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The Q1-matrix completion problem
Kalyan Sinha

Abstract
A matrix is a Q1-matrix if it is a Q-matrix with positive diagonal entries. A digraph D is said to have Q1-completion
if every partial Q1-matrix specifying D can be completed to a Q1-matrix. In this paper, necessary and sufficient
conditions for a digraph to have Q1-completion are obtained. Later on the relationship among the completion
problem of Q1-matrix and some other class of matrices are discussed. Finally, the digraphs of order at most
four that include all loops and have Q1-completion are characterized.
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1. Introduction
A real n× n matrix B = [bi j ] is a Q-matrix if for every k ∈
{1,2, . . . ,n}, Sk(B) > 0, whereSk(B) is the sum of allk× k
principal minors ofB. The matrixB is Q1-matrix if all di-
agonal entries are positive and for everyk ∈ {1,2, . . . ,n},
Sk(B) > 0. Clearly aQ1-matrix is aQ-matrix but not con-
versely.

A number of researchers studied matrix completion prob-
lems for different classes of matrices ([5–10]). TheP0-matrix
andP0,1-completion are studied in [7, 11]. A realn×n matrix
B1 is aP0-matrix (P-matrix) if every principal minor ofB1 is
nonnegative (positive). The matrixB1 is a P0,1-matrix if all
diagonal entries ofB1 are positive andB1 is itself aP0-matrix.
In 2009, DeAlbaet al. [2] solved theQ-matrix completion
problem. In this paper it is seen that the property of being a
Q-matrix is not inherited by principal submatrices, thus the
Q-matrix completion problem is significantly different from
the completion problems studied earlier. One may see [3] for
a survey of matrix completion results.

A partial matrix is a rectangular array of numbers in which
some entries are specified, while others are free to be chosen.
For α ⊆ {1, . . . ,n}, the principal submatrixB[α] is obtained
by deleting fromB all rows and columns whose indices are
not in α. A principal minor is the determinant of a princi-
pal submatrix. Apattern for n× n matrices is a subset of
{1, . . . ,n}×{1, . . . ,n}. A partial matrixspecifies a patternif
its specified entries lie exactly in those positions listed in the
pattern.

For a given classΓ of matrices (e.g.,P0, P or Q-matrices)
a partial Γ-matrix is a partial matrix for which the specified
entries satisfy the properties of aΓ-matrix. Thus, apartial
Q-matrix is a partial matrixM in whichSk(M) > 0 for every
k∈ {1,2, . . . ,n} for which allk×k principal submatrices are
fully specified. Similarly apartial Q1-matrix is a partialQ-
matrix with all specified positive diagonal entries.

A completionof a partial matrix is a specific choice of val-
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ues for the unspecified entries. Amatrix completion problem
asks which partial matrices have completions with a given
property. AΓ-completionof a partialΓ-matrix M is a com-
pletion ofM which is aΓ-matrix. TheΓ-matrix completion
problemstudies the properties and classifications of patterns
havingΓ-completions.

1.1 Digraphs
It is observed from the history of matrix completion prob-
lems that Graph theory and Matrix completion problems are
correlated with each other. Graph theoretic techniques are
seen to be very fruitful to solve the matrix completion prob-
lems. Any standard reference, for example, [1] and [4] can
be use for graph theoretic terminologies. Adirected graph
or digraph D= (VD,AD) of ordern> 0 is a finite nonempty
setVD, with |VD|= n of objects calledverticestogether with
a (possibly empty) setAD of ordered pairs of vertices, called
arcsor directed edges. We writev∈ D (resp. (u,v) ∈ D) to
imply v∈VD (resp.(u,v) ∈ AD). If x= (u,u), thenx is called
a loopat the vertexu.

A symmetric edgeof D is a pair of arcs{(u,v),(v,u)} ⊂
AD, usually written as{u,v}. A (directed) u-v path Pof
lengthk≥ 0 inD is an alternating sequence(u= v0,x1,v1, . . . ,
xk,vk = v) of vertices and arcs, wherevi , 1 ≤ i ≤ k, are
distinct vertices andxi = (vi−1,vi). Then, the verticesvi

and the arcsxi are said to be onP. Further, if k ≥ 2 and
u = v, then au-v path is acycleof lengthk. We then write
Ck = 〈v1,v2, . . . ,vk〉 and callCk a k-cycle inD.

A cycle C is even(resp. odd) if its length is even (resp.
odd). A digraphH = (VH ,AH) is asubdigraph of order kof
the digraphD if |VH |= k andVH ⊆VD, AH ⊆ AD. A digraph
D is said to be connected (resp. strongly connected) if for
every pairu,v of vertices,D contains au-v path (resp. both
a u-v path and av-u path). The maximal connected (resp.
strongly connected) subdigraphs ofD are calledcomponents
(resp.strong components) of D.

A subdigraphH of D is an induced subdigraphif AH =
(VH ×VH)∩AD (induced by VH) and is aspanning subdigraph
if VH =VD. Again forv∈VD, D− v denotes the subdigraph
of D induced byVD \{v}. Thecomplement of a digraph Dis
the digraphD, whereVD =VD and(v,w) ∈ AD if and only if
(v,w) /∈ AD. A digraphD is said to besymmetricif (u,v) ∈ D
implies (v,u) ∈ D. On the other hand,D is asymmetricif
(u,v) ∈ D implies(v,u) /∈ D. A complete symmetric digraph
on n vertices, denoted byKn, is the digraph having all possi-
ble arcs (including all loops).

Two digraphsD1 = (V1,A1) and D2 = (V2,A2) are iso-
morphic, if there is a bijectionφ : V1 → V2 such thatA2 =
{(φ(u),φ(v)) : (u,v) ∈ A1}. An unlabelleddigraph is an
equivalent class of isomorphic digraphs. Choosing a particu-
lar member of an unlabelled digraph is referred as alabelling
of the unlabelled digraph.

1.2 Digraphs with matrices
Let π be a permutation of a nonempty finite setV. The di-
graphDπ = (V,Aπ), whereAπ = {

(
v,π(v)

)
: v∈V} is called

a permutation digraph. Clearly, each component of a permu-
tation digraph is a loop or a cycle.

A permutation subdigraph H(of orderk) of a digraphD
is a permutation digraph that is a subdigraph ofD (of orderk).
A digraphD is stratifiedif D has a permutation subdigraph of
orderk for everyk = 2,3, . . . , |D|. A digraphD is said to be
pseudo-stratified if there exist a vertexv in D such thatD−v
is stratified.

Let B= [bi j ] be ann×n matrix. We have

det(B) = ∑(sgnπ)b1π(1) · · ·bnπ(n) (1.1)

where the sum is taken over all permutationsπ of 〈n〉 =
{1,2, . . . ,n}.

A signing of a digraph is an assignment of a sign+ or−
to each arc of the digraph. The result of signing of a digraph
is called asigned digraph. For an arce∈ D, bys(e) we mean
e has signs(e).

For ak-cycle inCk in D, the signs(Ck) is defined to be,

s(Ck) = (−1)k+1 ∏
e∈Ck

s(e)

For a permutation subdigraphK of D, the signs(K) of K
is

s(K) = ∏
C∈K

s(C)

2. Partial Q1-matrix and the Q1-matrix
completion problem

A partial Q1-matrix is a partialQ-matrix in which all spec-
ified diagonal entries are positive i.e. apartial Q1-matrix is
a partial matrixM with all specified positive diagonal entries
andSk(M)> 0 for everyk∈ {1,2, . . . ,n}, whenever allk×k
principal submatrices are fully specified. Now, a partialQ1-
matrix is characterized as follows.

Proposition 2.1. Suppose M= [ai j ] is a partial matrix. Then
M is a partial Q1-matrix if and only if exactly one of the fol-
lowing holds:
(i) At least one diagonal entry of M is unspecified, all speci-
fied diagonal entries are positive.
(ii) All diagonal entries are specified and positive; at least
one off-diagonal entry is unspecified.
(iii) All entries of M are specified and M is a Q1-matrix.

A completionB of a partialQ1-matrix M is called aQ1-
completionof M, if B is aQ1-matrix. Since any matrix which
is permutation similar to aQ1-matrix is aQ1-matrix, it is
evident that if a partialQ1-matrixM has aQ1-completion, so
does any partial matrix which is permutation similar toM.

It can be easily seen that any partial matrixM with all un-
specified diagonal entries hasQ1-completion. A completion
can be obtained by choosing sufficiently large values for the
unspecified diagonal entries. LetM be a partialQ1-matrix in
which the diagonal entries at(i, i) positions(i = k+1, . . . ,n)
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are unspecified. In caseM[1, . . . ,k] is fully specified,M may
not have aQ1-completion. For example, the partial matrix,

M =




1 1 1
1 1 1
1 1 ?


 ,

where ? denotes an unspecified entry, does not haveQ1-completion.
Indeed, for any completionB of M, S3(B) = 0. On the other
hand, if M[1, . . . ,k] has an unspecified entry and has aQ1-
completion, thenM has aQ1-completion. A completion of
M can be obtained by choosing sufficiently large values for
the unspecified diagonal entries. These above observations
are listed in the following results.

Theorem 2.2. If a matrix M omits all diagonal entries, then
M has Q1-completion.

Proof. SupposeM = [ai j ] be a partialQ1-matrix. For any
t > 1, consider a completionB = [bi j ] of M by setting all
diagonal entries equal tot and rest of the off diagonal entries
to be equal to zero. Then, anyk× k principal minor will be
of the formtk+ p(t), wherep(t) is a polynomial of degree
≤ k−1. Now by choosingt large enough, we haveSk(B)> 0
for all k× k principal minors ofB. Since only finitely many
principal minors are to be considered, thus for sufficiently
larget, M hasQ1-completion.

Theorem 2.3. Suppose M be a partial Q1-matrix in which
the diagonal entry at(r +1, r +1) position is unspecified. If
the principal submatrix M[1, . . . , r] of M is not fully specified
and has Q1-completion, then M has Q1-completion.

Proof. SupposeM = [ai j ] be a partialQ1-matrix in which the
diagonal entry at(r +1, r +1) position is unspecified. Then,
M is of the form,

M =

[
M11 M12

M21 M22

]
,

where,M11 = M[1, . . . , r] andM22 = M[r +1, r +1].
Let A1 be theQ1-matrix completion ofM[1, . . . , r]. Then,

M′ =

[
A1 M12

M21 M22

]
,

is a partialQ1-matrix, sinceM22 has an unspecified diagonal
entry. Now fort > 0, consider a completionB= [bi j ] of M′

obtained by choosingbii = t, i = r+1 andbi j = 0 against all
other unspecified entries inM′. ThenB is of the form,

B=

[
A1 B12

B21 t

]
.

SinceA1 is a Q1-matrix, Si(A1) > 0 for 1≤ i ≤ r. For 2≤
j ≤ r +1,

Sj(B) = Sj(A1)+ tSj−1(A1)+ sj ,

wheresj is a constant. NowSj(B) > 0 for sufficiently large
values oft and clearlyB is Q1-matrix.

Corollary 2.4. Suppose M be a partial Q1-matrix in which
the diagonal entries at(i, i) positions(i = r + 1, . . . ,n) are
unspecified. If the principal submatrix M[1, . . . , r] of M is
not fully specified and has Q1-completion, then M has Q1-
completion.

The converse of Corollary2.4 is not true which can be
seen from the following example.

Example 2.5. Consider the partial matrix,

M =




d1 a12 a13 ?

a21 d2 ? ?

a31 a32 d3 ?

a41 ? ? ?



,

where?denotes the unspecified entries. We show that for any
choice of values of the specified entries M has Q1-completions,
though there are occasions when M[1,2,3] need not have Q1-
completion. For t> 0, consider the completion B(t) of M
defined as follows:

B(t) =




d1 a12 a13 0

a21 d2 t 0

a31 a32 d3 t

a41 t −t t



.

Then,

S1(B(t)) = t +∑di ,

S2(B(t)) = t2+ f1(t),

S3(B(t)) = t3+ f2(t),

S4(B(t)) = d1t
3+ f2(t),

where fi(t) is a polynomial in t of degree at most i, i = 1,2.
Consequently, B(t) is a Q1-matrix for sufficiently large t, and
therefore M has Q1-completion. On the other hand, the par-
tial Q1-matrix

M[1,2,3] =




1 1 1
1 1 ?
1 1 1


 ,

with unspecified entries?, is the principal submatrix of M
induced by its diagonal{1,2,3}. Now one can verify that
M[1,2,3] does not have Q1-completion, becausedet(M[1,2,3])=
0 for any completion of M[1,2,3].

3. Digraphs and Q1-completions

It can be easily seen that ann×n partial matrixM specifies
a digraphD = (〈n〉,AD) if for 1 ≤ i, j ≤ n, (i, j) ∈ AD if and
only if the (i, j)-th entry ofM is specified. For example, the
partialQ1-matrix M in Example2.5 specifies the digraphD
in Figure1.
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Theorem 3.1. Suppose M is a partial Q1-matrix specifying
the digraph D. If the partial submatrix of M induced by
every strongly connected induced subdigraph of D has Q1-
completion, then M has Q1-completion.

Proof. We prove the result for the case whenD has two strong
componentsD1 andD2. The general result will then follow
by induction. By a relabeling of the vertices ofD, if required,
we have

M =

[
M11 M12

X M22

]
,

whereMii is a partialQ1-matrix specifyingDi , i = 1,2, and
all entries inX are unspecified. By the hypothesis,Mii has a
Q1-completionBii . Consider the completion

B=

[
B11 B12

B21 B22

]
,

by choosing all entries inX as well as all unspecified entries
in M12 as 0. Then, for 2≤ k≤ |D| we have,

Sk(B) = Sk(B11)+Sk(B22)+
k−1

∑
r=1

Sr(B11)Sk−r(B22)≥ 0,

Here, we meanSk(Bii ) = 0 wheneverk exceeds the size of
Bii . ThusM can be completed to aQ1-matrix.

The proof of the following result is similar.

Theorem 3.2. Suppose M is a partial Q1-matrix specifying
the digraph D. If the partial submatrix of M induced by
each component of D has a Q1-completion, then M has a
Q1-completion.

The converse of Theorem3.1is not true. For example, ev-
ery partialQ1-matrix specifying the digraphD in Figure1has
Q1-completion, although the strong componentD′ induced
by vertices{1,2,3} does not haveQ1-completion (see Exam-
ple 3.3).

Example 3.3. Consider the digraph D in the Figure1. We
show that D has Q1-completion, but the strong component D′

induced by vertices{1,2,3} does not have Q1-completion.

b

4
b

3

b
2

b1

Figure 1. The DigraphD

Let M= [ai j ] be a partial Q1-matrix specifying D. Then
for t > 0, M can be completed to a Q1-matrix B(t) but the
principal submatrix induced by the digraph D′ i.e. M[1,2,3]
does not have Q1-completion (see Example2.5). To see that

M[1,2,3] does not have Q1-completion, consider the partial
Q1-matrix

M[1,2,3] =




1 1 1
1 1 x
1 1 1


 ,

with unspecified entry x. Then for any Q1-completion B of
M[1,2,3], we have S3(B) = 0 and hence M[1,2,3] does not
have Q1-completion.

The property of havingQ1-completion is not inherited by
induced subdigraphs. This can be also seen from the Exam-
ple2.5.

4. The Q1-matrix completion problem

We say that a digraphD hasQ1-completion, if every par-
tial Q1-matrix specifyingD can be completed to aQ1-matrix.
TheQ1-matrix completion problemaims at studying and clas-
sifying all digraphsD which haveQ1-completion.

The property of being aQ1-matrix is preserved under sim-
ilarity and transposition, but it is not inherited by principal
submatrices, as it can easily be verified. Also it is clear that
if a digraphD hasQ1-completion, then any digraph which is
isomorphic toD hasQ1-completion.

4.1 Sufficient conditions for Q1-matrix completion
Theorem 4.1. If a digraph D6=Kn of order n has Q1-completion,
then any spanning subdigraph of D has Q1-completion.

Proof. SupposeH be a spanning subdigraph ofD andMH

be a partialQ1-matrix specifying the digraphH. Consider a
partial matrixMD obtained fromMH by specifying the entries
corresponding to(i, j) ∈ AD \AH as 0. SinceD 6= Kn, by
Proposition2.1, MD is a partialQ1-matrix specifyingD. Let
B be aQ1-completion ofMD. Clearly,B is aQ1-completion
of MH .

Theorem 4.2. Suppose D6= Kn be a digraph such thatD is
stratified. If it is possible to sign the arcs ofD so that the sign
of every cycle is of positive sign, then D has Q1-completion.

Proof. SupposeM be a partialQ1-matrix specifying the di-
graphD. For anyt > 0, consider a completionB of M by
choosing the unspecified entryxi j = sgn(i, j)t (using the sign
of the arc inD). Then for eachk= 2,3, . . . ,n, we have,

Sk(B) = ckt
k+ rk(t)

whereck is the number of permutation subdigraphs of order
k in D and rk(t) is a polynomial of degree less thank. If
D contains all loops, then the trace of any partialQ1-matrix
specifyingD is positive; ifD omits a loop, thenS1(B) = c1t+
r0, wherec1 is the number of loops inD andr0 ∈ R. Now by
choosingt sufficiently large,B becomes aQ1-matrix.

Example 4.3. Consider the digraph D0 and its complement
D0 in Figure 2. It can be easily seen that the digraphD0 is
stratified. Also it is possible to sign the arcs ofD0 so that
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Figure 2. The DigraphsD0 andD0

every cycle inD0 is of positive sign. Thus by Theorem4.2,
the digraph D0 has Q1-completion.

However the converse of the Theorem4.2is not true which
can be seen from the Example4.6. Although the complement
of the digraphD̂ is not stratified, but it hasQ1-completion
[See Example4.6].

Corollary 4.4. Suppose D6=Kn be a digraph such thatD has
a stratified spanning subdigraph D1. If D1 has a signing in
which the sign of every cycle is+, then D has Q1-completion.

Theorem 4.5. Suppose D6= Kn be a digraph with all loops
such thatD is pseudo-stratified. If it is possible to sign the
arcs ofD so that the sign of every cycle is of positive sign,
then D has Q1-completion.

Proof. Let M = [ai j ] be a partialQ1-matrix specifying the
digraphD. SinceD is pseudo-stratified, there exists a subdi-
graphD1 of D of ordern−1 such thatD1 is stratified. Sup-
poseD1 is obtained fromD by deleting a vertex sayv1 in D
i.e. D1 =D−v1. Fort > 0, consider a completionB(t) = [bi j ]
of M by choosing the unspecified entries as following:

bi j =

{
sgn(i, j)t, for all (i, j) ∈ D1

0, otherwise.

wheresgn(i, j) denotes the sign of the arcs ofD. SinceM
is a partialQ1-matrix with all specified diagonal entries, thus
di > 0,∀ i = 1,2, . . . ,n. Now we have,

Sk(B) = ckt
k+ fk(t), k∈ {2,3, . . . ,n−1}

Sn(B) = d1cn−1t
n−1+ fn−1(t)

whereck is the number of permutation subdigraphs of order
k in D and fk(t) is a polynomial of degree less thank. Now
choosing a sufficiently large value oft, we haveSk(B) >
0, ∀ k∈ {1,2, . . . ,n} and henceB(t) is Q1-matrix.

Example 4.6. Consider the digrapĥD 6= K4 in Figure3. The

complement̂D of the digraphD̂ is not stratified althougĥD

has Q1-completion. SincêD is pseudo-stratified digraph of
order 4, thus it has a stratified subdigraph D1 of order 3

which is obtained by deleting the vertex2 from D̂. Now D̂

satisfies the statement of the Theorem4.5, henceD̂ has Q1-
completion. To see this consider a partial Q1-matrix

b

4
b

3

b
2

b
1

b

4
b

3

b
2

b
1

Figure 3. The DigraphŝD andD̂

M =




d1 a12 a13 ?
? d2 a23 ?
? a32 d3 ?
? ? ? d4


 ,

specifying the digrapĥD with unspecified entries as?. For
t > 0, consider a completion B of M as follows:

B=




d1 a12 a13 t
0 d2 a23 0
t a32 d3 −t
0 0 t d4


 .

Since M is a partial Q1-matrix, hence all di > 0 ∀ i = 1,2,3,4.
Now, we have,

S1(B) = d1+d2+d3+d4

S2(B) = t2+ f1(t)

S3(B) = t3+ f2(B)

S4(B) = d2t
3+ f2(B)

where fi(t) denotes a polynomial of t of total degree i. Now
sufficiently large values of t> 0, B becomes a Q1-matrix.

However the converse of the Theorem4.5is not true which
can be seen from the Example4.8.

Theorem 4.7. Every asymmetric digraph D has Q1-completion.

Proof. SupposeM = [ai j ] be a partialQ1-matrix specifying
the digraphD. SinceM is a partialQ1-matrix, thus the spec-
ified diagonal entries ofM are positive. Consider a comple-
tion B of M obtained by setting all unspecified diagonal en-
triesdi as 1 and all unspecified pairsxi j ,x ji to 0. We set all
otherxi j to−a ji and we have,

B=




d1 a12 a13 . . . a1n

−a12 d2 a23 . . . a2n

−a13 −a23 d3 . . . a3n

. . . . . . . . . . . . . . .
−a1n −a2n −a3n . . . dn



.
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Let D = diag[d1,d2, . . . ,dn]. ThenD > 0. We can writeB=
B0+D, whereB0 is a skew-symmetric real matrix. Since a
skew symmetric real matrix is aP0-matrix [7], henceSk(B0)≥
0 for everyk∈ {1,2, . . . ,n}. On the other hand, being a posi-
tive matrixD, we have∀k∈ {1,2, . . . ,n}, Sk(D)> 0 and as a
resultSk(B)> 0. Hence the result follows.

Example 4.8. Consider the digraph D2 in Figure4. The com-
plementD2 of D2 is neither stratified nor pseudo-stratified,
but it has Q1-completion by Theorem4.7.

b

4
b

3

b
2

b
1

b

4
b

3

b
2

b
1

Figure 4. The DigraphsD2 andD2

Example 4.9. The converse of the Theorem4.7 is not true
which can be seen from the Example3.3. Although the di-
graph D is not asymmetric, but the digraph D has Q1-completion.
From Example2.5, it is seen that any partial Q1-matrix M
specifying D can be completed to a Q1-matrix.

Corollary 4.10. A digraph D has Q1-completion if it does
not contain a cycle of even length.

Theorem 4.11. Suppose D6= K4 be a digraph with all loops.
SupposeD contains a2-cycle〈v1,v2〉 such that〈v1,v2〉 does
not form a permutation subdigraph of order4 with any 2-
cycle in D+ 〈v1,v2〉. Then D has Q1-completion.

Proof. SupposeM = [ai j ] be a partialQ1-matrix specifying
the digraphD. For anyt > 0, consider a completionB of M
by choosing the unspecified entries as following:

bi j =





t, if (i, j) = (v1,v2) ∈ D

−t, if (i, j) = (v2,v1) ∈ D

0, otherwise.

Then we have,

S1(B) = d1+d2+d3+d4

S2(B) = t2+ f1(t,ai j )

S3(B) = (d3+d4)t
2+ f1(t,ai j )

S4(B) = d3d4t
2+ f1(t,ai j ),

wheref1(t,ai j ) is a polynomial int of degree at most 1. Since
M is a partialQ1-matrix with all specified diagonal entries,
thus we haveS1(B) > 0. Now choosingt sufficiently large,

we haveSi(B)> 0 for all i = 2,3,4. Hence the result follows.

Example 4.12. Consider the digraph D3 in Figure 5. The
complementD3 of D3 contains a2-cycle〈1,3〉which does not
form a permutation subdigraph of order4 with any2-cycle
in D3+ 〈1,3〉. Thus by Theorem4.11, D3 has Q1-completion.
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Figure 5. The DigraphsD3 andD3

However the converse of the Theorem4.11 is not true
which can be seen from the Example4.8. Although the di-
graphD2 in Figure4 does not have 2-cycle butD2 hasQ1-
completion.

4.2 Necessary conditions for Q1-matrix completion
In this section we will discuss some necessary conditions for
a digraph to haveQ1-completion.

Theorem 4.13. If a digraph D 6= Kn of order n≥ 2 contains
two vertices v1 and v2 with indegree or outdegree n, then D
does not have Q1-completion.

Proof. Suppose a digraphD of ordern≥ 2 contains two ver-
ticesv1 andv2 with indegree or outdegreen. Consider a par-
tial Q1-matrix M specifyingD with all specified entries are
exactly 1. Then two columns or rows ofM are equal and for
any completionB of M, we have detB= 0. Hence the result
follows.

Theorem 4.14. Suppose D6= Kn be a digraph with all loops
such thatD is asymmetric. If D contains a2-cycle〈v1,v2〉,
then D does not have Q1-completion.

Proof. Suppose thatD has a 2-cycle〈v1,v2〉. Consider a
partial Q1-matrix M = [ai j ] specifyingD such thatdi = 1

(1≤ i ≤ n) andav1v2av2v1 >

(
n
2

)
and rest of all specified

entries are zero. LetB= [bi j ] be any completion ofM. Then

S2(B) = ∑
i6= j

did j −∑
i6= j

bi j b ji < − ∑
i, j /∈{v1,v2}

bi j b ji < 0,

and, therefore,B is not aQ1-matrix.

Example 4.15. Consider the digraph D4 in Figure 6. The
complementD4 of D4 is asymmetric and D4 has2-cycle〈1,3〉.
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Thus by Theorem4.14, D4 does not have Q1-completion. To
see this consider a partial Q1-matrix

M =




1 ? 10 0
0 1 ? 0
10 0 1 0
? ? ? 1


 ,

specifying the digraph D4. Then for any completion B of M,
we have S2(B) < 0. Hence, M cannot be completed to a Q1-
matrix.
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Figure 6. The DigraphsD4 andD4

5. Relationship theorems

5.1 Q-completion and Q1-completion
It is easily seen that aQ1 matrix is aQ-matrix but not vice
versa. Thus the completion problem of these two classes are
partially related.

Theorem 5.1. If a digraph D has Q-completion, then it must
also have Q1-completion.

Proof. SupposeD be a digraph that hasQ-completion and
M be a partialQ1-matrix specifying the digraphD. Thus
M is a partialQ-matrix specifying the digraphD. SinceD
hasQ-completion, thusM can be completed to aQ-matrixB.
Now if D includes all loops, then we are done i.e.B is aQ1-
matrix. If D omits at least one loop, thenM has atleast one
unspecified diagonal entry. Now we choose positive numbers
to those unspecified diagonal entries ofM. In that caseM is
also a partialQ-matrix and it can be completed to aQ-matrix
B which is also aQ1-matrix.

However the converse of the Theorem5.1is not true which
can be seen from the following example.

Example 5.2. The digraph D3 in Figure5has Q1-completion
(See Example4.12). But the digraph D3 does not have Q-
completion (By Theorem 2.8, [2]).

5.2 P-completion and Q1-completion
Since aP-matrix is aQ1-matrix, thus the completion problem
between these two classes are also partially related.

Theorem 5.3. Any asymmetric digraph that has P-completion
also has Q1-completion.

Proof. SupposeD be a asymmetric digraph that hasP-completion
andM be a partialQ1-matrix specifyingD. SinceD is asym-
metric, hence all principal submatrices ofM of order greater
than 1 are unspecified. Also being a partialQ1-matrix as well
asP-matrix, all specified diagonal entries inM are positive.
SinceM hasP-completion, thus consider aP-matrix comple-
tion B of M. Now B is also aQ1-completion ofM and hence
the result follows.

Theorem 5.4. Any asymmetric digraph has Q1-completion.

Proof. Since any asymmetric digraph hasP-completion [7],
thus by Theorem5.3 any asymmetric digraph also hasQ1-
completion.

6. Classification of digraphs of small
order having Q1-completion

Based on the obtained results in the previous sections, we
will classify the digraphs of order at most four that include
all loops as toQ1-completion in this section. Again per-
mutation similarity ofQ1-matrix implies that if a digraphD
hasQ1-completion, then any digraph which is isomorphic to
D hasQ1-completion. Thus any digraph which is obtained
by labelling the unlabelled digraph associated toD hasQ1-
completion.

The nomenclature of the digraphs considered in the se-
quel are indicated as per their order in the list in [4, Appendix,
pp. 233]. Here,Dp(q,n) is the one obtained by attaching a
loop at each of the vertices to then-th member in the list of
digraphs withp vertices andq (non-loop) arcs in the list.

We will classify the digraphs into a series of following
lemmas.

Lemma 6.1. For 1≤ p≤ 4, the digraphs Dp(q,n) which are
listed below do not have Q1-completion.

p= 3; q= 4; n= 3,4
q= 5; n= 1

p= 4; q= 6; n= 40,43
q= 7; n= 16,22,29,36
q= 8; n= 5,7,10,12,14,15,18,21,22,26,27
q= 9; n= 1,2,5,11,13
q= 10; n= 1–5
q= 11; n= 1.

Proof. Each of the digraph listed above satisfies the Theo-
rem4.13and hence the result follows.

Lemma 6.2. For 1≤ p≤ 4, the digraphs Dp(q,n) which are
listed below do not have Q1-completion.

p= 3; q= 4; n= 2
p= 4; q= 7; n= 31,33,34,37

q= 8; n= 16,17–19,20,23–25
q= 9; n= 4,12.

Proof. Each of the digraph satisfies the theorem4.14 and
hence the result follows.
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Lemma 6.3. For 1≤ p≤ 4, the digraphs Dp(q,n) which are
listed below do not have Q1-completion.

p= 4; q= 6; n= 2
q= 7; n= 4,5.
q= 8; n= 1,11.

Proof. Suppose

M =




1 1 1 ?
1 1 1 ?
1 1 1 ?
? ? ? 1


 ,

be a partialQ1 matrix specifying the digraphD4(6,2) with
unspecified entries as ?. ButM cannot be completed to a
Q1-matrix since for any completionB of M, we have detB=
0. Again any digraph listed in the Lemma6.3 contains the
digraphD4(6,2) as an induced subdigraph, hence the result
follows.

Theorem 6.4. For 1 ≤ p ≤ 4, the digraphs Dp(q,n) which
are listed below have Q1-completion.

p= 2; q= 0,1,2; n= 1
p= 3; q= 0,1; n= 1

q= 2,3; n= 1–4
q= 4,6; n= 1

p= 4; q= 0,1; n= 1
q= 2; n= 1–5
q= 3; n= 1–13
q= 4; n= 1–27
q= 5; n= 1–38
q= 6; n= 1,3–29,31–39,41,42,45–48
q= 7; n= 1–3,6–14,17–21,24–28,30,32,35,38
q= 8; n= 2–4,8,9
q= 9; n= 3
q= 12; n= 1.

Proof. It can be easily seen thatDp(q,n) hasQ1-completion
if q= 0 or it is a complete digraph.

The digraphsD2(q,n),q= 1,n= 1; D3(q,n),q= 1,n=
1; q= 2,n= 2–4;q= 3,n= 2,3 , D4(q,n),q= 1,n= 1; q=
2,n = 2–5; q = 3,n = 3–13; q = 4,n = 16–27;q = 5,n =
29–38;q = 6,n= 45–48 are asymmetric and hence each of
the digraph hasQ1-completion by Theorem5.4.

The digraphsD4(q,n),q= 2,n= 1; q= 3,n= 1–3; q=
4,n= 1–9,13; q= 5,n= 1–3,7–10,12,13,18,20,25,27;q=
6,n= 3–8;q= 7,n= 2; q= 8,n= 2 haveQ-completion (see
[2]) and by Theorem5.1, these digraphs haveQ1-completion.

The complement of each digraphD3(q,n),q= 2,n= 1; q=
3,n= 1,4; q= 4,n= 1 , D4(q,n),q= 4,n= 10–12,14,15; q=
5,n = 4–6,11,14–17,19,21–24,26,28; q = 6,n = 1,9,11,
16–22,24,25,27,28,31,33,34,37–39,41,42,44; q = 7,n =
6,11–13,17–20,30,32,35,38;q= 8,n= 13 is pseudo-stratified,
hence by Theorem4.5, they haveQ1-completion.

The digraphsD4(q,n),q= 6,n= 10,12–15,23,26,29,32,
35,36; q=7,n=1,3,7–10,14,21,24,25–28;q= 8,n= 3,4,

8,9 ;q= 9,n= 3 satisfies the statement of the Theorem4.11,
hence they haveQ1-completion.

Remark 6.5. In this paper, the Q1-matrix completion is dis-
cussed. A few necessary necessary and sufficient conditions
for a digraph to have Q1-completion are obtained. But a
strong necessary and sufficient condition is still needed. Also
most of the digraphs among 218 digraphs of order 4 are clas-
sified according to Q1-completion. The following digraphs
Dp(q,n), 1 ≤ p ≤ 4 are not classified according to the Q1-
completion.

p= 4; q= 6; n= 30,
q= 7; n= 15,23
q= 8; n= 6.
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