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Abstract
Our aim in this paper is to study the existence and uniqueness of a mild solution to an initial value problem
(IVP for short) for a class of nonlinear differential evolution equations with nonlocal initial conditions in a Banach
space. We assume that the linear part is not necessarily densely defined and generates an evolution family. We
give two results, the first one is based on a Krasnosel’skii fixed point Theorem, and in the second approach we
make use Mönch fixed point Theorem combined with the measure of noncompactness and condensing.
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1. Introduction

Many authors have been attracted to problems on the
existence and qualitative properties of solutions for abstract
evolution equations.

Kato [16] studied the generation of an evolution operator
associated with the linear evolution equation of “hyperbolic”
type in a pair of Banach spaces (Y,X) such that Y is continu-
ously

and densely imbedded in X ,

u′(t) = A(t)u(t) for t ∈ [0,T ] (1.1)

u(0) = x0. (1.2)

Here {A(t), t ∈ [0,T ]} is a family of closed linear
operators in X such that Y ⊂ D(A(t)) for t ∈ [0,T ]. The
concept of evolution operators is central for the theory of
abstract linear evolution equations.

The nonlocal conditions can be applied in physics with
better effect than the classical initial condition. For example,
in [10], Deng used the nonlocal condition to describe the
diffusion phenomenon of a small amount of gas in a transport
tube. The nonlocal condition allows additional measurement
which is more precise than the measurement just at t = 0.
Byszewski et al. [8, 9] established the existence, uniqueness
and continuous dependence of a mild solution of a
nonlocal Cauchy problem for a semilinear functional
differential evolution equation{

u′(t)+Au(t) = f (t,ut) for t ∈ [0,T ]
u(s)+g(ut1 , . . . ,utp)(s) = φ(s) s ∈ [−r,0],
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where 0 < t1 < · · ·< tp ≤ T (p ∈ N), A is the infinitesimal
generator of a C0−semigroup of operators on a general
Banach space.

Oka and Tanaka [19] proved that an evolution operator
is generated by a family of closed linear operators whose
common domain is not necessarily dense in the underlying
Banach space, under the stability from the viewpoint of finite
difference approximations. Tanaka [21] give some existence
and uniqueness results for classical solutions to the semilinear
initial value problem{

u′(t) = A(t)u(t)+B(t,u(t)) for t ∈ [0,T ]
u(0) = u0.

Here {A(t) : t ∈ [0,T ]} is a given family of closed linear
operators in X satisfying all conditions which are usually
referred to as the “hyperbolic” case except for the density
of the common domain D of A(t), and B(t,u) is a nonlinear
operator on [0,T ]×X .

In the paper [1], Benchohra et al. established sufficient
conditions for the existence of mild and extremal mild
solutions of first order impulsive functional evolution
equations in a separable Banach space (X . |·|) of the form:

y′(t)−Ay(t)=F(t,yt), a.e. t ∈ J = [0,T ] , t 6= tk, k= 1, . . . ,m
(1.3)

∆y|t=tk = Ik(y(t−k )), k = 1, . . . ,m (1.4)

y(t) = φ(t), t ∈ [−r,0] , (1.5)

where f : J×D→ X is a given function,

D = {ψ : [−r,0]→ X ,

ψ is continuous everywhere except for a finite number of
points s at which ψ (s−) ,ψ (s+) exist and ψ (s−) = ψ (s)},
φ ∈ D, 0 < r < ∞, 0 = t0 < t1 < · · · < tm < tm+1 = T, Ik ∈
C (X ,X) , k = 1, . . . ,m, A : D(A)⊂ X → X is the
infinitesimal generator of a C0-semigroup T (t), t ≥ 0, and
X a real separable Banach space with norm |·|. In the case
where the impulses are absent (i.e., Ik = 0,k = 1, . . . ,m) and
F is a single or multivalued map and A is a densely defined
linear operator generating a C0-semigroup of bounded linear
operators, the problem (1.3)-(1.5) has been investigated on
compact
intervals in, for instance, the monographs by Ahmed [3], Hu
and Papageorgiou [13], Kamenskii et al. [14] and Wu [24]
and the papers of Benchohra et al. [5–7].

Recently Kpoumiè et al. in [17] studied the following
problem{

u′(t) = A(t)u(t)+ρ(t,ut) for t ≥ 0,
u0 = φ ∈B phase space.

For further reading and details on partial differential
equations, we refer the reader to the books of Freidman [12].

In this paper, we extend in some way the results obtained
in [1, 16, 21]. We prove the existence a of mild solution
to an initial value problem (IVP for short) for a nonlinear
differential equation with nonlocal initial conditions by two
approaches. More precisely we consider the IVP

x′(t) = A(t)x(t)+ f (t,x(t)), t ∈ [0,T ] (1.6)

x(0)+g(x) = x0, (1.7)

where f : [0,T ]×X → X and g : C([0,T ],X)→ X are
functions that will be specified later, X is a real Banach space
with the norm ‖ · ‖, and {A(t), t ≥ 0} is an evolution system
of closed nondensely defined linear unbounded operators on
the Banach space X with domain D

in Section (2) we recall some preliminary results on the
evolution family and some definitions and properties on the
measure of noncompactness and condensing operators, we
recall also the Mönch fixed point Theorem which will be used
throughout this paper to prove our result. In the third section,
we will take two approaches for our main result; we prove
first existence and uniqueness of a mild solution by using a
Krasnosel’skii fixed point Theorem, and in the second part
we make use the Mönch fixed point Theorem combined with
the measure of noncompactness. Section (4) is devoted to an
application to illustrate the main result of this work.

2. Preliminaries
We introduce in this section notations, definitions, fixed point
Theorems and preliminary facts which are used throughout
this paper.

In the remainder of this paper we denote by J = [0,T ],
and C(J,X) is the Banach space of continuous functions from
J into X normed by

‖y‖∞ = sup{‖y(t)‖ : t ∈ J}

2.1 Properties of an evolution system generator

In what follows, for the family {A(t), t ≥ 0} of closed
non-densely defined linear unbounded operators on the
Banach space X with domain D, we assume that the family
satisfies the following assumptions:

(A1) D(A(t)) = D independent of t and is non-densely
defined (D 6= X).

(A2) There exist M ≥ 1, β ≥ 0 with (β ,∞)⊂ ρ(A) and

‖
k

∏
j=1

R(λ ,A(t j))‖ ≤M(λ −β )−k (2.1)

with 0≤ t1 ≤ t2 ≤ ·· · ≤ tk ≤ T. (2.2)
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(A3) The mapping t 7→ A(t)x is continuously differentiable
in X for all x ∈ D.

Theorem 2.1. Assume that {A(t)}t≥0 satisfies conditions
(A1)− (A3). Then the limit limλ→0+ Uλ (t,s)x =U(t,s)x
exists for x ∈ D and 0≤ s≤ t, where the convergence is
uniform on ∆ := {(t,s) : 0≤ s≤ t}. There exists an
evolution system {U(t,s)}(t,s)∈∆

satisfying the following
properties

(i) For x ∈ D, λ > 0 and 0≤ s≤ r ≤ t, one has

Uλ (t, t)x = x and Uλ (t,s)x =Uλ (t,r)Uλ (r,s)x.

(ii) U(t,s) : D−→ D for (t,s) ∈ ∆.

(iii) U(t, t)x = x and U(t,s)x = U(t,r)U(r,s)x for x ∈ D
and 0≤ s≤ r ≤ t.

(iv) The mapping (t,s) 7→U(t,s)x is continuous on ∆ for
any x ∈ D.

(v) ‖U(t,s)x‖ ≤Meβ (t−s)‖x‖ for x ∈ D and (t,s) ∈ ∆.

In the following we give some results on existence of
solutions for the nondensely nonautonomous partial
differential equations (1.6)-(1.7). The following Theorem
gives a generalized variation of constants formula for
(1.6)-(1.7).

Theorem 2.2. [21] Let x0−g(x)∈D(A) , f ∈ L1(J,R). Then
the limit

x(t) :=U(t,0)(x0−g(x))+ lim
λ→0+

∫ t

0
Uλ (t,s) f (x(s))ds

exists uniformly for t ∈ J and x is continuous function on J

Lemma 2.3. Assume f ∈ L1(J,R). If x is mild solution of
the problem (1.6)− (1.7), then

‖x(t)‖ ≤M eβT (x0 +‖g(x)‖+‖g(0)‖)

+
∫ t

0
M eβ (t−s)‖ f (s,x(s))‖ds.

Proof. Let, for λ > 0, 0≤ s≤ t and x ∈ D,

Uλ (t,s)x :=
[ t

λ
]

∏
i=[ s

λ
]+1

(
1
λ

R
(

1
λ
,A(iλ )

))
x

=
[ t

λ
]

∏
i=[ s

λ
]+1

(I−λA(iλ ))−1 x.

Then,

‖Uλ (t,s)x‖ ≤ M
(

1
1−λβ

)[ t
λ
]−[ s

λ
]
‖x‖

≤ M
(

1
1−λβ

) t−s
λ

+1

‖x‖

≤ M
(

1
1−λβ

)
e−β (t−s) ln(1−λβ )

λβ ‖x‖.

Letting λ → 0 one has

‖Uλ (t,s)x‖ ≤M eβ (t−s)‖x‖.

Now it is clear that the statement of the Lemma is satisfied. �

More details on evolution systems and their properties
from semigroup theory can be found in the books of Ahmed
[3], Engel and Nagel [11] and Pazy [20].

2.2 Measure of noncompactness

We shall define the measure of noncompactness on Pb(X).
Recall that a subset A⊂ X is relatively compact provided the
closure A is compact.

Definition 2.4. Let X be a Banach space and Pb(X) the
family of all bounded subsets of X. Then the function: α :
Pb(X)→ R+ defined by

α(Ω)= inf{ε > 0 : Ω admits a finite cover by sets of diameter ≤ ε}

is called the Kuratowski measure of noncompactness, (the
α-MNC for short). The function χ : Pb(X)→ R+ defined by:

χ(Ω) = inf{ε > 0 : Ω has a finite ε−net}.

is called the Hausdorff measure of noncompactness.

Definition 2.4 is very useful since α and χ have interesting
properties, some of which are listed in the following.

Proposition 2.5. [22] Let X be a Banach space and

γ : Pb(X)→ R+

be either α or χ . Then:

(a) γ(B) = 0⇔ B is compact (B is relatively compact)

(b) γ(B) = 0 = γ(B) = 0

(c) A⊂ B⇒ γ(A)≤ γ(B)

(d) γ(A+B)≤ γ(A)+ γ(B)

(e) γ(c.B)≤ |c|γ(B)

(f) γ(coB) = γ(B).

(e) The function γ : Pb(X)→ R+ is continuous with
respect to the metric Hd on Pb(X).

Remark 2.6. For every A ∈Pb(X), we have
χ(A)≤ α(A)≤ 2χ(A).

The following result is a generalized Arzela-Ascoli
Theorem using the Kuratowski measure of noncompactness.
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Lemma 2.7. [22] If H ⊂C(I,X) is bounded and
equicontinuous, then α(H(t)) is continuous on I, where

αC(H)=max
t∈I

α(H(t)) , α

(∫
I
x(t)dt,x ∈ H

)
≤
∫

I
α(H(t))dt

and where H(t) = {x(t),x ∈H}, t ∈ I, I is a compact interval
of J.

Now, we present the abstract definition of MNC. For more
details, we refer to [2, 4, 14, 22] and the references therein.

Definition 2.8. Let (A ,≥) be a partially ordered set.
A function β : Pb(X)→A is called a measure of
noncompactness (MNC) in E if

β (coΩ) = β (Ω),

for every Ω ∈Pb(X).

Definition 2.9. A measure of noncompactness β is called:

(i) monotone if Ω0,Ω1 ∈Pb(X), Ω0 ⊂Ω1
implies β (Ω0)≤ β (Ω1).

(ii) nonsingular if β ({a} ∪Ω) = β (Ω) for every a ∈ X,
Ω ∈Pb(X).

(iii) regular if β (Ω) = 0 is equivalent to the relative
compactness of Ω.

The following property of the Hausdorff MNC can be
easily verified. If L : X → X is a bounded linear operator, it is
possible to define its χ-norm by

‖L‖(χ) := χ(LB), (2.3)

where B⊂ X is the unit ball. It is easy to see that

‖L‖(χ) ≤ ‖L‖.

2.3 Condensing maps
Definition 2.10. A continuous map F : X → X is said to be
condensing with respect to a MNC β (β -condensing) if for
every bounded set Ω ⊂ X that is not relatively compact, we
have

β (F(Ω))� β (Ω).

Definition 2.11. The operator G : L1(J,X)→C(J,X) defined
by

G f (t) =
∫ t

0
T (t,s) f (s)ds (2.4)

is called the generalized Cauchy operator, where T (·, ·) is
the evolution operator generated by the family of operators
{A(t) : t ∈ J}.

Lemma 2.12 ([14, Theorem 2]). The generalized Cauchy
operator G satisfies the properties

(G1) There exists ζ ≥ 0 such that

‖G f (t)−Gg(t)‖ ≤ ζ

∫ t

0
‖ f (s)−g(s)‖ds,

for every f ,g ∈ L1(J,X), t ∈ J.

(G2) For any compact K ⊆ X and sequence { fn}n≥1, fn ∈
L1(J,X) such that for all n ≥ 1, fn(t) ∈ K, a. e. t ∈ J,
the weak convergence fn ⇀ f0 in L1(J,X) implies the
convergence G fn→ G f0 in C(J,X).

Lemma 2.13. [14] Let S : L1(J,X)→C(J,X) be an operator
satisfying condition (G2) and the following Lipschitz condition
(weaker than (G1)).

(G1’)

‖S f −Sg‖C(J,X) ≤ ζ‖ f −g‖L1(J,X).

Then for every semicompact set { fn}+∞

n=1 ⊂ L1(J,X) the
set {S fn}+∞

n=1 is relatively compact in C(J,X). Moreover, if
( fn)n≥1 converges weakly to f0 in L1(J,X) then S fn→ S f0 in
C(J,X).

Lemma 2.14. [14] Let S : L1(J,X)→C(J,X) be an operator
satisfying conditions (G1), (G2) and let the set { fn}∞

n=1 be
integrably bounded with the property χ({ fn(t) : n ≥ 1}) ≤
η(t), for a.e. t ∈ J, where η(·) ∈ L1(J,R+) and χ is the
Hausdorff MNC. Then

χ({S fn(t) : n≥ 1})≤ 2ζ

∫ t

0
η(s)ds, for all t ∈ J,

where ζ ≥ 0 is the constant in condition (G1).

Proposition 2.15. [23] Let the space X be separable and
the multifunction Φ : J →P(X) be integrable, integrably
bounded and χ(Φ(t)) ≤ q(t) for a.a. t ∈ J where q(·) ∈
L1(J,R+). Then

χ

(∫
τ

0
Φ(s)ds

)
≤
∫

τ

0
q(s)ds, for all τ ∈ J.

In particular, if the multifunction Φ : J→Pk(X) is
measurable and integrably bounded then the function χ(Φ(·))
is integrable and

χ

(∫
τ

0
Φ(s)ds

)
≤
∫

τ

0
χ(Φ(s))ds, for all τ ∈ J.

The following Theorem is due to Mönch.

Theorem 2.16. [18] Let X be a Banach space, U an open
subset of X and 0 ∈U. Suppose that N : U → X is a
continuous map which satisfies Mönch’s condition (that is,
if D ⊆ U is countable and D ⊆ co({0}∪N(D)), then D is
compact) and assume that

x 6= λN(x), for x ∈ ∂U and λ ∈ (0,1)

holds. Then N has a fixed point in U.
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3. Main Results
Definition 3.1. The function x ∈C(J,X) is a mild solution of
(1.6)− (1.7) if it satisfies the following equation

x(t) =U(t,0)[x0−g(x)]+ lim
λ→0+

∫ t

0
Uλ (t,s) f (s,x(s))ds.

We introduce the following conditions:

(H1) The evolution system {U(t,s)}(t,s)∈∆
is compact,

for t > s > 0.

(H2) The function f : J×X → X is Carathéodory .

(H3) There exists a function L > 0 such that

‖ f (t,x)‖ ≤ L(1+‖x‖) for all t ∈ J and all x ∈ X .

(H4) There is a constant Lg > 0 such that

‖g(u2)−g(u1)‖ ≤ Lg‖u2−u1‖, for all u1,u2 ∈ X .

With
1−Meβ T (Lg +L)> 0.

We make use Krasnosel’skii’s fixed point Theorem to
prove our first result.

Theorem 3.2. Assume that (H1)− (H4) hold, and

η = MeβT Lg < 1.

Then the problem (1.6)-(1.7) has at least one mild solution.

Proof. Transform the problem (1.6)-(1.7) into a fixed
point problem. Set

Br = {u ∈C(J,X) : ‖u‖ ≤ r}

where

r ≥ MeβT (‖x0‖+‖g(0)‖+L)
1−Meβ T (Lg +L)

. (3.1)

We define the operators P and Q on Br as

(Px)(t) =U(t,0)(x0−g(x(t))

(Qx)(t) = lim
λ→0+

∫ t

0
Uλ (t,s) f (s,x(s))ds.

For the sake of convenience, we divide the proof into several
steps.

Step 1. For any x∈ Br, we prove that Fx := Px+Qx∈ Br.

‖(Px+Qx)(t)‖=

‖U(t,0)g(x)+ lim
λ→0+

∫ t

0
Uλ (t,s) f (s,x(s))ds‖

≤ ‖U(t,0)g(x)‖+ lim
λ→0+

∫ t

0
‖Uλ (t,s) f (s,x(s))‖ds

≤Meβ t‖g(x)‖

+ lim
λ→0+

∫ t

0
M

1
1−λβ

e−β (t−s) ln(1−λβ )
λβ L(1+‖x‖)ds

≤M eβT (Lgr+g(0))+M LeβT (1+ r).

From (3.1), we infer that

‖(Px+Qx)‖ ≤ r.

Hence
Fx = Px+Qx ∈ Br.

Step 2. P is contraction on Br.
For u1,u2 ∈ Br and for t ∈ J, we have

‖(Pu2)(t)− (Pu1)(t)‖ = ‖U(t,0)[g(u2)−g(u1)]‖
≤ Meβ tLg‖u2−u1‖
≤ MeβT Lg‖u2−u1‖.

From above, we obtain

‖Pu2−Pu1‖ ≤ η‖u2−u1‖,

which implies that P is a contraction.

Step 3. We show that Q is continuous.
Let {un} be a sequence such that un→ u in C(J,X). For each
t ∈ J, we have

‖(Qun)(t)− (Qu)(t)‖=
∥∥∥∥ lim

λ→0+

∫ t

0
Uλ (t,s) [ f (s,un(s))−

f (s,u(s))]ds‖

≤M eβ T ‖ f (·,un(·))− f (·,u(·))‖L1 .

By (H2) and (H3), combined with Lebesgue dominated
convergence Theorem, we have

‖Qun−Qu‖→ 0 as n→+∞.

Thus Q is continuous.

Step 4. We prove Q is compact.
Define Γ := QBr, that is, Γ(t) := {(Qu)(t); u ∈ Br} for t ∈ J.
We verify that Γ(t) is relatively compact. We have
Γ(0) = {0; u ∈ Br}= 0 which is independent on ε .

For 0 < ε < t ≤ T define

Γε(t) := Qε Br(t) = {U(t, t− ε)(Qu)(t− ε); u ∈ Br},

then

Γε(t) = (Qε u)(t)

= U(t, t− ε)(Qu)(t− ε) t > ε

= U(t, t− ε)

(
lim

λ→0+

∫ t−ε

0
Uλ (t− ε,s) f (s,u(s))ds

)
= lim

λ→0+

∫ t−ε

0
Uλ (t,s) f (s,u(s))ds.

Since U(t,s) is a compact operator, the set

Γε(t) := Qε Br(t) = {U(t, t− ε)(Qu)(t− ε); u ∈ Br}
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is precompact in X for ε, 0< ε < t. Moreover for every u∈Br
we have

‖(Qu)(t)− (Qε u)(t)‖=∥∥∥∥ lim
λ→0+

∫ t

0
Uλ (t,s) f (s,u(s))ds

− lim
λ→0+

∫ t−ε

0
Uλ (t,s) f (s,u(s))ds

∥∥∥∥
=

∥∥∥∥ lim
λ→0+

∫ t

t−ε

Uλ (t,s) f (s,u(s))ds
∥∥∥∥

≤ M L(1+ r)
β

(
eβε −1

)
−→ 0 as ε → 0.

Therefore, there are precompact sets arbitrary close to the
set

Γ(t) := QBr(t) = {(Qu)(t); u ∈ Br}.
Hence the set Γ(t) = {Qu(t), u ∈ Br} is precompact in X and
this yields the relatively compactness of Γ(t).

On the other hand, Q is uniformly bounded on Br since
‖Qu‖ ≤ r.
We will prove now that Q maps bounded set into
equicontinuous set of Br.
Let 0≤ t1 < t2 ≤ T , u ∈ Br, one has

‖(Qu)(t2)− (Qu)(t1)‖=∥∥limλ→0
∫ t2

0 U(t2,s) f (s,u(s))ds

− limλ→0
∫ t1

0 U(t1,s) f (s,u(s))ds
∥∥

≤
∥∥(U(t2, t1)− Id) limλ→0

∫ t1
0 U(t1,s) f (s,u(s))ds

∥∥
+
∥∥∥limλ→0

∫ t2
t1 U(t2,s) f (s,u(s))ds

∥∥∥ .
Using assumption (H1) and from the fact that the set{

Q u(t1) = lim
λ→0

∫ t1

0
U(t1,s) f (s,u(s))ds, u ∈ Br

}
,

is relatively compact from previously , one can deduce

lim
t1→t2t1<t2

sup
u∈Br

‖(U(t2, t1)− Id)Q u(t1)‖= 0.

In another hand,∥∥∥∥ lim
λ→0

∫ t2

t1
U(t2,s) f (s,u(s))ds

∥∥∥∥ ≤ M eβT L(1+ r)(t2− t1).

Finally

lim
t1→t2t1<t2

sup
u∈Br

‖(Qu)(t2)− (Qu)(t1)‖= 0.

Then, we get QBr is equicontinuous.
As a consequence of the Arzela-Ascoli Theorem, we can

conclude that
Q : Br→ Br,

is completely continuous. And then, Krasnoselskii’s fixed
point Theorem, infer us that F = P+Q has a fixed-point
which is a mild solution to problem (1.6)-(1.7). �

The following result is based on Mönch’s fixed point
Theorem combining with the measure of noncompactness.

Theorem 3.3. Assume the following hypotheses hold:

(H5) The system evolution (t,s)→U(t,s), is uniformly norm
continuous for (t,s) ∈ ∆.

(H6) There exists a function ζ ∈ L1(J,R+) such that

‖ f (t,x)‖ ≤ ζ (t)(1+‖x‖) for all t ∈ J and all x ∈ X .

(H7) There exists a function δ ∈ L1(J,R+) such that for every
nonempty, bounded set Ω⊂ X we have

χ( f (t,Ω))≤ δ (t)χ(Ω) for each t ∈ J and all x ∈ X .

with
1−Meβ T (‖ζ‖L1 +Lg)> 0,

and χ is the Hausdorff measure of noncompactness in
X.

(H8) There exists a constant Cg > 0 such that

χ(g(Ω))≤Cgχ(Ω) for all subset Ω⊂C(J,R).

(H9) If Ω⊂C(J,R) is a bounded set, then

modcU(., .)g(Ω) = 0.

Then the nonlocal problem (1.6)-(1.7) has at least one mild
solution on J.

Proof. Transform the problem (1.6)-(1.7) into a fixed
point problem. Consider the operator

N : C(J,X)→C(J,X)

defined by

N(x)(t) =U(t,0)[x0−g(x(t))]+ lim
λ→0+

∫ t

0
Uλ (t,s) f (s,x(s))ds.

The fixed points of the operator N are solutions of the problem
(1.6)− (1.7). We shall use Mönch’s fixed point Theorem to
prove that N has a fixed point.

Proof. We break the proof into a sequence of steps.

N is a continuous.

Arguing exactly by the same reasoning as in the previous
result concerning the continuity of Q, one can easily prove
the continuity of N.

N is a ν condensing operator.

We consider the measure of noncompactness defined in
the following way. For every bounded subset Ω⊂

ν(Ω) = max
D∈∆(Ω)

{γ(D), mod C(D)}, (3.2)
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where ∆(Ω) is the collection of all the denumerable subsets
of Ω,

γ(D) = sup
t∈J

e−Lt
χ({x(t) : x ∈ D}), (3.3)

where modC(D) is the modulus of equicontinuity of the set
of functions D given by the formula

modC(D) = lim
δ→0

sup
x∈D

max
|t1−t2|≤δ

‖x(t1)− x(t2)‖, (3.4)

and L > 0 is a positive real number chosen so that

q := sup
t∈J

(
2 M∗

∫ t

0
δ (s)e−L(t−s)ds+M∗ Cg eLt

)
< 1. (3.5)

where sup(t,s)∈∆ ‖U(t,s)‖ ≤M∗.
From the Arzela-Ascoli Theorem, the measure ν gives a

nonsingular and regular measure of noncompactness,
(see [14]).

We shall prove now that N is ν condensing operator. Let
{yn}+∞

n=1 be the denumerable set which achieves that maximum
ν(N(Ω)), i,e.,

ν(N(Ω)) = max{γ({yn}+∞

n=1), mod C({yn}+∞

n=1)}.

Then there exists a set {xn}+∞

n=1 ⊂ Ω such that yn = N(xn),
n≥ 1. Then

yn(t)=U(t,0)[x0−g(xn(t))]+ lim
λ→0+

∫ t

0
Uλ (t,s) f (s,xn(s))ds.

(3.6)

Suppose that

ν(N(Ω))≥ ν(Ω). (3.7)

We define the operators

ϒ : L1(J,E)→C(J,E),

by

ϒ( f )(t) = lim
λ→0+

∫ t

0
Uλ (t,s) f (s,x(s))ds,

and
ϒ
∗(x)(t) =U(t,0)[x0−g(x)].

We have immediately

N(x) = ϒN f (x)+ϒ
∗(x)

where ϒN f is the Nemytskii operator corresponding to the
nonlinearity f .

From the construction of ϒ and ϒ∗ we have

yn = ϒ
∗(xn)+ϒ( fn) (3.8)

where
fn(t) = f (t,xn(t)),

ϒ
∗(xn)(t) =U(t,0)[x0−g(xn)],

ϒ( fn)(t) = lim
λ→0+

∫ t

0
Uλ (t,s) f (s,x(s))ds.

We give an upper estimate for γ({yn}+∞

n=1).

For fixed t ∈ J, by using condition (H7), for all s ∈ J,
we have

χ({ fn(s)}+∞

n=1)≤ χ( f (s,{xn(s)}+∞

n=1))

≤ δ (s)χ({xn(s)}+∞

n=1)

≤ δ (s)eLs sup
t∈J

e−Lt
χ({xn(t)}+∞

n=1)

= δ (s)eLs
γ({xn}+∞

n=1).

(3.9)

By using condition (H6), the set { fn}+∞

n=1 is integrably bounded.
In fact, for every t ∈ J, we have

‖ fn(t)‖= ‖ f (t,xn(t))‖
≤ ζ (t)(1+‖xn(t)‖).

By using hypothesis (H5) and the same arguments as those
in [14], Lemma 4.2.1, Theorem 4.2.2, Proposition 4.2.1, and
Theorem 5.1.1, one can verify the following lemmas (2.12),
(2.13), (2.14) for the operator ϒ.

Thus by applying Lemma (2.12), (2.14) and (3.9), it fol-
lows that

χ({ϒ fn(s)}+∞

n=1)≤ 2M∗
∫ s

0
δ (t)eLt(γ({xn}+∞

n=1))dt

= 2M∗γ({xn}+∞

n=1)
∫ s

0
δ (t)eLtdt.

(3.10)

Noting that

ϒ
∗(xn)(t) =U(t,0)[x0−g(xn)],

and using (H8), we have

χ({ϒ∗xn(s)}+∞

n=1) = χ({U(t,0)(x0−g(xn)}+∞

n=1)

≤ χ(U(t,0){g(xn)}+∞

n=1)

≤M∗ Cgχ({xn}+∞

n=1)

≤M∗ eLtCgγ({xn}+∞

n=1).

(3.11)

Thus, we get from (3.7), (3.8), (3.10) and (3.11),

γ({xn}+∞

n=1)≤ γ({yn}+∞

n=1)

≤ γ({ϒ fn}+∞

n=1)+ γ({ϒ∗xn}+∞

n=1)

= sup
t∈J

2M∗γ({xn}+∞

n=1)
∫ t

0
δ (s)e−L(t−s)ds

+M∗ Cg γ({xn}+∞

n=1

≤ qγ({xn}+∞

n=1).

(3.12)

Therefore, we have that

γ({xn}+∞

n=1)≤ qγ({xn}+∞

n=1). (3.13)
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From (3.5) combined with (3.7) and (3.13), we obtain that

γ({xn}+∞

n=1) = 0. (3.14)

Then γ({xn(t)}+∞

n=1) = 0 for every t ∈ J, and thus

γ({yn(t)}+∞

n=1) = 0 for every t ∈ J.

Consequently

γ({yn}+∞

n=1) = 0. (3.15)

It remains now to prove that mod C({yn}+∞

n=1)) = 0.
By using (3.9)-(3.14) and assumption (H6) we can prove

that set { fn}+∞

n=1 is semicompact. Now, by applying Lemma
(2.13), we can conclude that the set {ϒ fn}+∞

n=1 is relatively
compact in C(J,E).

Next,
mod C({ϒ fn}+∞

n=1) = 0,

and from (H9) we have

mod C({ϒ∗(xn)}+∞

n=1) = 0.

Taking (3.8) into account we deduce

mod C({(yn)}+∞

n=1) = 0,

and then
ν(N(Ω)) = (0,0).

From the meaning of (3.7), ν(Ω) = (0,0), and from the
regularity of ν we deduce that Ω is relatively compact. Hence
N is ν condensing operator.

We shall now verify the Mönch condition. Let D⊆U be
countable, bounded and D ⊆ co({0}∪N(D)). Since ν is a
monotone, nonsingular, regular MNC, one has

ν(D)≤ ν(co({0}∪N(D)))≤ ν(N(D)).

Therefore ν(D) = (0,0). Then D is a relatively compact set.
A priori bounds..

We will demonstrate that the solutions set is a priori bounded.
Indeed, let x ∈ λNx and λ ∈ (0,1). For every t ∈ J we

have

‖x(t)‖ ≤ ‖U(t,0)‖‖x0−g(x)‖

+ lim
λ→0+

∫ t

0
‖Uλ (t,s)‖‖ f (s,x(s))‖ds

≤M eβ T (‖x0‖+Lg‖x‖+‖g(0)‖)

+M eβ T‖ζ‖L1(1+‖x‖).

Hence

‖x‖
(

1−Meβ T (‖ζ‖L1 +Lg) (3.16)

≤M eβ T (‖x0‖+‖g(0)‖+‖ζ‖L1)
)
. (3.17)

Consequently

‖x‖ ≤ M eβ T (‖x0‖+‖g(0)‖+‖ζ‖L1)(
1−Meβ T (‖ζ‖L1 +Lg)

) =C.

So, there exists N∗ such that ‖x‖ 6= N∗. Set

U = {x ∈Ω : ‖x‖< N∗}.

From the choice of U there is no x ∈ ∂U such that x = λNx
for some λ ∈ (0,1).

Thus, we get a fixed point of N in Ū due to the Mönch’s
Theorem. �

4. An example
As an application of our results we consider the following
partial differential equation with nonlocal conditions of the
form

∂

∂ t
z(x, t)) = a(x, t)

∂ 2

∂x2 z(x, t)+ϕ(t)sinz(x, t),

x ∈ [0,π], t ∈ J := [0,T ].
(4.1)

z(x,0) =
m

∑
i=1

ciz(x, ti))+ z0, x ∈ [0,π], ti ∈ (0,T ),

i = 1, . . . ,m, .

(4.2)

z(0, t) = z(π, t) = 0. (4.3)

Where a(., .) : [0,π]× J → R+
∗ is continuous function and

uniformly Hölder continuous in t, z0 ∈R, ci ∈R for i= 1 . . .m.
Let X = L2([0,π]) and the operator A(t) defined by

A(t)w = a(x, t)w′′,

with the domain

D(A) =
{

w(.) ∈ X , w,w′ absolutely continuous
(4.4)

w′′ ∈ X , w(0) = w(π) = 0
}

(4.5)

Let ∆ be the Laplacien operator on [0,π] with domain

D =
{

w ∈C2([0,π],R), w(0) = w(π) = 0
}
,

and
∆w = w′′.

Then ∆ satisfies the following conditions

(0,+∞)⊂ ρ(∆), ‖R(λ ,∆)‖ ≤ 1
λ
, λ > 0,
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we have A(t) = a(x, t)∆ with domain D(A) = D. For λ > 0

R(λ ,A(t)) = (λ I−A(t))−1

= (λ I−a(x, t)∆)−1

=
1

a(x, t)
R(

λ

a(x, t)
,∆),

for every λ > 0, λ ∈ ρ(A(t)) and ‖R(λ ,A(t))‖ ≤ 1
λ

then,∥∥∥∥∥ n

∏
i=1

R(λ ,A(ti))

∥∥∥∥∥≤ 1
λ n , t1 ≤ t2 ≤ . . .≤ tn.

Moreover

D = {w ∈C([0,π],R), w(0) = w(π) = 0} 6= X .

The operator ∆ has a discrete spectrum and the eigenvalues are
”−n2”, n∈Nwith the corresponding normalized eigenvectors

vn(x) =
√

2
π

sinnx. Thus for w ∈ D(A), there holds

A(t)w =
∞

∑
n=1

(−n2)< w,vn > vn,

where < ., . > is the inner product in L2 and the domain
D(A(t)) coincides with that of the operator ∆.
We can verify that A(t) generates an evolution operator U(t,s)
satisfying the assumptions (ii)-(v) in Theorem (2.1) and for
each w ∈ X it is given by

U(t,s)w =
∞

∑
n=1

exp(−n2(t− s))< w,vn > vn

=
∞

∑
n=1

2
π

exp(−n2(t− s))sinnx
∫

π

0
w(ζ )sinnζ dζ .

From these expressions it follows that {U(t,s)}, (0≤ s≤ t ≤
T ) is uniformly bounded compact evolution system (H1), then
there exists a constant M ≥ 1 and β ≥ 0 such that

‖U(t,s)w‖ ≤MeβT‖w‖

To write system (4.1)-(4.3) in the form (1.6)-(1.7) we define
f : J×X → X , g : C(J,X)→ X defined by

f (t,x(t)) = ϕ(t)sinz(x, t)

g(z(x, t)) =
m

∑
i=1

ciz(x, ti),

note that f is Carathéodory function which yields condition
(H2),

‖g(u(t))−g(v(t))‖ ≤
m

∑
i=1
|ci|‖u− v‖,Ł = sup

t∈J
‖ϕ(t)‖,

Lg = ∑
m
i=1 |ci|, and choose ci such that

η = MeβbLg < 1, 1−MeβT (Lg +L)> 1

, and

r ≥ MeβT (|z0|+ |g(0)|+L)
1−MeβT (Lg +L)

.

An easy computation allow us to verify condition (H3), and
from the choose of {ci}n

i=1 it follows condition (H4). Since
the conditions (H1)− (H4) of the Theorem (3.2) are satisfied,
the problem (4.1)-(4.3) has at least one mild solution.
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