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Abstract
In this work, we study the existence results for stochastic partial integro-differential equations with delays. The
mild solution of the problem is derived by using a different resolvent operator given in [18]. The existence of
solution is proved by using contraction mapping principle.
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1. Introduction
Stochastic differential equation have been used with great

success in many application areas including biology,
epidemiology, mechanics, economics and finance. In the past
few decades many scholars have studied qualitative theory of
stochastic partial differential equation (see [13, 16] and
references therein). When we are concerned with mild
solution of stochastic partial differential equation, the
Lyapunov second method is not as appropriate as in the
non-delays case. A difficulty is that mild solutions do not
have stochastic differentials, so Ito’s formula cannot be
applied directly. Liu [14] solve this problem following
Ichikawa [12] introducing approximating systems and then
using a limiting argument. Recently Burton [6] has
successfully used the fixed-point theory to investigate the
stability of deterministic systems.

The non-local cauchy problem was first introduced by

Byszewski and Lakshmikantham [5]. Since it is demonstrated
that the non-local problem have better effects in applications
then the classical ones, differential equations with non-local
conditions have bean studied for more details on this topic.
We refer extensively to [2, 4, 11, 17] and references therein.
By using Leray schauder fixed point approach the existence
of mild solutions for semi-linear stochastic delay evolution
equations with non-local conditions have bean studied in [4].
In [3] Balasubramaniam et,al started the presence of mild and
strong solution of semi-linear netural functional differential
evolution equations with non-local conditions by using
fractional power of operators and Krasnoselskii fixed point
theorem. In [9] Hernandez observed that many authors used
the resolvent operators in appropriately to study the existence
of mild solution for fractional derivaties. To make the mild
solutions to be more appropriate, Hernandez [10] introduced
resolvent operator for integralequations defined in [18]. This
resolvent operator for integral equation have bean used many
authors to study the existence results for abstract differential
equations [1, 10]. In [1] A.Anguraj et,al. started the presence
of mild solution of fractional non-instantaneous impulsive
integro-differential equations with non-local conditions by
using fixed point theorem of condensing map and the
resolvent operators defined in [18]. As far our knowledge, no
one used the resolvent operators given in [18] to study the
existence results for stochastic partial differential equation. In
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this article we introduce the resolvent operator of the above
type to study the existence results for stochastic partial
differential equation.
In this paper, we study the existence and uniqueness of the
following stochastic partial integro-differential equation with
delays of the form

du(t) =

[
Au(t)+

∫ t

0
B(t− s)u(s)ds+F(t,u(t−ρ(t)))

]
dt

+ G(t,u(t−δ (t)))dW (t) f or t ≥ 0
u(θ) = φ(θ) where φ ∈ Db

F0
([−τ,0] ;H) , τ > 0 (1.1)

where A is the infinitesimal generator of a C0- semigroup
(T (t))t≥0on H. For all t ≥ 0, B(t) is a continuous linear
operator from (Y, |.|Y ) into (H, |.|H). The mapping F : R+×
D([−τ,0] ;H)→ H,G : R+×D([−τ,0] ;H)→ L0

2 (K,H) are
both Borel measurable,ρ : R+ → [0,τ],δ : R+ → [0,τ] are
continuous.

This paper is organized as follows. In section 2, we given
some preliminaries, basic definitions and results, which will
be used in the sequel. In section 3, the existence result for the
considered system (1)− (2) is proved.

2. Preliminaries
Let {Ω,F ,P} be a complete probability space equipped

with some filtration {Ft}t≥0 satisfying the usual conditions
(i.e. it is right continuous and F0 contains all P-null sets).
Let H,K be two real separable Hilbert spaces. We denote by
L (K,H) the set of all linear bounded operators from K into
H,which is equipped with the usual operator norm ‖.‖. In this
paper, we always use the same symbol ‖.‖ to denote norms of
operators regardless of the spaces potentially involved when
no confusion possibly arises. Let τ > 0 and
D := D([−τ,0] ;H) denote the family of all right-continuous
functions with left-hand limits ϕ from [−τ,0] to H. The
space D([−τ,0] ;H) is assumed to be equipped with the
norm ‖ϕ‖D =sup−τ≤θ≤0 ‖ϕ(θ)‖H. We also use the space
Db

F0
([−τ,0] ;H) denote the family of all almost surely

bounded, F0- measurable, D([−τ,0];H)- valued random
variables. The space S endowed with the norm
‖u‖p

s = supt≥0E ‖u(t)‖p
H is a Banach space. Also

S =C([0,a];X) denotes the space of all continuous functions
with the norm ‖.‖C([0,a];X) = supt∈[0,a] ‖x(t)‖X .

With the symbol {W (t) , t ≥ 0}, we denote a K- valued
{Ft}t≥0 Wiener process defined on the probability space
{Ω,F ,P} with covariance operator Q,
i.e. E 〈W (t),x〉K 〈W (t),y〉K = (t ∧ s)〈Qx,y〉K ∀x,y ∈K,
where Q is a positive, self-adjoint, trace class operator on K.
In particular, we call such {W (t), t ≥ 0} a K-valued Q-Wiener
process relative to{Ft}t≥0.

In order to define stochastic integrals with respect to the
Q-Wiener process W (t), we introduce the subspace K0 =
Q1/2(K) of K , which endowed with the inner product

〈u,v〉K0
=

〈
Q−1/2u,Q−1/2v

〉
K
,

is a Hilbert space. Let L 0
2 = L2(K0,H) denote the space of

all Hilbert-Schmidt operators from K0 into H. It turns out to
be a separable Hilbert space, equipped with the norm

‖ψ‖2
L 0

2
= tr

((
ψQ1/2

)(
ψQ1/2

)∗)
,

for any ψ ∈ L 0
2 . Clearly, for any bounded opreators ψ ∈

L (K,H), this norm reducess to

‖ψ‖2
L 0

2
= tr (ψQψ

∗) .

For arbitrary given T ≥ 0, let J (t,w), t ∈ [0,T ], be an
Ft-adapted, L 0

2 -valued process, and we define the
following norm for arbitrary t ∈ [0,T ],

|J|t =
{

E
∫ t

0
tr
((

J (s,w)Q1/2
)(

J (s,w)Q1/2
)∗)

ds
}

Consider the following Stochastic Partial Integro - Differential
Equation with delays

du(t) =

[
Au(t)+

∫ t

0
B(t− s)u(s)ds+F(t,u(t−ρ(t)))

]
dt

+ G(t,u(t−δ (t)))dW (t) for t ≥ 0,

the above equation is equivalent to the following integral
equation

u(t) = φ(0)+
∫ t

0
Au(t)ds+

∫ t

0

∫ s

0
B(τ− s)u(s)dτds

+
∫ t

0
F [s,u(s−ρ(s))]ds+

∫ t

0
G[s,u(s−δ (s))]dW (s)(2.1)

This can be written the following form

u(t) = f (t)+
∫ t

0
s′(t− s) f (s)ds (2.2)

Where,

f (t) = φ(0)+
∫ t

0
F [s,u(s−ρ(s))]ds

+
∫ t

0
G[s,u(s−δ (s))]dW (s)

Let us assume that the integral equation (4) has an
associated resolvent operator {S(t)}t≥0 on H.

Definition 2.1. [18] A family (S(t))t≥0 ⊂L (X) of bounded
linear operators in X is called resolvent for (4)(or solution
operator for (4), if the following conditions are satisfied

(S1) S(t) is strongly continuous on R+ and S(0) = I,

(S2) S(t) commutes with A, which means that S(t)D(A) ⊂
D(A) and AS(t)x = S(t)Ax for all x ∈D(A) and t ≥ 0;
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(S3) The resolvent equation holds

S(t)x = x+
∫ t

0
As(s)xds (2.3)

Definition 2.2. [18] A resolvent S(t) for (4) is called
differentiable, if S(·)x ∈W 1,1(R+;X) for each x ∈D(A) and
there is φA ∈ L1

loc(R+) such that ‖S′(t)x‖≤ φA(t)‖x‖D(A) a.e.
on R+, for each x ∈D(A), where the notation [D(A)] stands
the domain of the operator A provided with the graph norm
‖x‖[D(A)] = ‖x‖+‖Ax‖.

Lemma 2.3. [18] Suppose (4) admits a differentiable
resolvent S(t) and if f ∈C([0,a];D(A)) then

u(t) = f (t)+
∫ t

0
S′(t− s) f (s)ds, t ∈ [0,a]

is a mild solution of (4).

In order to prove that the existence result of the stochastic
partial integro-differential equation with delays, we need the
following assumptions

H1: The mapping F(t, .) satisfies the following Lipschitz
conditions, for any x,y ∈ H and
t ≥ 0

‖F(t,x)−F(t,y)‖H ≤ L1 ‖x− y‖H for all t ≥ 0,x,y ∈ H

where L1 > 0,
H2: The mapping G(t, .) satisfies the following Lipschitz

conditions, for any x,y ∈H and t ≥ 0

‖G(t,x)−G(t,y)‖L 0
2
≤ L2 ‖x− y‖H for all t ≥ 0,x,y ∈ H

where L2 > 0,

3. Existence and Uniqueness Results

In this section, we provide the existence results for (1.1). This
problem is equivalent to the following integral equation

u(t) = φ(0)+
∫ t

0
Au(t)ds+

∫ t

0

∫ s

0
B(τ− s)u(s)dτds

+
∫ t

0
F [s,u(s−ρ(s))]ds+

∫ t

0
G[s,u(s−δ (s))]dW (s)

By Lemma(1) and the above representation, the mild solution
of (1.1) can be defined as follows

Definition 3.1. A stochastic process {u(t), t ∈ [0,T ]}, 0 ≤
T ≤ ∞, is called a mild solution of (1) if
1.u(t) is adapted to Ft , t ≥ 0;
2.u(t) ∈H has cadlag paths on t ∈ [0,T ] almost surely, and

for arbitrary 0≤ t ≤ T ,

(u)(t) = φ(0)+
∫ t

0
F [s,u(s−ρ(s))]ds

+
∫ t

0
G[s,u(s−δ (s))]dW (s)

+
∫ t

0
s
′
(t− s)φ(θ)ds

+
∫ t

0
s
′
(t− s)

∫ s

0
F [τ,u(τ−ρ(τ))]dτds

+
∫ t

0
s
′
(t− s)

∫ s

0
G[τ,u(τ−δ (τ))]dw(τ)ds

Theorem Assume that (H1) and (H2)are hold, then the
problem(1.1) is a unique mild solution.
Proof. Define the operator K : S→ S by K (u)(t) = φ(t) for
t ∈ [−τ,0] and for t ≥ 0,

(K u)(t) = φ(0)+
∫ t

0
F [s,u(s−ρ(s))]ds

+
∫ t

0
G[s,u(s−δ (s))]dW (s)

+
∫ t

0
s
′
(t− s)φ(θ)ds

+
∫ t

0
s
′
(t− s)

∫ s

0
F [τ,u(τ−ρ(τ))]dτds

+
∫ t

0
s
′
(t− s)

∫ s

0
G[τ,u(τ−δ (τ))]dw(τ)ds

First we verify thet K is p- th mean continuous on [0,∞). Let
u ∈ S, t1 ≥ 0 and |h| be sufficiently small, then

E ‖(K u)(t1 +h)− (K u)(t1)‖P
H

≤ 5P−1
5

∑
i=1

E ‖Ii(t1 +h)− Ii(t1)‖P
H

By using Holder inequality and the Burkholder - Davies -
Gundy inequality we have

E ‖Ii(t1 + h)− Ii(t1)‖P
H

≤ 2p−1
∥∥∥∥∫ t1

0

(
s′(t1 + h− s)− s′(t1 − s)

)
∫ s

0
G[τ,u(τ − δ (τ))]dw(τ)ds

∥∥∥∥P

H

+ 2p−1E
∥∥∥∥∫ t1+h

0
s′(t1 + h− s)∫ s

0
G[τ,u(τ−δ (τ))]dw(τ)ds

∥∥∥∥P

H

≤ 2p−1cp

∫ t1

0

(
E
∥∥∥∥(s′(t1 + h− s)− s′(t1 − s))

∫ s

0
G[τ,u(τ − δ (τ))]

∥∥∥∥p

L0
2

)2/p

dτds

p/2
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→ 0 as h→ 0 Similarly, we can verify that

E ‖Ii(t1 +h)− Ii(t1)‖2
H → 0, i = 1,2,3,4ash→ 0.

Where cp = (p(p−1)/2)p/2. Thus K is indeed continuous
in pth mean on [0,∞). Next we show that K (S) ⊂ S. It
follows from (1) then we have

E ‖(K u)(t)‖P
H

≤ 6P−1E ‖φ(θ)‖p
H +6p−1E

∥∥∥∥∫ t

0
F [s,u(s−ρ(s))]ds

∥∥∥∥P

H

+6P−1E
∥∥∥∥∫ t

0
G[s,u(s−δ (s))]dw(s)

∥∥∥∥P

H

+6P−1E
∥∥∥∥∫ t

0
s′(t− s)φ(θ)ds

∥∥∥∥P

H

+6p−1E
∥∥∥∥∫ t

0
s′(t− s)

∫ s

0
F [τ,u(τ−ρ(τ))]dτds

∥∥∥∥p

H

+6p−1E
∥∥∥∥∫ t

0
s′(t− s)

∫ s

0
G[τ,u(τ−δ (τ))]dw(τ)ds

∥∥∥∥p

H

=
6

∑
i=1

Ji(t)

Now we estimate Ji, i = 1,2, ...,6 First we have

J1(t) ≤ ‖φ‖P
D < ∞

Now by(H1), we obtain

J2(t) ≤ E
[∫ t

0
‖F [s,u(s−ρ(s))]‖H ds

]P

≤ Lp
1 ‖x‖

p
D T

From the well known lemma (Da Prato and Zabczyk [8]) and
by (H2) we have

J3(t) ≤ cp

[∫ t

0

(
E ‖G[s,u(s−δ (s))]‖P

H

) 2
p

ds
] p

2

≤ cpLP
2 ‖u‖

P
D T

Similarly, by (H2) we obtain

J4(t) ≤ E
[∫ t

0
φA(t− s)‖φ(0)‖P

H ds
]

≤ 6P−1 ‖φ(0)‖‖φA‖L1([0,t];R+)

By (H1),(H2) and the lemma (Da Prato and Zabczyk [8]) we
have

J5(t) ≤ LP
1

∫ t

0
φA(t− s)

∫ s

0
E ‖u(τ−ρ(τ))‖P

H dτds

≤ 6P−1LP
1 ‖u‖

P
D

∫ t

0
φA(t− s)dτds

≤ 6P−1LP
1 ‖u‖

P
D T ‖φA‖L1([0,t];R+)

J6(t) ≤ CPE
[∫ t

0
φA(t− s)

∫ s

0
‖G[τ,u(τ−δ (τ))]‖P

H dτds
]

≤ 6P−1CPLP
2 ‖u‖

P
D

∫ t

0
φA(t− s)sds

≤ 6P−1CPLP
2 ‖u‖

P
D T ‖φA‖L1([0,t];R+)

It follows from the above estimations we have ‖(K u)(t)‖<
∞. So we conclude that K (S)⊂ (S). Next we need to show
K is contraction mapping. Let u,v ∈ S, Then

E sup
t∈[0,T ]

‖(K U)(t)− (K V )(t)‖P
H ‘

≤ 4P−1 sup
t∈[0,T ]

E ‖U(t)−V (t)‖P
H T

×
(

LP
1 +CPLP

2 +LP
1 ‖φA‖L1([0,t];R+)+CPLP

2 ‖φA‖L1([0,t];R+)

)
≤ 4P−1 sup

t∈[0,T ]
E ‖U(t)−V (t)‖P

H T

×
[(

LP
1 +CPL2

2
)(

1+‖φA‖L1([0,t];R+)

)]
If T > 0 is sufficiently small, then we can ensure that[(

LP
1 +CPL2

2
)(

1+‖φA‖L1([0,t];R+)

)]
T < 1

We conclude that the operator K satisfies the contracting
mapping principle, and hence there exists a unique mild
solution for (1)-(2) on T ∈ [0,T ].

Conclusion
In this paper, we study the existence results for stochastic

partial integro-differential equations with delays. The mild
solution of the problem is derived by using a different
resolvent operator and by using contraction mapping
principle.
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