

https://doi.org/10.26637/MJM0602/0019

Oscillation theorems for second order neutral difference equations with "Maxima"

S.Rajan¹* and K.Malathi²

Abstract

In this paper we establish some sufficient conditions for the oscillation of all solutions of the equation

$$
\Delta(r_n \Delta(x_n + p_n x_{n-k})) + q_n \max_{[n-\ell,n]} x_s^{\alpha} = 0, n \in N_0
$$

which improve and extend the known results. Examples are provided to illustrate the main results.

Keywords

Second order, oscillation, neutral difference equation with "maxima".

AMS Subject Classification 39A10.

¹*Department of Mathematics, Erode Arts and Science College, Erode - 638 009, Tamil Nadu, India.* ²*Department of Mathematics, Kongu Arts and Science College, Erode - 638 107, Tamil Nadu, India.* ***Corresponding author**: ² malathiilan@gmail.com **Article History**: Received 12 November 2017; Accepted 18 February 2018 **COMBINEY 18 February 2018** COMBINER 1990 18 MJM.

Contents

[References](#page-2-1) . 419

1. Introduction

This paper deals with the second order neutral difference equation of the form

$$
\Delta(r_n \Delta(x_n + p_n x_{n-k})) + q_n \max_{[n-\ell,n]} x_s^{\alpha} = 0, n \in N_0, \quad (1.1)
$$

subject to the following conditions:

$$
(C_1) \qquad \{r_n\} \text{ is a positive sequence with } \sum_{n=n_0}^{\infty} \frac{1}{r_n} = \infty;
$$

- (C_2) { p_n } is a nonnegtive real sequence with $0 \leq p_n \leq p < \infty;$
- (C_3) {*q_n*} is a positive real sequence;
- (C_4) *k* and ℓ are positive integers;
- (C_5) α is a ratio of odd positive integer.

Let $\theta = \max\{k, \ell\}$. By a solution of equation [\(1.1\)](#page-0-2) we mean a real sequence $\{x_n\}$ defined for all $n \geq n_0 - \theta$ and satisfying equation [\(1.1\)](#page-0-2) for all $n \ge n_0$. A solution $\{x_n\}$ is said to be oscillatory if it is neither eventually positive nor eventually negative and nonoscillatory otherwise.

From the review of literature it is well known that there is a lot of results available on the oscillatory and asymptotic behavior of solutions of neutral difference equations without maxima, see [\[1,](#page-2-2) [2,](#page-2-3) [9,](#page-2-4) [10\]](#page-2-5), and the references cited therein. But very few results available in the literature dealing with the oscillatory and asymptotic behavior of solutions of neutral difference equations with "maxima", see [\[3,](#page-2-6) [4,](#page-2-7) [7,](#page-2-8) [8\]](#page-2-9) and the references cited therein. Therefore, in this paper, we investigate the oscillatory and asymptotic behavior of all solutions of equation [\(1.1\)](#page-0-2).

In Section 2, we establish sufficient conditions for the oscillation of all solutions of equation [\(1.1\)](#page-0-2) and in Section 3, we present some examples to illustrate the main results.

2. Main Results

To prove our main results we need the following lemmas.

Lemma 2.1. *If* $A \geq 0, B \geq 0$ *and* $0 < \alpha \leq 1$ *, then*

$$
A^{\alpha} + B^{\alpha} \ge (A + B)^{\alpha}.
$$
 (2.1)

Lemma 2.2. *If* $A \geq 0, B \geq 0$ *and* $\alpha > 1$ *, then*

$$
A^{\alpha} + B^{\alpha} \ge \frac{1}{2^{\alpha - 1}} (A + B)^{\alpha}.
$$
 (2.2)

For the proof of Lemmas [2.1](#page-0-3) and [2.2,](#page-1-0) see [\[6\]](#page-2-11).

Lemma 2.3. *If* $0 < \alpha < 1$, ℓ *is a positive integer and* $\{q_n\}$ *is a positive real sequence with* $\sum_{n=n_0}^{\infty} q_n = \infty$, *then every solution of equation*

$$
\Delta x_n + q_n x_{n-\ell}^{\alpha} = 0, \tag{2.3}
$$

is oscillatory.

Lemma 2.4. *If* $\alpha = 1$ *and*

$$
\liminf_{n \to \infty} \sum_{s=n-\ell}^{n-1} q_s > \left(\frac{\ell}{\ell+1}\right)^{\ell+1},\tag{2.4}
$$

then every solution of equation [\(2.3\)](#page-1-1) *is oscillatory.*

Lemma 2.5. *Let* $\alpha > 1$ *. If there exists a* $\lambda > \frac{1}{\ell} \log \alpha$ *such that*

$$
\liminf_{n \to \infty} [q_n \exp(-e^{\lambda n})] > 0,
$$
\n(2.5)

then every solution of equation [\(2.3\)](#page-1-1) *is oscillatory.*

For the proof of Lemmas [2.3](#page-1-2) and [2.5,](#page-1-3) see [\[9\]](#page-2-4), and Lemma [2.4,](#page-1-4) see [\[5\]](#page-2-12).

Lemma 2.6. *The sequence* $\{x_n\}$ *is an eventually negative solution of equation* [\(1.1\)](#page-0-2) *if and only if* $\{-x_n\}$ *is an eventually positive solution of equation*

$$
\Delta(r_n\Delta(x_n+p_nx_{n-k}))+q_n\max_{[n-\ell,n]}x_s^{\alpha}=0,n\in\mathbb{N}_0.
$$

The assertion of Lemma [2.6](#page-1-5) can be verified easily.

Lemma 2.7. *If* $\{x_n\}$ *is a positive solution of* [\(1.1\)](#page-0-2)*, then* $z_n =$ $x_n + p_n x_{n-k}$ *satisfies*

$$
z_n > 0, r_n \Delta z_n > 0, \ \Delta(r_n \Delta z_n) < 0 \tag{2.6}
$$

eventually.

Proof. Assume that $\{x_n\}$ is a positive solution of equation [\(1.1\)](#page-0-2). Then $z_n = x_n + p_n x_{n-k} > 0$ for all $n \ge n_1 \ge n_0$. From the equation (1.1) , we have

$$
\Delta(r_n \Delta z_n) = -q_n \max_{[n-\ell,n]} x_s^{\alpha} < 0.
$$

Consequently, $r_n \Delta z_n$ is nonincreasing and thus either $r_n \Delta z_n$ 0 or $r_n \Delta z_n \leq 0$. If $r_n \Delta z_n \leq 0$ then for $n \geq n_1$, we have

$$
r_n\Delta z_n\leq r_{n_1}\Delta z_{n_1}<0.
$$

Dividing the last inequality by r_{n_1} and then summing the resulting inequality from n_1 to $n-1$, we obtain

$$
z_n < z_{n_1} + r_{n_1} \Delta z_{n_1} \sum_{s=n_1}^{n-1} \frac{1}{r_s} \to -\infty \text{ as } n \to \infty,
$$

which is a contradiction for the positivity of z_n . This completes the proof. \Box Before stating the next theorem, let us define

$$
Q_n = \min\{q_n, q_{n-k}\} \quad \text{for } n \in N_0,\tag{2.7}
$$

and

$$
Q_n^* = \begin{cases} Q_n \left(\sum_{s=n_1}^{n-\ell-1} \frac{1}{r_s} \right)^\alpha, & \text{if } 0 < \alpha \le 1; \\ Q_n 2^{1-\alpha} \left(\sum_{s=n_1}^{n-\ell-1} \frac{1}{r_s} \right)^\alpha, & \text{if } \alpha \ge 1. \end{cases} \tag{2.8}
$$

Theorem 2.8. *Assume that the first order neutral difference inequality*

$$
\Delta(y_n + p^{\alpha} y_{n-k}) + Q_n^* \max_{[n-\ell,n]} y_s^{\alpha} \le 0,
$$
\n(2.9)

where $\{Q_n^*\}$ *is as defined in* [\(2.8\)](#page-1-6)*, has no positive solution, then every solution of equation* [\(1.1\)](#page-0-2) *is oscillatory.*

Proof. Let $\{x_n\}$ be a nonoscillatory solution of equation [\(1.1\)](#page-0-2). Without loss of generality we may assume that $x_n > 0$ and *x*_{*n*−*k*} > 0 for all *n* ≥ *n*₁ ≥ *n*₀ + θ . Then *z_n* > 0 and from the equation [\(1.1\)](#page-0-2), we obtain

$$
\Delta(r_n \Delta z_n) + q_n \max_{[n-\ell,n]} x_s^{\alpha} = 0,
$$
\n(2.10)

and

$$
p^{\alpha} \Delta(r_{n-k} \Delta z_{n-k}) + p^{\alpha} q_{n-k} \max_{[n-k-\ell,n-k]} x_s^{\alpha} = 0.
$$
 (2.11)

Combining (2.10) and (2.11) , we get

$$
\Delta(r_n \Delta z_n + p^{\alpha} r_{n-k} \Delta z_{n-k}) + Q_n \max_{[n-\ell,n]} [x_s^{\alpha} + p^{\alpha} x_{s-k}^{\alpha}] \le 0.
$$
\n(2.12)

Apply Lemma [2.1](#page-0-4) when $0 < \alpha \le 1$ and use Lemma [2.2](#page-1-9) if $\alpha \geq 1$ in [\(2.12\)](#page-1-10), we obtain

$$
\Delta(r_n \Delta z_n + p^{\alpha} r_{n-k} \Delta z_{n-k}) + Q_n \max_{[n-\ell,n]} z_s^{\alpha} \le 0, \qquad (2.13)
$$

and

$$
\Delta(r_n \Delta z_n + p^{\alpha} r_{n-k} \Delta z_{n-k}) + Q_n 2^{1-\alpha} \max_{[n-\ell,n]} z_s^{\alpha} \le 0, \tag{2.14}
$$

respectively. Since $y_n = r_n \Delta z_n > 0$ is decreasing, we have

$$
z_n \ge y_n \sum_{s=n_1}^{n-1} \frac{1}{r_s}.\tag{2.15}
$$

Substituting [\(2.15\)](#page-1-11) in [\(2.13\)](#page-1-12) and [\(2.14\)](#page-1-13), we get that $\{y_n\}$ is a positive solution of the inequality

$$
\Delta(y_n + p^{\alpha} y_{n-k}) + Q_n^* \max_{[n-\ell,n]} y_s^{\alpha} \leq 0,
$$

which is a contradiction. The proof is now complete.

Theorem 2.9. *If the first order difference inequality*

$$
\Delta w_n + \frac{1}{(1+p^\alpha)^\alpha} Q_{n\max}^* \max_{[n-\ell,n]} w_s^\alpha \le 0,
$$
\n(2.16)

where {*Q* ∗ *ⁿ*} *is as defined in* [\(2.8\)](#page-1-6)*, has no positive solution, then every solution of equation* [\(1.1\)](#page-0-2) *is oscillatory.*

Proof. Let $\{x_n\}$ be a nonoscillatory solution of equation [\(1.1\)](#page-0-2). Then it follows from Lemma [2.6](#page-1-5) and the proof of the Theorem [2.8](#page-1-14) that $y_n = r_n \Delta z_n > 0$ is decreasing. Define

$$
w_n = y_n + p^{\alpha} y_{n-k} \le (1 + p^{\alpha}) y_{n-k}.
$$
 (2.17)

Substituting [\(2.17\)](#page-2-13) in [\(2.9\)](#page-1-15), we get that $\{w_n\}$ is a positive solution of the inequality [\(2.16\)](#page-2-14). This contradiction completes the proof. \Box

Corollary 2.10. *Let* $\ell > k$ *and* $0 < \alpha < 1$ *in equation* [\(1.1\)](#page-0-2)*. If*

$$
\sum_{n=n_0}^{\infty} Q_n^* = \infty, \tag{2.18}
$$

then every solution of equation [\(1.1\)](#page-0-2) *is oscillatory.*

Proof. The proof follows by applying Lemma [2.3](#page-1-1) in Theorem [2.2](#page-1-9) and the details are left to the reader. \Box

Corollary 2.11. Let $\ell > k$ and $\alpha = 1$ in equation [\(1.1\)](#page-0-2). If

$$
\lim_{n \to \infty} \inf \sum_{s=n-\ell+k}^{n-1} Q_s^* > (1+p) \left(\frac{\ell-k}{\ell-k+1} \right)^{\ell-k+1}, \tag{2.19}
$$

then every solution of equation [\(1.1\)](#page-0-2) *is oscillatory.*

Proof. The proof follows by applying Lemma [2.4](#page-1-16) in Theorem [2.2](#page-1-9) and the details are left to the reader. \Box

Corollary 2.12. Let $\ell > k$ and $\alpha > 1$ in equation [\(1.1\)](#page-0-2). If *there exists a* $\lambda > 0$ *such that* $\lambda > \frac{1}{\ell} \log \alpha$ *and*

$$
\lim_{n \to \infty} \inf[Q_n^* exp(-e^{\lambda n})] > 0,
$$
\n(2.20)

then every solution of equation [\(1.1\)](#page-0-2) *is oscillatory.*

Proof. The proof follows by applying Lemma [2.5](#page-1-17) in Theorem [2.2](#page-1-9) and the details are omitted. \Box

3. Examples

In this section, we present some examples to illustrate the main results.

Example 3.1. *Consider the neutral difference equation*

$$
\Delta\left(\frac{1}{n}\Delta(x_n+2x_{n-1})\right) + \frac{1}{n^{5/3}} \max_{[n-2,n]} x_s^{1/3} = 0, \ \ n \ge 1. \ \ (3.1)
$$

Here $r_n = \frac{1}{n}$, $p_n = 2$, $q_n = \frac{1}{n^{5/2}}$ $\frac{1}{n^{5/3}}$, $k = 1$, $\ell = 2$, *and* $\alpha = \frac{1}{3}$. It *is easy to see that all conditions of Corollary [2.10](#page-2-15) are satisfied. Hence every solution of equation* [\(3.1\)](#page-2-16) *is oscillatory.*

Example 3.2. *Consider the neutral difference equation*

$$
\Delta\left(\frac{1}{n}\Delta(x_n+3x_{n-2})\right)+\frac{e^{e^n}}{n^6}\max_{[n-4,n]}x_s^3=0, \ \ n\geq 1. \ \ (3.2)
$$

Here $r_n = \frac{1}{n}$, $p_n = 3$, $q_n = \frac{e^{e^n}}{n^6}$ $\frac{e^{i\epsilon}}{n^6}$, $k = 2, \ell = 4,$ and $\alpha = 3$. *Choose* $\lambda = 1$ *, then it is easy to see that all conditions of Corollary [2.12](#page-2-17) are satisfied. Hence every solution of equation* [\(3.2\)](#page-2-18) *is oscillatory.*

References

- [1] R.P. Agarwal, Difference Equations and Inequalities, *Second Edition, Marcel Dekker, New York,* 2000.
- [2] R.P.Agarwal, M.Bohner, S.R.Grace and D.O'Regan, Discrete Oscillation Theory, *Hindawi Publ. Corp., New York,* 2005.
- [3] R.Arul and M.Angayarkanni, Asymptotic behavior of second order nonlinear neutral difference equations with "maxima", *Far East J. of Math. Sci,* 82(1)2013, 79-92.
- [4] R.Arul and M.Angayarkanni, Oscillatory and asymptotic behavior of second order neutral difference equations with "maxima", *JAM,* (2014), 1916-1924.
- [5] I.Gyori and G.Ladas, Oscillation Theory of Delay Differential Equaitons with Applications, *Claredan Press, Oxford,* 1991.
- [6] G.H.Hardy, J.E.Littlewood and G.Polya, Inequalities,, *Second Edition, Cambridge Uni. Press, Cambridge,* 1998.
- [7] J.W.Luo and V.A.Petrov, Oscillation of second order neutral differece equaitons with "maxima", *J. Math. Sci. Res. Hotline,* 3(1999), 17-22.
- [8] J.W.Luo and D.D.Bainov, Oscillatory and asymptotic behavior of second order neutral differece equaitons with "maxima", *J. Comput. Appl. Math.,* 131(2001), 333-341.
- [9] X.H.Tang and Y.J.Liu, Oscillation for nonlinear delay difference equations, *Tamkang J.Math.,* 32(4)(2001), 275- 280.
- [10] E.Thandapani and S.Selvarangam, Oscillation of second Emden-Fowler type neutral difference equations, *Dyn. Cont. Dis. Impul. Sys.,* 19(2012), 453-469.

? ? ? ? ? ? ? ? ? ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

