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Abstract
This paper introduces a new modification of least squares homotopy perturbation method (LSHPM) for solving
linear and nonlinear fractional partial differential equations (FPDEs). The main advantage of the new modification
is to approximate the solution for FPDEs in a full general set. Moreover, the convergence of the proposed modifi-
cation is shown. Analytical and numerical solutions for the linear Navier-Stokes equation and the nonlinear gas
dynamic equation are successfully obtained to confirm the accuracy and efficiency of the proposed modification.
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1. Introduction
Fractional partial differential equations (FPDEs) are be-

coming a useful tool due to their practical applications for
describing the natural phenomena of science and engineering
models, and they have played an important role in modeling
that is so-called anomalous transport phenomena as well as in
theory of complex systems, see [1–8]. Since the exact solu-
tions to large fractional partial differential equations are rarely

available, so approximate and numerical methods are applica-
ble. Therefore, accurate methods for finding the solutions of
FPDEs are yet under investigation.

Several analytical and numerical methods for solving
FPDEs exist in the literature for example: Homotopy per-
turbation method (HPM) (Shaher Momani and Zaid Odibat
[9]) where the authors applied HPM for nonlinear partial dif-
ferential equations with fractional time derivative, Variational
iteration method and Decomposition method (Zaid Odibat
and Shaher Momani [10]) where these two methods applied
to obtain the approximate solution of nonlinear fractional
order partial differential equations, homotopy perturbation
technique (Syed Tauseef Mohyud-Din [11]) where the idea
of this technique was to utilize both the initial and boundary
conditions in the recursive relation for obtaining approximate
solution, the modified extended tanh-function method (El-
sayed M.E. Zayed et al. [12]) where the method employed
to solve fractional partial differential equations by turning
them into nonlinear ordinary differential equations of integer
orders. In [13] T. Bakkyaraj and R. Sahadevan applied ho-
motopy analysis method to obtain the approximate analytical
solution of two coupled time fractional nonlinear Schrödinger
equations. Zigen Ouyang [14] obtained some conditions for
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the existence of the solutions of a class of nonlinear fractional
order partial differential equations with delay. Rihuan et al.
[15] proposed the fast direct method for solving the linear
block lower triangular Toeplitz-like with tridiagonal blocks
system which arises from the time-fractional partial differen-
tial equation. Komal Singla and R.K. Gupta [16] introduced
an extension of the concept of nonlinear self-adjointness and
Noether operators for calculating conserved vectors of the
time fractional nonlinear systems of partial differential equa-
tions. Recently, Hayman Thabet et al. [17] proposed a new
analytical technique for solving a system of nonlinear frac-
tional partial differential equations in full general set.

The HPM which is a coupling of the traditional pertur-
bation method and the homotopy in topology yields a very
rapid convergence of the solution series in most cases. The
HPM has a significant advantage in that it provides an ap-
proximate solution to a wide range of nonlinear problems
in applied sciences, see [18–20] and some references cited
therein. The LSHPM is a coupling of the least squares method
and the standard HPM. In [21] Constantin Bota and Bogdan
Caruntu recently applied the LSHPM to compute approximate
analytical solutions for nonlinear differential equations.

The main aim of this paper is to demonstrate that full gen-
eral FPDEs can be solved easily by using a new modification
of LSHPM and that it gives good results in analytical and
numerical experiments. The rest of the paper is organized in
as follows: In Section 2, we present some basic definitions
and theorems of fractional calculus theory which are needed
in the sequel. In Section 3, we present basic idea of HPM with
modification of nonlinear operator. In Section 4, we introduce
a new modification of LSHPM for solving general FPDEs.
Analytical and numerical solutions for linear Navier-Stokes
equation and nonlinear gas dynamic equations in sense of
Caputo fractional partial derivative are successfully obtained
in Section 5.

2. Preliminaries.
There are various definitions and theorems of fractional cal-
culus theory. This section presents some of theses definitions
and theorems, which are needed in this paper and can be found
in [22–26] and in some references cited therein.

Definition 2.1. Let x, t,q ∈ R. Then, the Riemann-Liouville
time fractional partial integral of order q for the function
u(x, t) is defined as follows:

I q
t u(x, t) =

Γ(q)

∫ t

0
(t− τ)q−1u(x,τ)dτ, t > 0. (2.1)

Definition 2.2. Let q ∈R, m−1 < q < m ∈N, the Riemann-
Liouville time fractional partial derivative of order q for u(x, t)
is defined as follows:

Dq
t u(x, t) =

∂ m

∂ tm

∫ t

0

(t− τ)m−q−1

Γ(m−q)
u(x,τ)dτ, t > 0.(2.2)

Definition 2.3. Let m−1 < q < m∈N, t ∈R and t > 0, then
Dq

t u(x, t) =
∫ t

0

(t− τ)m−q−1

Γ(m−q)
∂ mu(x,τ)

∂τm dτ,

Dq
t u(x, t) =

∂ mu(x, t)
∂ tm = Dm

t u(x, t), q = m ∈ N,
(2.3)

is called the Caputo time fractional partial derivative of order
q for u(x, t).

Theorem 2.1. Let q1,q2 ∈ R, such that n−1 < q1 ≤ n, m−
1 < q2 ≤ m, n 6= m for n,m ∈ N. Then, in general{

Dq1
t Dq2

t u(x, t) = Dq2
t Dq1

t u(x, t) = Dq1+q2
t u(x, t),

Dq1
t Dm

t u(x, t) 6= Dm
t Dq1

t u(x, t).
(2.4)

Theorem 2.2. Let q, t ∈R,m−1< q<m∈N and t > 0, thenI q
t Dq

t u(x, t) = u(x, t)−
m−1

∑
k=0

tk

k!
∂ ku(x,0+)

∂ tk ,

Dq
t I q

t u(x, t) = u(x, t),

(2.5)

where I q
t is the Riemann-Liouville fractional partial integral

of order q.

Theorem 2.3. Let p,q, t ∈R,m−1 < q≤m and m∈N, thenDq
t t p =

Γ(p+1)
Γ(p−q+1)

t p−q = Dq
t t p, m−1 < p ∈ R,

Dq
t t p = 0, p≤ m−1, p ∈ N.

(2.6)

3. Basic idea of HPM
This section discusses the basic idea of HPM for solving a
nonlinear problem of the following form:

A(u)− f (r) = 0, B(u,∂u/∂n) = 0, r ∈ Ω̄, (3.1)

where A is a general differential operator, B is a boundary oper-
ator, f (r) is a known analytic function and Ω̄ is the boundary
of the domain Ω.

The operator A in Eq. (3.1) can be divided into two parts,
which are L and N where L is a linear and N is nonlinear
operator. Therefore, Eq. (3.1) can be rewritten as follows

L(u)+N(u)− f (r) = 0. (3.2)

However, to solve Eq. (3.1), we consider the homotopy
v(r, p) : Ω× [0,1]→ R, which satisfies

H (v, p)= (1− p)[L(v)−L(u0)]+ p[A(v)− f (r)] = 0, (3.3)

or

H (v, p) = L(v)−L(u0)+ pL(u0)+ p[N(v)− f (r)] = 0,
(3.4)
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where p∈ [0,1] is an embedding parameter and u0 is an initial
approximation of Eq. (3.1), which satisfies the boundary con-
ditions. According to HPM, we can first use the embedding
parameter p as a small parameter, and assume that the solution
of Eq. (3.4) can be written as a power series in p as follows:

v = v0 + pv1 + p2v2 + · · · (3.5)

Letting p→ 1, the approximate solution of Eq. (3.1) is given
by

u = lim
p→1

v = v0 + v1 + v2 + · · · (3.6)

Theorem 3.1. For u(x̄, t) = ∑
∞
k=0 pkuk(x̄, t), the nonlinear op-

erator N(u(x̄, t)) satisfies the following property:

N(u(x̄, t)) = N(
∞

∑
k=0

pkuk(x̄, t))

=
∞

∑
n=0

[ 1
n!

∂ n

∂ pn

[
N(

n

∑
k=0

pkuk)
]

p=0

]
pn. (3.7)

Proof. According to Maclaurin expansion of N(∑∞
k=0 pkuk)

with respect to p, we have

N(
∞

∑
k=0

pkuk) = [N(
∞

∑
k=0

pkuk)]p=0

+
[ ∂

∂ p
[N(

∞

∑
k=0

pkuk)]p=0
]
p

+
[ 1

2!
∂ 2

∂ p2 [N(
∞

∑
k=0

pkuk)]p=0
]
p2 + · · ·

=
∞

∑
n=0

[ 1
n!

∂ n

∂ pn [N(
∞

∑
k=0

pkuk)]p=0
]
pn

=
∞

∑
n=0

[ 1
n!

∂ n

∂ pn

[
N(

n

∑
k=0

pkuk

+
∞

∑
k=n+1

pkuk)
]

p=0

]
pn

=
∞

∑
n=0

[ 1
n!

∂ n

∂ pn

[
N(

n

∑
k=0

pkuk)
]

p=0

]
pn.

Remark 3.1. Let the polynomials Hn(u) be defined as fol-
lows:

Hn(u) =
1
n!

∂ n

∂ pn

[
N(

n

∑
k=0

pkuk)
]

p=0
, (3.8)

Then, from Theorem 3.1, the nonlinear operators Niuλ can be
expressed in terms of Hin as:

Niu = Ni

∞

∑
k=0

pkuk =
∞

∑
n=0

Hin pn, i = 1,2, . . .n. (3.9)

4. Modified LSHPM for solving FPDEs
This section introduces a new modification of LSHPM to
solve full general FPDEs of the following form:

Dq
t u(x̄, t)+L(u(x̄, t))+N(u(x̄, t)) = f (x̄, t),

∂ kiu(x̄,0)
∂ tk = fk(x̄), k = 0,1,2, . . . ,n−1,

u(x̄, t)|Γ = 0, (x̄, t) ∈Ω⊂ Rn+1,

(4.1)

for n− 1 < q < n ∈ N, and x̄ = (x1,x2, . . . ,xn) ∈ Rn, t > 0,
where Γ is the boundary of Ω and L[u(x̄, t)], N[u(x̄, t)] are
linear and nonlinear operators respectively of a function u(x̄, t)
and its partial derivatives which might include other fractional
derivatives of order less than q, and f (x̄, t) is a known analytic
function and Dq

t is the Caputo partial derivative of fractional
order q.
In processing to solve the system (4.1) by a new modification
of LSHPM, we assume that the solution function u(x̄, t) of the
system (4.1) has the following analytic expansion:

u(x̄, t) =
∞

∑
m=0

um(x̄, t), i = 1,2, . . . ,n. (4.2)

Next, we consider the following homotopy:

(1− p)(Dq
t Φ(x̄, t, p)− f (x̄, t)+ p(Dq

t Φ(x̄, t, p)

+L[Φ(x̄, t, p)]+N[Φ(x̄, t, p)]− f (x̄, t)) = 0, (4.3)

where p ∈ [0,1] is an embedding parameter, Φ(x̄, t, p) is an
unknown function which can be defined as

Φ(x̄, t, p) = u0(x̄, t)+ ∑
m≥1

pmum(x̄, t). (4.4)

When p = 0, Φ(x̄, t,0) = u0(x̄, t) and when p = 1, Φ(x̄, t,1) =
u(x̄, t). Thus, as p increases from 0 to 1, the solution Φ(x̄, t, p)
varies from u0(x̄, t) to the solution u(x̄, t), where u0(x̄, t) is
obtained from the following system:

Dq
t u0(x̄, t)− f (x̄, t) = 0, t > 0,

∂ ku0(x̄,0)
∂ tk = fk(x̄), k = 0,1,2, . . . ,m−1,

u0(x̄, t)|Γ = 0, (x̄, t) ∈Ω.

(4.5)

When p = 1, Φ(x̄, t,1) = u(x̄, t), we obtain
Dq

t um(x̄, t) =−(L(um−1(x̄, t))+N(u0,u1, . . . ,um−1),

∂ kum(x̄,0)
∂ tk = 0, k = 0,1,2, . . . ,n−1, m = 1,2, . . .

um(x̄, t)|Γ = 0, (x̄, t) ∈Ω., t > 0, m = 1,2, . . .

(4.6)

By using Remark 3.1 and Theorem 3.1, the system (4.6) can
be rewritten as:

Dq
t um(x̄, t) =−(L(um−1)+Hm−1(u0,u1, . . . ,um−1)),

∂ kum(x̄,0)
∂ tk = 0, k = 0,1,2, . . . ,n−1, m = 1,2, . . .

um(x̄, t)|Γ = 0, (x̄, t) ∈Ω, t > 0, m = 1,2, . . . .

(4.7)
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Next, we consider the set Sm(m = 0,1, . . .) containing the
functions ϕm0,ϕm1, . . . ,ϕmnm , chosen as linearly independent
functions in a vector space of the continuous functions defined
on the region Ω such that Sm−1 ⊂ Sm and vm = u0 +u1 + · · ·+
um is a real linear combination of these functions.
We remark that such a combination is always possible for
example we can choose Sm = {u0,u0, . . . ,um}. In this case,
we may choose ϕm0 = u0,ϕm1 = u1, . . . ,ϕmnm = um.

Definition 4.1. If ũ(x̄, t) an approximate solution of equation
(4.1) on the region Ω, we define

R(x̄, t, ũ)=Dq
t ũ(x̄, t)+L[ũ(x̄, t)]+N[ũ(x̄, t)]− f (x̄, t), (4.8)

together with the initial and boundary conditions given by
(4.1), where R(x̄, t, ũ) is a remainder and it satisfies the fol-
lowing property:

|R(x̄, t, ũ)|< ε, (4.9)

and we evaluate the error obtained by replacing the exact solu-
tion u(x̄, t) with the approximate one ũ(x̄, t) as the remainder.

Definition 4.2. We call a weak δ -approximate HP-solution
of the problem (4.1) on the real region as an HP-function ũ
which satisfies the following relation:∫

A∈Ω

R2(x̄, t, ũ)dA≤ δ , (4.10)

together with the initial and boundary conditions from (4.1).

Next, we find a weak ε-approximate solution of the type

ũ(x̄, t) =
n

∑
k=0

ũk(x̄, t) =
nm

∑
k=0

ck
mϕmk(x̄, t), (4.11)

for m ≥ 0, where ck
m can be determined from the following

formulas:R(x̄, t,ck
m) = R(x̄, t, ũ),

J(ck
m) =

∫
A∈Ω

R2(x̄, t,ck
m)dA,

(4.12)

where by imposing the boundary conditions, we can determine
l ∈N, l≤m such that cm

0 ,c
m
1 , . . . ,c

m
l are computed as functions

of cm
l+1,c

m
l+2, . . . ,c

m
n . From equation (4.12), we compute the

values of c∼m
l+1,c

∼m
l+2, . . . ,c

∼m
n as the values which give the min-

imum of the functional J and the values of c∼m
0 ,c∼m

1 , . . . ,c∼m
l

again as functions of c∼m
l+1,c

∼m
l+2, . . . ,c

∼m
n by using the initial

and boundary conditions. Then, the constants ck
m can be com-

puted. Consequently, a weak approximate solution given by
(4.11) can be found. Thus the analytical solution of the prob-
lem (4.1) obtained by MLSHPM is given by

u(x, t)
MLSHPM

= lim
n→∞

n

∑
k=0

ũk(x̄, t). (4.13)

Theorem 4.1. The HP-sequence of the problem (4.1) of the
functions {Sm(x̄, t)}m∈N of the form Sm(x̄, t) = ∑

nm
k=0 c∼m

k ϕmk
satisfies the following property:

lim
m→∞

∫
A∈Ω

R2(x̄, t,Sm(x̄, t))dA = 0. (4.14)

Moreover, ∀ε,∃m0 ∈ N such that ∀m ∈ N,m > m0 it follows
that Sm(x̄, t) is a weak ε-approximate HP-solution of the prob-
lem (4.2).

Proof. Define the sequence Sm of partial sums of the follow-
ing series:

S0 = ũ0,

S1 = ũ0 + ũ1,

S2 = ũ0 + ũ1 + ũ2,

...
Sm = ũ0 + ũ1 + ũ2 + · · ·+ ũm.

, (4.15)

According to the components in (4.15), the sequence Sm can
be obtained and the following inequality holds:

0≤
∫

A∈Ω

R2(x̄, t,Sm(x̄, t))dA

≤
∫

A∈Ω

R2(x̄, t,vm(x̄, t))dA. (4.16)

It follows that

0≤ lim
m→∞

∫
A∈Ω

R2(x̄, t,Sm(x̄, t))dA

≤ lim
m→∞

∫
A∈Ω

R2(x̄, t,vm(x̄, t))dA = 0. (4.17)

Thus we obtain

lim
m→∞

∫
A∈Ω

R2(x̄, t,Sm(x̄, t))dA = 0. (4.18)

From this limit we obtain that ∀ε,∃m0 ∈ N such that ∀m ∈
N,m > m0 it follows that Sm(x̄, t) is a weak ε-approximate
HP-solution of the problem (4.2).

Theorem 4.2. The sequence {Sm(x̄, t)}m=∈N converges if
limm→∞ R(x̄, t,Sm(x̄, t)) = 0.

Proof. The proof comes immediately from Theorem 4.1.

5. Applications
This section presents some well-known linear and nonlinear
time fractional partial differential equations. These exam-
ples are chosen because of their closed form solutions are
available or they have been solved previously by some other
well-known methods.
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Example 5.1. [27] Consider the following non-homogeneous
linear Navier-Stokes initial value problem of time fractional
order:Dq

t u− r−uxx−
1
x

ux = 0, 0 < q < 1,

u(x,0) = 1− x2.
(5.1)

where r is a real constant. For q = 1, the exact solution of
(5.1) is u(x, t) = 1− x2 +(r−4)t.

From systems (4.1) and (5.1), we have L(u(x, t))=−(uxx+
1
x ux),N(u(x, t)) = 0 and f (x, t) = r.
Next by using (4.5), we obtain

Dq
t u0(x, t)− r = 0, u0(x,0) = 1− x2. (5.2)

Solving the system (5.2), we obtain

u0(x, t) = 1− x2 +
r

Γ(q+1)
tq. (5.3)

It follows that S0 =
{

1,x2, tq
}

.
Consequently, the zero-order term approximate solution is
given by

ũ0(x, t) = c0 + c1x2 + c2tq. (5.4)

From the initial condition we have 1− x2 = ũ0(x,0) = c0 +
c1x2, which implies that c0 = 1 and c1 =−1. Substituting the
values of c0 and c1 in (5.4), we obtain

ũ0(x, t) = 1− x2 + c2tq. (5.5)

By using equation (5.5) in Definition 4.1, we obtain

R(x̄, t, ũ) = Γ(q+1)c2 +4− r. (5.6)

Next, with the help of system (4.12), we have

J(c2) =
∫ 1

0

∫ 1

0
(Γ(q+1)c2 +4− r)2dxdt. (5.7)

To compute the minimum of the functional J(c2), we deter-
mine the critical point of J(c2) as a real solution of dJ

dc2
= 0.

It follows that c2 =
r−4

Γ(q+1) . Consequently, the zero-order term
approximate solution of the problem (5.12) is

ũ0(x, t) = 1− x2 +
r−4

Γ(q+1)
tq. (5.8)

From the system (4.7) for m = 1, we have
Dq

t u1(x̄, t) =−(L(u0(x, t))+H0(u0(x, t))),

∂u1(x,0)
∂ t

= 0.
(5.9)

By using Remark 3.1 and equation (5.3), the solution of sys-
tem (5.9) is

u1(x, t) =
4

Γ(q+1)
tq. (5.10)

It follows that S1 = {tq}. Therefore, the first-order term ap-
proximate solution ũ1(x, t) = c0tq which implies by using
Definition 4.1 and system (4.12) that c0 = 0. Consequently,
for m = 1,2 . . ., we obtain ũm(x, t) = 0.
Hence by using equation (4.13), the exact analytical solution
of (5.1) is

u(x, t)
MLSHPM

= 1− x2 +
r−4

Γ(q+1)
tq, (5.11)

which is exactly the same result obtained in [27]. In case of
q = 1, we get the same exact solution.

Example 5.2. [28] Consider the following non-homogeneous
nonlinear time fractional gas dynamic equation:{

Dq
t u+uux−u(1−u) =−et−x, 0 < q < 1,

u(x,0) = 1− e−x.
(5.12)

For q = 1, the exact solution of the system (5.12) is u(x, t) =
1− et−x.

By comparing the system (5.12) with the system (4.1) ,
we have L(u) = u,N(u) = uux +u2 and f (x, t) =−et−x.
Now by using (4.5), we have{

Dq
t u0(x, t)+ et−x = 0,

u0(x,0) = 1− e−x.
(5.13)

Solving the system (5.13), we obtain

u0(x, t) = 1− e−x− e−xtqE1,q+1(t), (5.14)

where E1,q+1(t) = ∑
∞
k=0

tk

Γ(k+q+1) is a Mittag-Leffler function.
It follows that S0 =

{
1,e−x,e−xtqE1,q+1

}
. Consequently, the

zero-order term approximate solution is given by

ũ0(x, t) = c0 + c1e−x + c2e−xtqE1,q+1. (5.15)

Next, we use the initial condition from the system (5.12) in
Eq. (5.15), we obtain that c0 = 1,c1 = −1. By Substituting
the values of c0,c1 in Eq. (5.15) and using Definition 4.1, we
obtain

R(x̄, t, ũ) = (c2 +1)et−x. (5.16)

By using the system (4.12), we obtain that c2 = −1. There-
fore, the zero-order term approximate solution of the problem
(5.12) is

ũ0(x, t) = 1− e−x− e−xtqE1,q+1. (5.17)
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From the system (4.7) for m = 1, we have


Dq

t u1(x̄, t) =−(L(u0(x, t))+H0(u0)),

∂u1(x,0)
∂ t

= 0.
(5.18)

By using Remark 3.1 and Eq. (5.14), the solution of the sys-
tem (5.18) is u1(x, t) = 0 which implies that um(x, t) = 0 for
m = 1,2, . . .. Therefore the approximate solution ũm(x, t) = 0
for m = 1,2 . . .
Hence by using Eq. (4.13), the exact analytical solution for
the problem (5.12) is

u(x, t)
MLSHPM

= 1− e−x− e−xtqE1,q+1(t), (5.19)

which is the same exact solution in case of q = 1.

6. Numerical experiments and discussion

Table 1 and Table 2 show numerical values of the solution
obtained by MLSHPM and the exact solution uEx for Exam-
ple 5.1 and Example 5.2 respectively among different values
of x, t and q when r = 1. In Fig. 1 and Fig. 4, we plot the
solution obtained by MLSHPM for Example 5.1 and Exam-
ple 5.2 respectively when q = 0.5 and r = 1. In Fig. 2 and
Fig. 5, we plot the solution obtained by MLSHPM for Ex-
ample 5.1 and Example 5.2 respectively when q = 0.75 and
r = 1. In Fig. 3 and Fig. 6, we plot the solution obtained
by MLSHPM for Example 5.1 and Example 5.2 respectively
when q = r = 1. The graphs are plotted in the region Ω where
Ω = {(x, t) :−40≤ x≤ 40, 0.2≤ t ≤ 40,x, t ∈ R}.

Table 1
Numerical values of the solution obtained by MLSHPM and the exact solution
for Example 5.1 when r = 1.

x t
q = 0.5 q = 0.75 q = 1

u(x, t)
MLSHPM

u(x, t)
MLSHPM

u(x, t)
MLSHPM

u(x, t)
Eact

0.25 0.20 -0.57638 -0.03872 0.33750 0.33750
0.40 -1.20345 -0.70430 -0.26250 -0.26250
0.60 -1.68460 -1.28781 -0.86250 -0.86250

0.75 0.20 -1.07638 -0.53872 -0.16250 -0.16250
0.40 -1.70345 -1.20430 -0.76250 -0.76250
0.60 -2.18462 -1.78781 -1.36250 -1.36250

Table 2
Numerical values of the approximate and exact solutions to Example 5.2 for
different values of x, t and q .

x t
q = 0.5 q = 0.75 q = 1

u(x, t)
MLSHPM

u(x, t)
MLSHPM

u(x, t)
MLSHPM

u(x, t)
Eact

0.25 0.20 -0.22865 -0.06342 0.04877 0.04877
0.40 -0.50949 -0.31825 -0.16183 -0.16183
0.60 -0.81001 -0.60566 -0.41907 -0.41907

0.75 0.20 0.25479 0.35501 0.42305 0.42305
0.40 0.08445 0.20044 0.29531 0.29531
0.60 -0.09782 0.02612 0.13929 0.13929

Out[23]=

Fig. 1. The graph of the solution for Example 5.1 when q = 0.5 and
r = 1

.

Fig. 2. The graph of the solution for Example 5.1 when q = 0.75
and r = 1

Fig. 3. The graph of the solution for Example 5.1 when q = 1 and
r = 1
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Fig. 4. The graph of the solution for Example 5.2 when q = 0.5
.

Fig. 5. The graph of the solution for Example 5.2 when q = 0.75

Fig. 6. The graph of the solution for Example 5.2 when q = 1

7. Conclusions
In this paper, a new modification of LSHPM for solving
FPDEs in full general set was introduced. The solutions
obtained by this modification were in excellent agreement
with those obtained via previous works and also they were in
very good conformity with the exact solution to confirm the
effectiveness and accuracy of the proposed modification. We
used Mathematica software to obtain the numerical solutions
and plotting the graphs.
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