

https://doi.org/10.26637/MJM0602/0024

On TL-bi-ideals of ternary semigroups

G.Mohanraj^{1*} and M.Vela²

Abstract

We introduce the notions of *TL*-ternary subsemigroup and *TL*-bi-ideals of a ternary semigroup. We redefine *TL*-ternary subsemigroup and *TL*-bi-ideals using *T*-product on *L*-sets .We introduce the notion of *T*-intersection of *L*-sets. We establish that *T*-intersection of two *TL*-bi-ideals is again a *TL*-bi-ideal. We establish necessary and sufficient conditions for a pre-image of *L*-set under homomorphism to be a *TL*-ideal. We introduce the notion of *TL*-level sets. We characterize *TL*-bi-ideal by *TL*-level sets.

Keywords

T-norm, L-set, TL-subsemigroup, TL-bi-ideal, TL-level set.

AMS Subject Classification

03E72, 06B23, 16D25, 47A66.

^{1,2} Department of Mathematics, Annamalai University, Annamalainagar-608 002, Tamilnadu, India.
 *Corresponding author: ¹gmohanraaj@gmail.com; ²velamaths@gmail.com
 Article History: Received 24 August 2017; Accepted 13 February 2018

Contents

1	Introduction451
2	Preliminaries
3	Redefined <i>TL</i> -bi-ideals
4	Homomorphism and <i>TL</i> -bi-ideals453
5	Example
	References

1. Introduction

J.A.Goguen [4] introduced *L*-sets in 1967. After the introduction of the concept of *L*-ideals in semigroups by Neggers et al [16],[17]. Ronnason Chinram[18] studied *L*-ideals in ternary semirings. S.Kar and Palutu Sarakar[8] studied the concept of fuzzy quasi-ideals and fuzzy bi-ideals of ternary semigroups. Dheena and Mohanraj [2] introduced *T*-fuzzy ideals of a ring using triangular norm. Mohanraj and Prabu[15] devoleped redefined *T*-fuzzy right *h*-ideals of hemirings. Basic definition and mathematical facts about lattices and *T*-norm can be found in Birkhoff[1] and [7]Klement.E.

In this paper, by the introduction of the notions of TLternary subsemigroup and TL-bi-ideals of a ternary semigroup, the TL-ternary subsemigroup and TL-bi-ideals are redefined using T-product on L of ternary semigroup. We establish that T-intersection of two TL-bi-ideals is again a TL-bi-ideal. It is established that homomorphism pre-image of a *TL*-bi-ideal is again a *TL*-bi-ideal. Using *TL*-level sets, we characteristice *TL*-bi-ideal of S

©2018 MJM

2. Preliminaries

Definition 2.1. A non-empty set *S* is called ternary semigroup if there exist a mapping $S \times S \times S \rightarrow S$ denoted by juxtaposition that satisfies the following condition: (abc)de = a(bcd)e = ab(cde) for all $a, b, c, d, e \in S$.

Example 2.2. Let $S = \{a\sqrt{3} | a \in \mathbb{Z}^-\}$ where \mathbb{Z}^- is the set of negative odd integers. Then S is a ternary semigroup under usual multiplication.

Definition 2.3. The non-empty subset B of ternary semigroup S is called ternary subsemigroup if $xyz \in B$ for all $x, y, z \in B$.

Definition 2.4. A ternary subsemigroup B of S is called ternary bi -ideal if $(xwy)vz \in S$ for all $x, w, y, v, z \in S$.

and Prabu[15] devoleped redefined *T*-fuzzy right *h*-ideals of hemirings. Basic definition and mathematical facts about lattices and *T*-norm can be found in Birkhoff[1] and [7]Klement.E.P. be a non empty set. By a L-set μ of *S*, we mean a mapping $\mu: S \to L$.

Remark 2.6. "1" is a *L*-set on *S* defined as 1(x) = 1 for all $x \in S$.

Definition 2.7. The mapping $T : L \times L \rightarrow L$ is called a triangular norm[*T*-norm] on *L* which satisfies the following conditions:

(i) T(x, 1) = T(1, x) = x (boundary condition) (ii) T(x, y) = T(y, x) (commutativity) (iii)T(x, T(y, z)) = T(T(x, y), z) (associativity) (iv) If $x^* \le x$ and $y^* \le y$ then $T(x^*, y^*) \le T(x, y)$ (monotonicity) for all $x, y, z \in L$.

Remark 2.8. 1. The T-norms on (L, \leq, \land, \lor) are defined as follows: $T(x,y) = x \land y$,

2. Drastic product T-norm:

$$T_D(x,y) = \begin{cases} x \land y & \text{if } x = 1 \text{ or } y = 1\\ 0 & \text{otherwise,} \end{cases}$$

Various T-norms on L = [0, 1] *are defined as follows:*

- 3. Product T-norm: $T_P(x, y) = x \cdot y$,
- 4. Lukasiewicz T-norm: $T_L(x,y) = max\{x+y-1,0\},$
- 5. and Hamacher classT-norms: for any $\lambda \in [0, \infty)$

$$(T_{\lambda}^{H})(x,y) = \begin{cases} T_{D}(x,y) & \text{if } \lambda = \infty \\ 0 & \text{if } \lambda = x = y = 0 \\ \frac{xy}{\lambda + (1-\lambda)(x+y-xy)} & \text{otherwise.} \end{cases}$$

3. Redefined TL-bi-ideals

Throughout this paper, S denotes a ternary semigroup L denotes complete brouwerian lattice with least element 0 and greatest element 1 and T denotes a triangular norm on L unless otherwise specified,

Definition 3.1. Let μ be a *L*-set and *T* be a *T* norm on *L*. The *L*-set μ is said to be *TL*-ternary subsemigroup of *S* if $\mu(xyz) \ge T(\mu(x), T(\mu(y), \mu(z)))$ for all $x, y, z \in S$.

- **Remark 3.2.** 1. By taking $T(x,y) = x \wedge y$ in Definition 3.1, *TL*-ternary subsemigroup becomes in *L*-ternary subsemigroup.
 - 2. By taking L = [0, 1] in Definition 3.1, then TL- ternary subsemigroup coincides with a T-fuzzy ternary subsemigroup.
 - 3. Taking L = [0,1] and $T(x,y) = min\{x,y\}$ is a Definition 3.1, TL-ternary subsemigroup is a fuzzy ternary subsemigroup.

Definition 3.3. The *TL*-ternary subsemigroup μ of *S* is said to be a *TL*-ternary bi-ideal of *S* if $\mu(xwyvz) \ge T(\mu(x), T(\mu(y), \mu(z)))$ for all $x, y, z, w, v \in S$.

Remark 3.4. *1.* By taking $T(x,y) = x \land y$ in Definition *3.3, TL-* ternary bi-ideal is the L-ternary bi-ideal.

- 2. By taking L = [0,1] in Definition 3.3, then TL- fuzzy ternary bi-ideal coincides with a T-fuzzy ternary bi-ideal.
- 3. By taking L = [0,1] and $T(x,y) = min\{x,y\}$ inDefinition3.3, *TL*-ternary bi-ideal becomes is a fuzzy ternary bi-ideal.

Definition 3.5. Let λ, μ and σ be the *L*- sets of a ternary semigroup *S*. Then ternary *T*-product on *L*-set λ, μ and σ is defined as follows:

$$(\lambda \cdot_T \mu \cdot_T \sigma)(x) = \begin{cases} \bigvee_{x=abc} T(\lambda(a), T(\mu(b), \sigma(c))) & \text{if } x = abc \\ 0 & \text{otherwise} \end{cases}$$

- **Remark 3.6.** 1. By taking $T(a,b) = a \wedge b$ in Definition 3.5, the ternary *T*-product is the ternary *L* product.
 - By taking L = [0,1] in Definition 3.5, the ternary T-product are referred to as T-fuzzy ternary product λ · μ · σ of λ, μ and σ respectively.
 - 3. By taking L = [0,1] in Definition 3.5, the ternary *T*-product coincides with a fuzzy ternary *T*-product.

Theorem 3.7. The L-set of μ is a TL- ternary subsemigroup if and only if

 $\mu \cdot_T \mu \cdot_T \mu \subseteq \mu.$

Proof. Let μ be a *TL*-ternary subsemigroup of ternary semigroup . If *x* can not be expressible as x = abc, then $(\mu \cdot_T \mu)(x) = 0 \le \mu(x)$.

If x = abc, then $\mu(x) = \mu(abc) \ge T(\mu(a), T(\mu(b), \mu(c)))$ Thus $\mu(x) \ge \bigvee_{x=abc} T(\mu(a), T(\mu(b), \mu(c)))$ Hence $\mu \cdot_T \mu \cdot_T \mu \subseteq \mu$ Conversely,

$$\begin{array}{ll} \mu(abc) & \geq & (\mu \cdot_T \mu \cdot_T \mu)(abc) \\ & \geq & T(\mu(a), T(\mu(b), \mu(c))) \end{array}$$

Hence μ is a *TL*-ternary subsemigroup of *S*.

Corollary 3.8. *The L-set* μ *is a L-ternary subsemigroup if and only if* $\mu \cdot \mu \cdot \mu \subseteq \mu$ *.*

Proof. By taking $T(a,b) = a \wedge b$ in Theorem 3.7, we get the result.

Corollary 3.9. The fuzzy set μ is a *T*-fuzzy ternary subsemigroup if and only if $\mu \cdot_T \mu \cdot_T \mu \subseteq \mu$.

Proof. The proof follows by taking L = [0, 1] in Corollary 3.8.

Corollary 3.10. *The fuzzy set* μ *is a fuzzy ternary subsemigroup if and only if* $\mu \cdot \mu \subseteq \mu$ *.*

Proof.By taking L = [0, 1] and $T(a, b) = min\{a, b\}$ in Theorem 3.7, we get the result.

Theorem 3.11. The L-set of μ is a TL-bi-ideal of S if and only if (i) $\mu \cdot_T \mu \cdot_T \mu \subseteq \mu$. $(ii)\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu \subseteq \mu.$

Proof. Let μ is a *TL*-bi-ideal of ternary subsemigroups of S. By Theorem 3.7,

 $\mu \cdot_T \mu \cdot_T \mu \subseteq \mu$. If *x* cannot be expressible as x = awbyc. Then $(\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu)(x) = 0 \le \mu(x)$. Then $\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu \subseteq \mu$. Now,

$$((\mu \cdot T \mathbf{1} \cdot T \mu) \cdot T \mathbf{1} \cdot T \mu)(x) = \bigvee_{x=abc} T((\mu \cdot T \mathbf{1} \cdot T \mu) \cdot T \mathbf{1} \cdot T \mu)$$
$$= \bigvee_{x=abc} T((\mu \cdot T \mathbf{1} \cdot T \mu)(a), \mu(c))$$
$$= \bigvee_{x=abc} T(\bigvee_{a=stu} T(\mu(s), T(\mathbf{1}(t), \mu(u))), \mu(c))$$
$$\mu(c))$$
$$= \bigvee_{x=abc} T(\bigvee_{a=stu} T(\mu(s), \mu(u)), \mu(c)) \quad (3.1)$$

Now, x = abc, and a = stu imply x = (stu)bcThen, $\mu(x) \ge T(T(\mu(s), \mu(u)), \mu(c))$ Thus, $\mu(x) \ge \bigvee_{x=abc} T(\bigvee_{a=stu} T(\mu(s), \mu(u)), \mu(c))$ By Equation 3.1, $\mu(x) \ge (\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu)(x)$. Therefore $\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu \subseteq \mu$.

Conversely, by Theorem 3.7, μ is a *TL*-ternary subsemigroup of S. Then,

$$\begin{array}{lll} \mu(xwyvz) & \geq & ((\mu \cdot_T 1 \cdot_T \mu) \cdot_T 1 \cdot_T \mu)(xwyvz) \\ & = & T((\mu \cdot_T 1 \cdot_T \mu)(xwy), T(1(v), \mu(z))) \\ & = & T((\mu \cdot_T 1 \cdot_T \mu)(xwy), \mu(z)) \\ & \geq & T(T(\mu(x), T(1(w), \mu(y))), \mu(z)) \\ & = & T(T(\mu(x), \mu(y)), \mu(z)) \\ & = & T(\mu(x), T(\mu(y), \mu(z))) \end{array}$$

Hence μ is a *TL*-bi-ideal of *S*.

Corollary 3.12. The L-set μ is a L-bi-ideal if and only if $(i)\mu \cdot \mu \cdot \mu \subseteq \mu.$ $(ii)\mu \cdot 1 \cdot \mu \cdot 1 \cdot \mu \subseteq \mu.$

Proof. By taking $T(a,b) = a \wedge b$ in Theorem 3.11, we get the result.

Corollary 3.13. The fuzzy set μ is a T-fuzzy bi-ideal if and only if (i) $\mu \cdot_T \mu \cdot_T \mu \subseteq \mu$. $(ii)\mu \cdot_T 1 \cdot_T \mu \cdot_T 1 \cdot_T \mu \subseteq \mu.$

Proof. The proof follows by taking L = [0, 1] in Corollary 3.12.

Corollary 3.14. The fuzzy set μ is a fuzzy bi-ideal if and only *if* (*i*) $\mu \cdot \mu \cdot \mu \subseteq \mu$. (*ii*) $\mu \cdot 1 \cdot \mu \cdot 1 \cdot \mu \subseteq \mu$.

Proof.By taking L = [0, 1] and $T(a,b) = min\{a,b\}$ in Theorem 3.11, we get the result.

4. Homomorphism and *TL*-bi-ideals

Definition 4.1. The mapping $f: S \to S'$ where S and S' are ternary semigroups is called a homomorphism of S into S' if f(abc) = f(a)f(b)f(c), for all $a, b, c \in S$.

Definition 4.2. The image of μ under the mapping $f: S \to S'$ denoted by $f(\mu)$ is the L-set on S' that is defined as follows:

$$(f(\mu))(\mathbf{y}) = \begin{cases} \bigvee \{\mu(\mathbf{x}) | \mathbf{x} \in f^{-1}(\mathbf{y})\} & \text{if } f^{-1}(\mathbf{y}) \neq \emptyset\\ 0 & \text{otherwise} \end{cases}$$

for all $y \in S'$

Definition 4.3. The pre-image of λ under the mapping f: $S \to S'$ denoted by $f^{-1}(\lambda)$ is a L-set on S that is defined as follows:

$$(f^{-1}(\lambda))(x) = \lambda(f(x))$$

for all $x \in S$.

Theorem 4.4. If $f: S \to S'$ is a homomorphism, and if μ is a TL- bi-ideal of S', then $f^{-1}(\mu)$ is a TL-bi-ideal of S.

Proof. Let μ be a *TL*- bi-ideal of S'. Let $x, y, z \in S$. Now,

$$\begin{aligned} (f^{-1}(\mu))(xyz) &= & \mu(f(xyz)) \\ &= & \mu(f(x)f(y)f(z)) \\ &\geq & T(\mu(f(x)), T(\mu(f(y)), \mu(f(z)))) \\ &= & T((f^{-1}(\mu))(x), T((f^{-1}(\mu))(y), \\ & & (f^{-1}(\mu))(z))) \end{aligned}$$

Thus

$$T(f^{-1}(\mu))(xyz) \ge T((f^{-1}(\mu))(x), T((f^{-1}(\mu))(y), (f^{-1}(\mu))(z)))$$
, for all $x, y, z \in S$. Now,

$$\begin{aligned} (f^{-1}(\mu))(xwyvz) &= & \mu(f(xwyvz)) \\ &= & \mu(f(x)f(w)f(y)f(v)f(z)) \\ &\geq & T(\mu(f(x)), T(\mu(f(y)), \mu(f(z)))) \\ &= & T((f^{-1}(\mu))(x), T((f^{-1}(\mu))(y), \\ & & (f^{-1}(\mu))(z))) \end{aligned}$$

Therefore

 $(f^{-1}(\boldsymbol{\mu}))(xwyvz) \ge T((f^{-1}(\boldsymbol{\mu})(x), T(f^{-1}(\boldsymbol{\mu}), f^{-1}(\boldsymbol{\mu})(x)))$ forallx, $y, z, w, v \in S$. Therefore $f^{-1}(\mu)$ is a *TL*-bi-ideal of *S*.

Theorem 4.5. If f is a homomorphism from S onto S', then μ is a TL-bi-ideal of S' if and only if $f^{-1}(\mu)$ is a TL-bi-ideal of S.

Proof. Let μ be a *TL*-bi-ideal of S'. Then by Theorem 4.4, $f^{-1}(\mu)$ is a *TL*-bi-ideal of *S*.

Conversely, let $x', y', z' \in S'$. Then there exist $x, y, z \in S$ such that f

$$(x) = x', f(y) = y', f(z) = z'$$
. Now,

$$\mu(x'y'z') = \mu(f(x)f(y)f(z)) = \mu(f(xyz)) = (f^{-1}(\mu))(xyz) \ge T((f^{-1}(\mu))(x), T((f^{-1}(\mu))(y), (f^{-1}(\mu))(y)))$$

$$(J (\mu))(\zeta))$$
$$T(\mu(f(\mu)) T(\mu(f(\mu))) \mu(f(\mu)))$$

$$= T(\mu(f(x)), T(\mu(f(y)), \mu(f(z))))$$

$$= T(\mu(x'), T(\mu(y'), \mu(z')))$$

Therefore $\mu(x'y'z') \ge T(\mu(x'), T(\mu(y'), \mu(z'))),$ for all $x', y', z' \in S'$.

$$\begin{split} \mu(x'w'y'v'z') &= & \mu(f(x)f(w)f(y)f(v)f(z)) \\ &= & \mu(f(xwyvz)) \\ &= & (f^{-1}(\mu))(xwyvz) \\ &\geq & T((f^{-1}(\mu))(x), T((f^{-1}(\mu))(y), \\ & & (f^{-1}(\mu))(z))) \\ &= & T(\mu(f(x)), T(\mu(f(y)), \mu(f(z)))) \\ &= & T(\mu(x'), T(\mu(y'), \mu(z'))) \end{split}$$

Therefore $\mu(x'w'y'v'z') \ge T(\mu(x'), T(\mu(y'), \mu(z')))$, for all $x', w', y', v', z' \in S'$. Hence μ is a *TL*-bi-ideal of S'.

Theorem 4.6. If f is a homomorphism from S onto S' and μ is a TL-bi-ideal of S, then $f(\mu)$ is a TL-bi-ideal of S'.

Proof. Let μ be a *TL*-bi-ideal of *S*. For $x', y', z' \in S'$, there exist $x, y, z \in S$ such that f(x) = x', f(y) = y', f(z) = z'. Now,

$$(f(\mu))(x'y'z') = \bigvee \{\mu(xyz)|f(xyz) = x'y'z'\}$$

$$= \bigvee \{\mu(xyz)|f(x)f(y)f(z) = x'y'z'\}$$

$$\ge \bigvee \{T(\mu(x), T(\mu(y), \mu(z)))|f(x) = x',$$

$$f(y) = y', f(z) = z'\}$$

$$= T(\bigvee \{\mu(x)|f(x) = x'\}, T(\bigvee \{\mu(y)|f(y) = y', \}$$

$$\bigvee \{\mu(z)|f(z) = z'\}))$$

$$= T(f(\mu)(x'), T(f(\mu)(y'), f(\mu)(z')))$$

 $\begin{array}{l} {\rm Thus}(f(\mu))(x^{'}y^{'}z^{'}) \geq \\ T((f(\mu))(x^{'}), T((f(\mu))(y^{'}), (f(\mu))(z^{'}))), \\ {\rm for \ all \ } x^{'}, y^{'}, z^{'} \in S^{'}. \ {\rm Now}, \end{array}$

$$\begin{aligned} (f(\mu))(x'w'y'v'z') &= & \bigvee \{\mu(xwyvz) | f(xwyvz) = x'w'y'v'z' \} \\ &= & \bigvee \{\mu(xwyvz) | f(x)f(w) \\ & f(y)f(v)f(z) = x'w'y'v'z' \} \\ &\geq & \bigvee \{T(\mu(x), T(\mu(y), \mu(z))) | f(x) = x', \\ & f(y) = y', f(z) = z' \} \\ &= & T(\bigvee \{\mu(x) | f(x) = x' \}, T(\bigvee \{\mu(y) | \\ & f(y) = y' \}, \bigvee \{\mu(z) | f(z) = z' \})) \\ &= & T((f(\mu))(x'), T((f(\mu))(y'), (f(\mu))(z'))) \end{aligned}$$

Therefore $(f(\mu))(x'w'y'z') \ge$ $T((f(\mu))(x'), T((f(\mu))(y'), (f(\mu))(z')))$, for all $x'w'y'v'z' \in$ S. Hence $f(\mu)$ is a TL-bi-ideal of S'.

5. Example

Remark 5.1. *Converse of the above theorem need not be true by the following example.*

Example 5.2. Let \mathbb{Z}^- be the ternary semigroup of negative integers and \mathbb{Z}_6 be a ternary semigroup of integer modulo 6 under multiplication. The mapping

 $f : \mathbb{Z} \to \mathbb{Z}_6$, defined by $f(x) = x \pmod{6}$. Clearly f is a homomorphism. By taking L = [0, 1], the L-sets μ on \mathbb{Z}^- is defined as follows:

$$\mu(x) = \begin{cases} 0.8 & \text{if } x = -12 \\ 0.3 & \text{if } x = -3 \\ 0.2 & \text{otherwise.} \end{cases}$$

Then,

$$(f(\mu))(x) = \begin{cases} 0.8 & if \ x = 0\\ 0.3 & if \ x = 3\\ 0.2 & otherwise. \end{cases}$$

By taking T-norm as minimum norm , $f(\mu)$ is a TL-bi-ideal of $\mathbb{Z}_6.$

$$\mu(-27) = \mu((-3).(-3).(-3)) = 0.2$$

$$T(\mu(-3), T(\mu(-3), \mu(-3))) = \min\{0.3, 0.3, 0.3\} = 0.3$$

$$\mu((-3).(-3).(-3)) = 0.2 \neq 0.3$$

$$= T(\mu(-3), T(\mu(-3), \mu(-3)))$$

Then μ is not a *TL*-bi-ideal \mathbb{Z}^- , however $f(\mu)$ is a *TL*-bi-ideal on \mathbb{Z}_6 .

T-intersection of TL-bi-ideals

Definition 5.3. If μ and λ are two *L*- sets of *S*. Then *T*-intersection of μ and λ denoted by $T(\mu, \lambda)$ is defined as follows:

 $T(\mu,\lambda)(x) = T(\mu(x),\lambda(x))$ for all $x \in S$.

Theorem 5.4. If μ and λ are *TL*-ternary subsemigroups of *S*, then $T(\mu, \lambda)$ is a *TL*-ternary subsemigroup of *S*.

Proof. Let μ and λ be the *TL*-ternary subsemigroups of *S*.

$T(\mu, \lambda)(xyz)$	=	$T(\mu(xyz),\lambda(xyz))$
	\geq	$T(T[\mu(x), T(\mu(y), \mu(z))], T[\lambda(x), T(\lambda(y), \lambda(z))])$
	=	$T(\mu(x), T[T(\mu(y), \mu(z)), T[\lambda(x), T(\lambda(y), \lambda(z))]])$
	=	$T(\mu(x), T[T[\lambda(x), T(\lambda(y), \lambda(z))], T(\mu(y), \mu(z))])$
	=	$T(T[T(\mu(x),\lambda(x)),T(\lambda(y),\lambda(z))],T(\mu(y),\mu(z)))$
	=	$T(T(\mu(x),\lambda(x),T[T(\lambda(y),\lambda(z)),T(\mu(y),\mu(z))])$
	=	$T(T(\mu(x),\lambda(x),T[T(\mu(y),\mu(z)),T(\lambda(y),\lambda(z))])$
	=	$T(T(\mu(x),\lambda(x),T[\mu(y),T(\mu(z),T(\lambda(y),\lambda(z)))])$
	=	$T(T(\mu(x),\lambda(x),T[\mu(y),T(T(\lambda(y),\lambda(z)),\mu(z))])$
	=	$T(T(\mu(x),\lambda(x),T[\mu(y),T(\lambda(y),T(\lambda(z),\mu(z)))])$
	=	$T(T(\mu(x),\lambda(x),T[T(\mu(y),\lambda(y)),T(\mu(z),\lambda(z))])$
	=	$T(T(\mu(x),\lambda(x),T[T(\mu(y),\lambda(y),T(\mu(z),\lambda(z)])$

Thus $T(\mu, \lambda)(xyz) \ge$ $T(T(\mu, \lambda)(x), T(T(\mu, \lambda)(y), T(\mu, \lambda)(z))),$ for all $x, y, z \in S$. Hence $T(\mu, \lambda)$ is a *TL*-ternary subsemigroup of *S*.

Corollary 5.5. If μ and λ are *L*-ternary subsemigroups of *S*, then $\mu \wedge \lambda$ is a *L*-ternary subsemigroup.

Proof. By taking $T(a,b) = a \wedge b$ in Theorem 5.4, we get the result.

Corollary 5.6. If μ and λ are *T*-fuzzy ternary subsemigroups of *S*, then $\mu \cap \lambda$ is a *T*-fuzzy ternary subsemigroup.

Proof. The proof follows by taking L = [0, 1] in Theorem 5.4.

Corollary 5.7. If μ and λ are fuzzy ternary subsemigroups of *S*, then $\mu \cap \lambda$ is a fuzzy ternary subsemigroup.

Proof. By taking L = [0,1] and $T(a,b) = min\{a,b\}$ in Theorem 5.4, we get result.

Theorem 5.8. If μ and λ are *TL*-bi-ideals of *S*, then $T(\mu, \lambda)$ is the *TL*-bi-ideal of *S*.

Proof. Let μ and λ be *TL*-bi-ideals of *S*.

$T(\mu,\lambda)(xwyvz)$	=	$T(\mu(xwyvz),\lambda(xwyvz))$
	\geq	$T(T[\mu(x), T(\mu(y), \mu(z))], T[\lambda(x), T(\lambda(y), \lambda(z))])$
	=	$T(\mu(x), T[T(\mu(y), \mu(z)), T[\lambda(x), T(\lambda(y), \lambda(z))]])$
	=	$T(\mu(x), T[T[\lambda(x), T(\lambda(y), \lambda(z)), T(\mu(y), \mu(z))]])$
	=	$T(T[T(\mu(x),\lambda(x)),T(\lambda(y),\lambda(z))],T(\mu(y),\mu(z)))$
	=	$T(\boldsymbol{\mu}(\boldsymbol{x}),\boldsymbol{\lambda}(\boldsymbol{x}),T[T(\boldsymbol{\lambda}(\boldsymbol{y}),\boldsymbol{\lambda}(\boldsymbol{z})),T(\boldsymbol{\mu}(\boldsymbol{y}),\boldsymbol{\mu}(\boldsymbol{z}))])$
	=	$T(\mu(x),\lambda(x),T[T(\mu(y),\mu(z)),T(\lambda(y),\lambda(z))])$
	=	$T(\mu(x),\lambda(x),T[\mu(y),T(\mu(z),T(\lambda(y),\lambda(z)))])$
	=	$T(\mu(x),\lambda(x),T[\mu(y),T(T(\lambda(y),\lambda(z)),\mu(z))])$
	=	$T(\mu(x),\lambda(x),T[\mu(y),T(\lambda(y),T(\lambda(z),\mu(z)))])$
	=	$T(\mu(x),\lambda(x),T[T(\mu(y),\lambda(y)),T(\mu(z),\lambda(z))])$

Therefore

 $T(\boldsymbol{\mu},\boldsymbol{\lambda})(xwyvz) \geq T(T(\boldsymbol{\mu},\boldsymbol{\lambda})(x),T(T(\boldsymbol{\mu},\boldsymbol{\lambda})(y),T(\boldsymbol{\mu},\boldsymbol{\lambda})(z))),$

for all $x, w, y, v, z \in S$. Hence $T(\mu, \lambda)$ is a *TL*-ternary biideal of *S*.

Corollary 5.9. If μ and λ are *L*-ternary bi-ideals of *S*, then $\mu \wedge \lambda$ is a *L*-ternary bi-ideal.

Proof. By taking $T(a,b) = a \wedge b$ in Theorem 5.8, we get the result

Corollary 5.10. If μ and λ are *T*-fuzzy bi-ideals of *S*, then $\mu \cap \lambda$ is a *T*-fuzzy bi-ideal.

Proof. The proof follows by taking L = [0, 1] in Theorem 5.8.

Corollary 5.11. If μ and λ are fuzzy bi-ideals of S, then $\mu \cap \lambda$ is a fuzzy bi-ideal.

Proof. By taking L = [0,1] and $T(a,b) = min\{a,b\}$ in Theorem 5.8, we get result.

Definition 5.12. For a *L*-set λ of *S* and $r, s, t \in L$, we define *TL*-level set of λ , denoted by $T(\lambda : (r, (s, t))$ is defined as follows:

$$T(\lambda : (r, (s,t)) = \{x \in S | \lambda(x) \ge T(r, T(s,t))\}$$

Theorem 5.13. If μ is a *L*-set of *S* and $T(\mu : (r, (s, t)))$ is a *bi-ideal of S, for all r, s, t* \in *Im* μ *, then* μ *is a TL-bi-ideal of S.*

Proof. If there exist $x, y, z \in S$ such that $\mu(xyz) < T(\mu(x), T(\mu(y), \mu(z)))$, then choose $r = \mu(x), s = \mu(y)$ and $t = \mu(z)$. Thus $xyz \notin T(\mu : (r, (s, t)))$. Now,

$$\mu(x) = r$$

= $T(r,1)$
= $T(r,T(1,1))$
 $\geq T(r,T(s,t))$

Thus $x \in T(\mu : (r, (s, t)))$. Similarly $y, z \in T(\mu : (r, (s, t)))$. Then $x, y, z \in T(\mu : (r, (s, t)))$,but $xyz \notin T(\mu : (r, (s, t)))$, which is a contradiction. If there exist $x, w, y, v, z \in S$ such that $\mu(xwyvz) < T(\mu(x), T(\mu(y), \mu(z)))$ then take

 $r = \mu(x), s = \mu(y)$ and $t = \mu(z)$.But

 $xwyvz \notin T(\mu : (r, (s, t))),$

then $x, y, z \in T(\mu : (r, (s, t)))$, which is a contradiction. Thus μ is a *TL*-bi- ideal of *S*.

References

- ^[1] F. Birkhoff, *Lattice Theory*, American Mathmatical Social Colleny Publishers, Rhode Island, 1967.
- [2] P. Dheena and G. Mohanraj, *T*-fuzzy ideals in rings, *International Journal of Computational Cognition*, 9(2)(2011), 98–101.
- [3] N.V. Dixit and D. Sarita, A note an quasi and bi-ideals in ternary semigroups, *International Journal of Mathematics and Mathematical Sciences*, 18(3)(1995), 501–508.
- [4] J. A. Goguen, L-fuzzy sets, Journal of Mathematics Analysia and Application, (1967), 145–174.
- [5] G. Gratzer, *Lattice Theory*, W.H.Freeman and Company, San Fransico, 1998.
- [6] Y.B. Jun, J. Neggers and H.S. Kim, On L-fuzzy ideals semirings I, Czechoslovak Mathmatics Journal, 48(4)(1998), 669–675.
- [7] E.P. Klement, R. Mesiar and E. Pap, *Triangular Norms*. Kluwer Academic Puplishers, Dordrecht, 2000.
- [8] S. Kar and P. Sarkar, Fuzzy quasi-ideals and bi-ideals of ternary semigroups, *Annals of Fuzzy Mathematics and Informatics*, 4(2)(2012), 407–423.
- [9] S. Kar and P. Sarkar, Fuzzy ideals of ternary semigroups, Fuzzy Information and Engineering, 2(2012), 181–193.
- [10] N. Kuroki, Ideals and fuzzy bi-ideals in semigroups, Fuzzy Sets and System, 5(1981), 203–215.
- ^[11] H. Lehmer, A ternary analogue of abelian groups, American Journal of Mathematics, 54(1932), 329–338.
- ^[12] G. Mohanraj, On intuitionistic $(\in, \in, \lor q)$ -fuzzy ideals of semiring, *Annamalai University Science Journal*, 46(1)(2010), 81–88.
- [13] G. Mohanraj, D. Krishnaswamy and R. Hema, On generalized redefined fuzzy prime ideals of ordered semigroups, *Annals of Fuzzy Mathematics and Informatics*, 6(1)(2013), 171–179.

- [14] G. Mohanraj and M. Vela, OnT-fuzzy lateral ideals of ternary semigroups, *Global Journal of Pure and Applied Mathematics*, 4(12)(2016), 60–63.
- ^[15] G. Mohanraj and E. Prabu, Redefined *T*-fuzzy right *h*ideals of Hemirings, *Global Journal of Pure and Applied Mathematics*, 4(12)(2016), 35–38.
- [16] J. Neggers J.B. Jun and H.S. Kim, Extensions of *L*-fuzzy ideals in Semirings, *Kyungpook Mathmatics Journal*, 38(1)(1998), 131–135.
- [17] J. Neggers J.B. Jun and H.S. Kim, On L-fuzzy ideals in Semirings, Czechoslovak Mathematics Journal, 49(1)(1999), 127–133.
- [18] C. Ronnason and M. Sathinee, L-fuzzy ternary subsemirings and L-fuzzy Ideals in Ternary semirings, *IAENG International Journal of Applied Mathematics*, 40(3)(2010), 32–36.
- [19] M.L. Santiago and S.S. Bala, Ternary semigroups, *Semi-groups Forum*, 81(2010), 380–388.
- ^[20] F.M. Sioson, *Theory in ternary semigroups, Mathematica Japonica*, 10(1965), 63–84.
- ^[21] L.A. Zadeh, Fuzzy sets, *Information and Control*, 8(1965), 338–353.

********* ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

