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Effect of space and temperature dependent internal
heat generation/absorption on Casson fluid flow in
the presence of an inclined magnetic field
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Abstract
The present study focuses on the inclined magnetic field effect on Casson fluid flow over a stretching sheet with
non-uniform heat source/sink. The velocity slip boundary conditions are considered. A similarity transformation
of governing equation is used to reduce into a non-dimensional form. The flow and thermal equations are derived
and solved analytically by using confluent hypergeometric function and numerically by using shooting iteration
technique together with Runge-Kutta fourth order. Results for various flow characteristics are presented through
graphs. It is found that increasing the values of the inclined magnetic field enhances the thermal boundary
layer. Also observed that the increasing value of non-uniform heat source/sink parameter increase the thermal
boundary layer thickness.
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1. Introduction
The Casson fluid model is one of the most commonly used
rheological model and has certain advantages over non- New-
tonian fluid models. This was first introduced by Casson in
1995. Casson fluid exhibits yield stress. When yield stress is
dominant in contrast to shear stress this model exhibits solid
like behaviour and deformation occurs when yield stress is

less significant as compared to shear stress. Some examples
of Casson fluid are as follows, honey, tomato sauce, soup,
jelly, concentrated fruit juices, etc. Human blood can also be
treated as Casson fluid. In recent years, several researchers
have investigated the Casson fluid flow problem with various
physical effects [1-5]. The magnetohydrodynamics flow and
heat transfer for a viscous fluid has enormous applications
in many engineering problems such as MHD power genera-
tors, petroleum industries, plasma studies, geothermal energy
extractions, the boundary layer control in the field of aerody-
namics and many others. The application of MHD principle is
an important method for affecting the flow field in the desired
direction by altering the structure of the boundary layer[6-16].

Hence, main objective of the present article is to study
non-uniform heat source/sink effects of Casson fluid in the
presence of inclined magnetic field over a stretching sheet in
the existence of thermal radiation and velocity slip boundary
condition is investigated. Both analytical and numerical solu-
tions are obtained for the transformed ODE’s of momentum
and energy PDE’s using confluent hypergeometric function
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and fourth order Runge- Kutta method with shooting tech-
nique respectively.

2. Mathematical formulation
Consider a steady, laminar, two-dimensional boundary layer
flow of an incompressible, Casson fluid over a stretching
sheet. Aligned magnetic field of strength B0 applied along
y direction, with acute angle anγ . At γ = 90o this magnetic
field acts like transverse magnetic field (because sin(90o) =
1). The rheological equation of state for an isotropic and
incompressible flow of a Casson fluid is

τi j =

{
2(µB + py/

√
2π)ei j,π > πc

2(µB + py/
√

2πc)ei j,π < πc
Here, π = ei jei j and

ei j are the (i, j) th component of the deformation rate, π is the
product of the component of deformation rate with itself, πc
is a critical value of this product based on the non-Newtonian
model, µB is plastic dynamic viscosity of the non-Newtonian
fluid, and py is the yield stress of the fluid.

2.1 Flow Analysis
The equation governing the problem under consideration is
given by

ux + vy = 0 (2.1)

uux + vuy = ϑ
(
1+β

−1)uyy

−
σB2

0
ρ

u sin2
γ (2.2)

where u and v are the velocity components of x and y direction,
respectively, ϑ is the kinematic viscosity, ρ is the fluid density,
β = µB

√
2πc/py is the parameter of the Casson fluid and σ

is the electrical conductivity. The boundary conditions for the
velocity field are of the form

u = ax+ l
∂u
∂y

, v = vw at y = 0,

u→ 0 as y→ ∞ (2.3)

We introduce the subsequent conventional similarity trans-
formation and dimensionless variables η and f (η)

u = ax fη , v =−(aϑ)
1
2 f , η =

( a
ϑ

) 1
2

y (2.4)

Using (4), (1) is trivially satisfied and (2) and (3) take the
form: (

1+
1
β

)
fηηη + f fηη − f 2

η +Mnsin2
γ fη = 0 (2.5)

with corresponding boundary conditions

f = 0, fη = 1+L fηη , at η = 0,
fη → 0 as η → ∞ (2.6)

The subscript η denotes differentiation with respect to η .

Here Mn =
σB2

0
ρa

is the magnetic parameter. L = l
√

a
ϑ

is the

slip parameter.

The solution of (5) subject to boundary conditions is (6)
can be found in the form,

f (η) = X
(

1− e−αη

α

)
(2.7)

Where

X =
1

Lα +1
α =− 1

3L −
21/3α1

3L(1+β )

(
α2+

√
(α2

2+4α3
1)

1/3
)

+
α2+

√
(α2

2+4α3
1)

1/3

3(2)1/3(L+Lβ )

α1 =−(1+β )2−3LMnβ (L+Lβ )sin2γ

α2 =−2−6β +27L2β −6β 2 +54L2β 2

−2β 3 +27L2β 3 +18L2Mnβ sin2γ

+36L2Mβ 2sin2γ +18L2Mnβ 3sin2γ

The wall shearing stress on the surface of the stretching sheet
is given by

τw =

[
v
(

∂u
∂y

)]
y=0

(2.8)

The local skin friction coefficient is given by

C f =
τw

ρuw2 = Rex
−1/2

(
1+

1
β

)
fηη (0) (2.9)

where Rex =
xuw

ϑ
is the Reynolds number.

2.2 Heat Transfer Analysis
The governing thermal boundary layer equation of incom-
pressible Casson fluid are stated as follows:

ρcp(uTx + vTy) = kTyy−qry +q
′′′

(2.10)

where k is the thermal conductivity, ρ is the density, T is the
temperature and cp is the specific heat of constant pressure.

q
′′′

is the space and temperature dependent internal heat
generation/absorption (non-uniform heat source/sink) which
can be expressed in simplest form as

q
′′′
=

(
kuw(x)

xν

)
[A∗(Tw−T∞) fη +B∗(T −T∞)] (2.11)

where A∗ and B∗ are parameters of the space and temperature
dependent internal heat generation/absorption. It is to be noted
that A∗ > 0 and B∗ > 0 correspond to internal heat generation
while A∗ < 0 and B∗ < 0 correspond to internal absorption.

The Rosseland diffusion approximation for radiation heat
flux has given by

qr =−
4σ∗

3k∗
∂T 4

∂y
, (2.12)

where σ∗ is the Stefan-Boltzmann constant and k∗ is the mean
absorption coefficient. Further, we assume that the tempera-
ture difference within in flow is such that T 4 may be expanded
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in a Taylor series. Hence expanding T 4 about T∞ and neglect-
ing higher order terms we get

T 4 ∼= 4T∞
3T −3T 4

∞ . (2.13)

The boundary conditions are given by

T = Tw = T∞ +A( x
l )

2 at y = 0,
T → T∞ as y→ ∞

(2.14)

where Tw is the temperature of the sheet, T∞ is the temperature
of the fluid far away from the sheet and l is the characteristic
length. Define the non-dimensional temperature θ(η) as

(Tw−T∞)θ(η) = T −T∞. (2.15)

Now, we make use of the transformations given by (4), (11),
(12), (15) in (10). This leads to the non dimensional form of
temperature equation as follows:

ωθηη +Pr f θη −2Pr fη θ +A∗ fη +B∗θ = 0, (2.16)

where Pr =
µcp

k
is the Prandtl number, N =

k∗k
4σ∗T∞

3 is radi-

ation parameter and ω =

(
3N +4

3N

)
.

Consequently the boundary conditions in (14) take the
form,

θ(η) = 1 at η = 0,
θ(η)→ 0 as η → ∞.

(2.17)

The solution of (16), subject to boundary conditions in
(17) can be obtained in terms of confluent hypergeometric
function as

θ(η) = c1e−α

(
a0+b0

2

)
η

×M
(

a0+b0−4
2 ,1+b0,

−Pr
ωα2 Xe−αη

)
c2e−αη − c3e−2αη

(2.18)

where a0 = Pr
(

X
ωα2

)
,

b0 =

√
a2

0−
4B∗

ωα2 ,

c3 =
A∗X

ωα2
(

1−a0 +
B∗

ωα2

)
c2 =

A∗X2Pr

ω2α4
(

1−a0 +
B∗

ωα2

)(
4−2a0 +

B∗
ωα2

)
c1 =

1+ c2 + c3

M
(

a0+b0−4
2 ,1+b0,

−Pr
ωα2 X

)
The non-dimensional wall temperature gradient obtained

as follows:

θη (0) = −c1α

(
a0 +b0

2

)
×M

(
a0 +b0−4

2
,1+b0,

−Pr
ωα2 X

)
+c1

PrX
ωα

(
a0 +b0−4
2(1+b0)

)
M
(

a0 +b0−2
2

,2+b0,
−Pr
ωα2 X

)
+c2α +2c3α

The local heat flux can be expressed as

qw =−
(

k+
16σ∗T 3

∞

3kk∗

)(
∂T
∂y

)
y=0

=−k
√

a
ν
(Tw−T∞)

(
3N +4

3N

)
θη (0) . (2.19)

The local Nusselt number is defined as

Nux =
qwx

k (Tw−T∞)
.

In the present case it is derived as

NuxRe−1/2
x =−θη(0)

(
3N +4

3N

)
.

3. Numerical Analysis
Employing the R.K method with shooting technique to the
non dimensional ODEs along with boundary conditions, the
numerical solution are obtained for different set of parameters.
We have compared the values of −θη(0) with these of Turky-
ilmazoglu [12] for Newtonian fluid (β → ∞) in the absence
of aligned angle, velocity slip, non-uniform heat source/ sink
and radiation parameters. The comparison is found to be in
good agreement as shown in Table 1.

4. Results and Discussion
Fig. 1 shows the effect of magnetic parameter and angle
parameter on velocity profile. It is noted that the rising of
magnetic parameter reduces the velocity profile. This is due
to the fact the increase in magnetic parameter, Lorentz force
increases and it produces more resistance to the flow. The
presence of inclined magnetic field leads to decrease the mo-
mentum boundary layer thickness. Effects of Casson param-
eter and slip parameter on velocity profile are plotted in Fig.
2. It is clear from the figure both parameters decrease the
momentum boundary layer. Because, when slip occurs, the
flow velocity near the sheet is no longer equal to the stretch-
ing velocity of the sheet. With the slip velocity increases and
consequently fluid velocity decreases because under the slip
condition, the pulling of the stretching sheet can be only partly
transmitted to the fluid.
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The effect of magnetic and angle parameters on the tem-
perature profile is presented in Fig. 3. Due to enhancement of
magnetic field strength, a resistive type force called Lorentz
force associated with the aligned magnetic field makes the
boundary layer thinner. Magnetic field lines of force move
past the stretching sheet at the free stream velocity. The tem-
perature profile increases with the increase of magnetic field.
The combined effect of magnetic and aligned angle parameter
increases the thermal boundary layer thickness. Fig. 4 demon-
strates the effect of Casson and slip parameters on temperature
profiles. The combined effects of Casson and slip parameters
lead to increase the thickness of thermal boundary layer.

The effect of non-uniform heat source/sink with slip pa-
rameters is illustrated in Fig. 5. The temperature rises in the
case of A∗ > 0 and B∗ > 0 heat source and gets reduce in the
case of A∗ < 0 and B∗ < 0, heat sink. The combined effect of
slip parameter with non-uniform heat source/sink parameters
always lead to thickening of the thermal boundary layer.

Fig. 6 depicts the effect of Prandtl number and radiation
parameter on temperature profile. The temperature profile
decreases with the increasing values of radiation parameter
and same trend is observed on the Prandtl number. This is due
to the fact that thermal boundary layer thickness decreases as
radiation and Prandtl number as increases.

Fig. 7 shows the combined effects of magnetic field with
aligned angle, Casson parameter and the slip parameter on the
local skin friction coefficient. The magnetic parameter Mn is
taken as x-axis and the local skin friction coefficient is taken
as y-axis. It is clear that the local skin friction decreases with
the increasing values of Mn and γ . The local skin friction
coefficient enhances with the slip and Casson parameter and
reduces with magnetic parameter.

Effect of non-uniform heat source/sink parameters A∗ and
B∗ on the local Nusselt number are shown in Fig. 8. The
magnetic parameter Mn is taken as x-axis and the local Nusselt
number is taken as y-axis. The combined effect of magnetic
parameter and non-uniform heat source/sink parameter are
reducing the local Nusselt number.

5. Conclusion
Aligned magnetic field effects on Casson fluid flow over a
stretching sheet with non-uniform heat source/sink. Both
analytical and numerical solutions are obtained for governing
momentum and energy equations and the following specific
results are obtained.

• The velocity of the non-Newtonian fluid reduces with
the increasing aligned angle of magnetic field, Casson
parameter, slip parameter and magnetic parameter.

• The inclined angle of the magnetic field plays a vital
role in controlling the magnetic field strength and the
effects of Lorentz force on the Casson fluid flow region.

• The temperature profile enhances with the increasing
values of aligned angle of magnetic field, Casson param-
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Figure 1. Effect of Slip and Casson parameters on velocity
profile fη(η) with L = 2,β = 0.5,Mn = 1 and γ = 450 .
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Figure 2. Effect of magnetic and angle parameters on
velocity profile fη(η) with L = 2,β = 0.5,Mn = 1 and
γ = 450 .
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Figure 3. Effect of Slip and Casson parameters on
temperature profile θ(η) with L = 0.2,β = 0.3,N = 5,A∗ =
0.1,B∗ = 0.1,Pr = 0.71,Mn = 0.4 and γ = 450 .
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Figure 4. Effect of magnetic and angle parameters on
temperature profile θ(η) with L = 0.2,β = 0.3,N = 5,A∗ =
0.1,B∗ = 0.1,Pr = 0.71,Mn = 0.4 and γ = 450 .
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Figure 5. Effect of A∗ and B∗ parameters on temperature
profile θ(η) with L = 0.2,β = 0.3,N = 5,A∗ = 0.1,B∗ =
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Figure 6. Effect of Prandtl number and radiation parameter
on temperature profile θ(η) with L = 0.2,β = 0.3,N =
5,A∗ = 0.1,B∗ = 0.1,Pr = 0.71,Mn = 0.4 and γ = 450 .
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eter, velocity slip parameter, magnetic and non- uniform
heat source/sink parameters and decreases with Prandtl
number and radiation parameter.

• An enhancement in the aligned angle of magnetic field
decreases the local skin friction.

• The non-uniform heat source/sink parameter decreases
the local Nusselt number.

Table 1. Comparison of −θη(0)
Mn Pr Turkyilmazoglu [8] Analytical Numerical
0 1 1.33333 1.33333 1.33333

5 3.31648 3.31648 3.31648
1 1 1.21577 1.21577 1.21577

5 ——– 3.20720 3.20720
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