε
1
n+1 = knε

2
n−1 + lnε

2
n−2,

ε
2
n+1 = mnε

1
n−1 +nnε

1
n−2,

where

kn =
η

1+µyp
n−2

, ln =−
ηµ ȳ(yp

n−2− ȳp)(
1+µyp

n−2

)
(1+µ ȳp)(yn−2− ȳ)

,

mn =
µ

1+ηxp
n−2

, nn =−
ηµ x̄(xp

n−2− x̄p)(
1+ηxp

n−2

)
(1+η x̄p)(xn−2− x̄)

.

Taking the limits of kn, ln, mn and nn, we obtain

lim
n→∞

kn =
η

1+µ ȳp , lim
n→∞

ln =−
ηµ pȳp

(1+µ ȳp)2 ,

lim
n→∞

mn =
µ

1+η x̄p , lim
n→∞

nn =−
ηµ px̄p

(1+η x̄p)2 ,

that is

412
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kn =
η

1+µ ȳp +An−1, ln =−
ηµ pȳp

(1+µ ȳp)2 +Bn−2,

mn =
µ

1+η x̄p +Cn−1, nn =−
ηµ px̄p

(1+η x̄p)2 +Dn−2,

where An−1, Bn−2, Cn−1, Dn−2→ 0 as n→ ∞.
Now we have system of the form (2.3)

εn+1 = [G+D(n)]εn,

where

G =



0 0 0 0 η

1+µ ȳp − ηµ pȳp

(1+µ ȳp)2

1 0 0 0 0 0
0 1 0 0 0 0
0 µ

1+η x̄p − ηµ px̄p

(1+η x̄p)2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0


,

D(n) =


0 0 0 0 An−1 Bn−2
1 0 0 0 0 0
0 1 0 0 0 0
0 Cn−1 Dn−2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 ,

and

‖D(n)‖→ 0,n→ ∞.

The limiting system of error terms about (x̄, ȳ) can then
be written as


ε1

n+1
ε1

n
ε1

n−1
ε2

n+1
ε2

n
ε2

n−1

=



0 0 0 0 η

1+µ ȳp − ηµ pȳp

(1+µ ȳp)2

1 0 0 0 0 0
0 1 0 0 0 0
0 µ

1+η x̄p − ηµ px̄p

(1+η x̄p)2 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




ε1

n
ε1

n−1
ε1

n−2
ε2

n
ε2

n−1
ε2

n−2

 .

This is similar to linearized system of (1.4) about (x̄, ȳ). In
particular, the limiting system of error term about O of system
(1.4) is given by


ε1

n+1
ε1

n
ε1

n−1
ε2

n+1
ε2

n
ε2

n−1

=


0 0 0 0 η 0
1 0 0 0 0 0
0 1 0 0 0 0
0 µ 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0




ε1

n
ε1

n−1
ε1

n−2
ε2

n
ε2

n−1
ε2

n−2

 .

This is similar to the linearized system of (1.4) about
O.

3. Discussion and numerical simulations
In the present work global dynamics of (1,2)− type sys-

tems of difference equations has been studied. Our investiga-
tions reveal that for all parameter values both the systems un-
der discussion have a unique equilibrium at the origin. Linear
stability analysis shows that for both systems, if η < 1, µ < 1
then O(0,0) is locally asymptotically stable but unstable if
η > 1 or µ > 1. The global asymptotic stability about O(0,0)
has also been proved. Finally prime period two solution and

rate of convergence of a solution that converges to O(0,0) of
systems (1.3) and (1.4) are also demonstrated.

The following numerical data confirm the above theo-
retical results: η = 0.899, µ = 0.898, p = 7.9 with x−2 =
0.7, x−1 = 0.9, x0 = 0.7, y−2 = 0.9, y−1 = 1.1, y0 = 0.9.
System (1.3) can then be written as:

xn+1 =
0.899yn−1

1+0.898x7.9
n−2

, yn+1 =
0.898xn−1

1+0.899y7.9
n−2

, n= 0,1, · · · .

(3.1)

The results of numerical simulations are expressed in Fig.
1. Fig. 1a and Fig. 1b shows the plots of xn and yn respectively.
More precisely these figures simulate the stable points for sys-
tem (3.1) whereas its attractor is shown in Fig. 1c. The graphs
clearly show that if η = 0.899 < 1 and µ = 0.898 < 1 then
all orbits are attracted to O(0,0). This confirms the statement
of Theorem 2.3.

An another example consider the following data: η =
µ = 0.9, p = 10 with x−2 = 1.3, x−1 = 1.1, x0 = 0.7, y−2 =
0.7, y−1 = 0.9, y0 = 0.1. System (1.3) can then be written as:

xn+1 =
0.9yn−1

1+0.9x10
n−2

, yn+1 =
0.9xn−1

1+0.9y10
n−2

, n= 0,1, · · · . (3.2)

The plot of numerical simulation are presented in Fig. 2.
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Figs. 2a and 2b are plots of xn and yn respectively. These plots
clearly show that for η = µ = 0.9 < 1 the origin is a stable
point for the system (3.2). And Fig. 2c shows that O(0,0)
is attractor, i.e. all the orbits are eventually attracted towards
the origin, O(0,0). This again proves the correctness of the
results obtained in Theorems 2.2 and 2.3.

Now we conclude an example with data where parameters
have values grater than one. Consider the following data:
η = 2.2, µ = 1.9, p = 10 with x−2 = 0.3, x−1 = 0.1, x0 =
0.7, y−2 = 3.7, y−1 = 0.9, y0 = 0.1. System (1.3) can then
be written as:

xn+1 =
2.2yn−1

1+1.9x10
n−2

, yn+1 =
1.9xn−1

1+2.2y10
n−2

, n= 0,1, · · · . (3.3)

Fig. 3a and 3b show plots of xn and yn respectively of
system (3.3). The plot shows that if the values of parameters
η = 2.2 > 1, µ = 1.9 > 1 then O(0,0) is unstable providing
our theoretical discussion about system (1.3).

Following two examples are about system (1.4). By con-
sidering values of the parameters: if η = 0.97, µ = 0.96, p =
1112 with x−2 = 0.00003, x−1 = 0.88, x0 = 0.777, y−2 =
0.88887, y−1 = 0.9, y0 = 0.31. System (1.4) can then be
written as:

xn+1 =
0.97yn−1

1+0.96y1112
n−2

, yn+1 =
0.96xn−1

1+0.97x1112
n−2

, n = 0,1, · · · .

(3.4)

Fig. 4 show results of numerical simulations of system
(3.4). Figs. 4a and 4b are plots xn and yn respectively. The
plot show that for a parameter values η = 0.97 < 1 and µ =
0.96 < 1 the O(0,0) is stable. Whereas Fig. 4c shows that
O(0,0) is attractor, i.e. all the orbits are eventually attracted
towards the origin. Similarly, if η = 0.9784, µ = 0.9777, p=
11212, x−2 = 0.0009, x−1 = 0.8, x0 = 0.7, y−2 = 0.7, y−1 =
0.8, y0 = 0.1. Then system (1.4) can be written as:

xn+1 =
0.9784yn−1

1+0.9777y11212
n−2

, yn+1 =
0.9777xn−1

1+0.9784x11212
n−2

, n= 0,1, · · · .

(3.5)

The results of numerical simulation of system (3.5) are
presented in Fig. 5. Plots of xn and yn are shown in Figs. 5a
and 5b, respectively. The plots show that the choose values of
parameter η = 0.9784 < 1 and µ = 0.9777 < 1, the O(0,0)
is stable point of system (3.5). Fig. 5c, on the other hand,
shows that O(0,0) is attractor, i.e. all the orbits are eventually
attracted to the origin.

(a) (b)

(c)
Figure 1. Stability of system (3.1)

(a) (b)

(c)
Figure 2. Stability of system (3.2)

(a) (b)
Figure 3. Stability of system (3.3)
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(a) (b) Plot of yn for system (3.4)

(c)
Figure 4. Stability of system (3.4)

(a) (b)

(c)
Figure 5. Stability of system (3.5)
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