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1. Introduction
Fractional differential equations have become an impor-

tant object of study in recent years inspired by their various
applications to problems arising in physics, mechanics and
other fields (see [3, 7–9, 15]). The theory of differential equa-
tion of fractional order has recently received a lot of attention
and now constitutes a significant branch of nonlinear analysis.
Numerous research papers and monographs have appeared
dedicated to fractional differential equations, for example see
[6, 12–14, 19].

On the other hand, functional differential equations with
state-dependent delay shows up frequently within applications
as models of equations. Investigations of these classes of
delay equations essentially differ from once of equations with
constant or time dependent delay. Therefore the theory of
differential equation with state-dependent delay has drawn the
consideration of analysts in the recent years.

The cosine function theory is identified with abstract linear
second order differential equations. For basic concepts and
applications of this theory, we suggest the reader to refer
Fattorini [10] and Travis and Webb [24].

In our study, we apply the method related with the tech-
nique of measure of non-compactness and the fixed point
theorem of Monch type [20]. This technique was mostly ini-
tiated in the monograph of Bana and Goebel [4] and later
developed and used in several papers; see for example, Bana
and Sadarangani [5], Guo et al. [13], Lakshmikantham and
Leela [17], and Szufla [23].

This paper is concerned with existence of mild solutions
defined on a compact real interval for fractional differential
equations with state-dependent delay of the form

CDα
t [x(t)+g(t,xt)] = A[x(t)+g(t,xt)]

+ f (t,x(t−ρ(x(t)))) , t ∈ J = [0,b], (1.1)
x(t) = φ(t), t ∈ [−r,0], x′(0) = y0 ∈ E, (1.2)

where CDα
t is the Caputo’s fractional derivatives of order

1<α < 2. A is the infinitesimal generator of a strongly contin-
uous α-order cosine family {Cα(t)}t≥0 on E. The functions
f ,g : J×C([−r,0],E)→ E are a continuous functions, and
φ : [−r,0]→ E is a given continuous function with φ(0) = 0
and (E, |.|) a real Banach space. ρ is a positive bounded
continuous function on C([−r,0],E). r is the maximal delay
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defined by

r = sup
x∈C

ρ(x).

Further, we also consider the following fractional integro-
differential equations with state-dependent delay of the form

CDα
t

[
x(t)+g

(
t,xt ,

∫ t

0
k1 (t,s,xs)ds

)]
= A

[
x(t)+

(
t,xt ,

∫ t

0
k1 (t,s,xs)ds

)]
+ f
(

t,x(t−ρ(x(t))),
∫ t

0
k2 (t,s,x(s−ρ(x(s))))ds

)
,

t ∈ J, (1.3)
x(t) = φ(t), t ∈ [−r,0], x′(0) = y0 ∈ E, (1.4)

where CDα
t ,A,φ and y0 are same as defined in (1.1) - (1.2).

Further ki : J× J×C([−r,0],E)→ E, (for i = 1,2) and f ,g :
J×C([−r,0],E)×E→ E are continuous functions.

The rest of this paper is organized as follows. In second
section, we recall some preliminaries about fractional calcu-
lus and the Kuratowski’s measure of non-compactness and
auxiliary results. In the third section, the results are based on
Monch’s fixed point theorem combined with the technique of
measure of non-compactness.

2. Preliminaries
In this section, we recall some basic definitions, lemmas

and notations which will be used throughout this paper.
let E be a Banach space. By C(J,E) we denote the Banach

space of continuous functions from J into E with norm

‖x‖= sup{|x| : t ∈ J}.

C([−r,0],E) is endowed with norm defined by

‖ψ‖= sup{|ψ| : θ ∈ [−r,0]}.

B(E) denotes the Banach space of all bounded linear operators
from E into E, with the norm

‖N‖B(E) = sup{|N(x)| : |x|= 1}.

L1(J,E) denotes the Banach space of measurable functions
x : J→ E which are Bochner integrable, normed by

‖x‖L1 =
∫ b

0
|x(t)|dt.

L∞(J,E) denotes the Banach space of measurable functions
x : J→ E which are bounded, equipped with the norm

‖x‖L∞ = inf{c > 0 : ‖x(t)‖< c, a.e t ∈ J}.

For a given set V of functions v : [−r,b]→ E, let us denote by

V (t) = {v(t) : v ∈V}, t ∈ [−r,b]

and

V (J) = {v(t) : v ∈V, t ∈ [−r,b]}.

Let I be the identity operator on E. If A is a linear oper-
ator on E, then R(λ ,A) = (λ I−A)−1 denotes the resolvent
operator of A. We use the notation for η > 0,

kη(t) =
tη−1

Γ(η)
, t > 0, (2.1)

where Γ(η) is the Gamma function. If η = 0, we set k0(t) =
δ (t), the delta distribution.

Definition 2.1. [6] The Riemann-Liouville fractional integral
of order α > 0 is defined by

Jα
t x(t) =

∫ t

0
kα(t− s)x(s)ds, (2.2)

where x(t) ∈ L1([0,b],E).

Definition 2.2. [6] The Riemann-Liouville fractional deriva-
tive of order α ∈ (1,2] is defined by

Dα
t x(t) =

d2

dt2 J2−α
t x(t), (2.3)

where x(t),Dα
t x(t) ∈ L1([0,b];E).

Definition 2.3. [6] The Caputo fractional derivative of order
α ∈ (1,2] is defined by

CDα
t x(t) = Dα

t (x(t)− x(0)− x′(0)t), (2.4)

Dα
t x(t) ∈ L1([0,b];E)∩C1([0,b];E),Dα

t x(t) ∈ L1([0,b];E).

The Laplace transform for the Riemann-Liouville frac-
tional integral is given by

L{Jα
t x(t)}= 1

λ α
x̂(λ ), (2.5)

where x̂(λ ) is the Laplace transform of x given by

x̂(λ ) =
∫

∞

0
e−λ tx(t)dt, Reλ > ω. (2.6)

The Laplace transform for the Caputo derivative is given by

L[CDα
t x(t)] = λ

α x̂(λ )−λ
α−1x(0)−λ

α−2x′(0). (2.7)

Consider the following problem,

CDα
t x(t) = Ax(t), x(0) = φ(0), x′(0) = 0.

(2.8)

where α ∈ (1,2],A : D(A) ⊂ X → X is a closed densely de-
fined linear operator in E.

Definition 2.4. [6] Let α ∈ (1,2]. A family {Cα(t)}≥0⊂B(E)
is called a solution operator (or a strongly continuous α

- order fractional cosine family) for (2.8) if the following
conditions are satisfied:
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(i) Cα(t) is strongly continuous for t ≥ 0 and Cα(0) = I;

(ii) Cα(t)D(A) ⊂ D(A) and ACα(t)φ = Cα(t)Aφ for all
φ ∈ D(A), t ≥ 0;

(iii) Cα(t) is a solution of x(t) = φ +
∫ t

0
kα(t− s)Ax(s)ds

for all φ ∈ D(A), t ≥ 0.

A is called the infinitesimal generator of Cα(t). The
strongly continuous α-order fractional cosine family is also
called α-order cosine family for short.

Definition 2.5. [16] The fractional sine family Sα : R+ →
B(E) associated with Cα is defined by

Sα(t) =
∫ t

0
Cα(s)ds, t ≥ 0. (2.9)

Definition 2.6. [16] The fractional Riemann - Liouville fam-
ily Pα : R+→ B(E) associated with Cα is defined by

Pα(t) = Jα−1
t Cα(t), t ≥ 0. (2.10)

Definition 2.7. [16] The α-order cosine family Cα(t) is called
exponentially bounded if there are constants M≥ 1 and ω ≥ 0
such that

‖Cα(t)‖ ≤Meωt , t ≥ 0. (2.11)

An operator A is said to belong to Cα(M,ω), if the prob-
lem (2.8) has an α-order cosine family Cα(t) satisfying (2.11).

In the following, we will derive the appropriate definition
of mild solutions of (1.1) - (1.2). Assume A ∈Cα(M,ω) and
let Cα(t) be the corresponding α-order cosine family. Then,
we have (see [15])

λ
α−1R(λ α ,A)µ =

∫
∞

0
e−λ tCα(t)µdt, Reλ > ω, µ ∈ E.

(2.12)

By (2.9), (2.12), we have

λ
α−2R(λ α ,A)µ =

∫
∞

0
e−λ tSα(t)µdt, Reλ > ω,µ ∈ E.

(2.13)

By (2.10), (2.12), we have

R(λ α ,A)µ =
∫

∞

0
e−λ tPα(t)µdt, Reλ > ω, µ ∈ E.

(2.14)

Before we define the mild solution for the system (1.1) -
(1.2), first we consider the following linear problem

CDα
t [x(t)+g(t)] = A[x(t)+g(t)]+ f (t), t ∈ [0,b],

(2.15)

x(t) = φ(t), t ∈ [−r,0]. x′(0) = y0 ∈ E. (2.16)

Assume that the Laplace transform of x(t),g(t), f (t), with
respect to t exists. Taking the Laplace transform to (2.15) -
(2.16), by (2.7), we obtain

λ
α [x̂(λ )+ ĝ(λ )]−λ

α−1[x(0)+g(0)]−λ
α−2[y0 +η ]

= A[x̂(λ )+ ĝ(λ )]+ f̂ (λ ),

where x̂(λ ), ĝ(λ ), f̂ (λ ) denote the Laplace transform of
x(t),g(t), f (t) and d

dt g(t)|t=0 = η , where η is independent
of x. Then

x̂(λ )+ ĝ(λ ) = λ
α−1R(λ α ,A)[φ +g(0)]

+λ
α−2R(λ α ,A)[y0 +η ]+R(λ α ,A) f̂ (λ ).

By (2.12) - (2.14) and the property of Laplace transforms,

x(t)+g(t) =Cα(t)[φ +g(0)]+Sα(t)[y0 +η ]

+
∫ t

0
Pα(t− s) f (s)ds.

x(t) =Cα(t)[φ +g(0)]+Sα(t)[y0 +η ]−g(t)

+
∫ t

0
Pα(t− s) f (s)ds. (2.17)

Next, we show that the solution (2.17) satisfies the given
problem (2.15) - (2.16).

Indeed, taking Caputo derivative on both sides of (2.17),
we get,

CDα
t [x(t)+g(t)]

= CDα
t {Cα(t)[φ +g(0)]}+CDα

t {Sα(t)[y0 +η ]}

+CDα
t

{∫ t

0
Pα(t− s) f (s)ds

}
= ACα(t)[φ +g(0)]+Dα

t {Sα(t)[y0 +η ]}

+Dα
t

{∫ t

0
Pα(t− s) f (s)ds

}
= ACα(t)[φ +g(0)]+Dα

t {t[y0 +η ]

+ Jα
t Sα(t)A[y0 +η ]− ty0− tη}

+
d2

dt2 J2−α
t [Pα(t)∗ f (t)]

= ACα(t)[φ +g(0)]+Dα
t Jα

t Sα(t)A[y0 +η ]

+
d2

dt2 [g2−α ∗gα−1 ∗Cα(t)∗ f (t)]

= ACα(t)[φ +g(0)]+Sα(t)A[y0 +η ]

+
d2

dt2 [1∗Cα(t)∗ f (t)]

= ACα(t)[φ +g(0)]+ASα(t)[y0 +η ]

+
d
dt
[Cα(t)∗ f (t)]
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= ACα(t)[φ +g(0)]+ASα(t)[y0 +η ]

+
d
dt

[∫ t

0
Cα(t− s) f (s)ds

]
= ACα(t)[φ +g(0)]+ASα(t)[y0 +η ]

+A
[∫ t

0
Pα(t− s) f (s)ds

]
+ f (t)

= A
{

Cα(t)[φ +g(0)]+Sα(t)[y0 +η ]

+

[∫ t

0
Pα(t− s) f (s)ds

]}
+ f (t).

That is

CDα
t [x(t)+g(t)] = A[x(t)+g(t)]+ f (t), t ∈ J,

x(t) = φ(t), x′(0) = y0.

Motivated by the above results, we define the mild solution
for the given system (1.1) - (1.2).

Definition 2.8. We say that a continuous function x : [−r,b]→
E is a mild solution of problem (1.1) - (1.2) if x0 = φ ∈
[−r,0], x′(0) = y0 ∈ E,

x(t) =Cα(t)[φ(0)+g(0,φ(0))]+Sα(t)[y0 +η ]−g(t,xt)

+
∫ t

0
Pα(t− s) f (s,x(s−ρ(x(s))))ds, t ∈ J. (2.18)

Definition 2.9. A map f : J×C([−r,0],E)→ E is said to be
Caratheodory if

(i) t→ f (t,u) is measurable for each u ∈C([−r,0],E);

(ii) u→ f (t,u) is continuous for almost each t ∈ J.

Now, let us recall some fundamental facts of the notion of
Kuratowski’s measure of non-compactness.

Definition 2.10. [4] Let E be a Banach space and ΩE the
bounded subsets of E. The Kuratowski’s measure of non-
compactness is the β : ΩE → [0,∞] defined by

β (B) = inf{ε > 0 : B⊆ ∪n
i=1Bi diam (Bi)≤ ε};

here B ∈ΩE .

The Kuratowski’s measure of non-compactness satisfies
the following properties (for more details see [18])

(i) β (B) = 0⇔ B is compact (B is relatively compact).

(ii) β (B) = βB

(iii) A⊂ B⇒ β (A)≤ β (B)

(iv) β (A+B)≤ β (A)+β (B)

(v) β (cB) = |c|β (B);c ∈ R

(vi) β (convB) = β (B).

Theorem 2.11. [2, 20] Let D be a bounded, closed and con-
vex subset of a Banach space such that 0 ∈ D, and let N be a
continuous mapping of D into itself. If the implication

V = convN(V ) or V = N(V )∪{0}⇒ β (V ) = 0

holds for every subset V of D, then N has a fixed point.

Lemma 2.12. [23] Let D be a bounded, closed and convex
subset of the Banach space C(J,E),G a continuous function
on J×J and f is a function from J×C([−r,0],E)→ E which
satisfies the Caratheodory conditions and there exists p ∈
L1(J,R+) such that for each t ∈ J and each bounded set
B⊂C([−r,0],E) we have

lim
k→0+

β ( f (Jt,k×B))≤ p(t)β (B); Jt,k = [t− k, t]∩ J.

If V is an equi-continuous subset of D, then

β

(∫
J

G(s, t) f (s,xs)ds;x ∈V
)

≤
∫

J
‖G(t,s)‖p(s)β (V (s))ds.

3. Main Results
In this section, we present and prove the existence results

for the problem (1.1) - (1.2) and (1.3) - (1.4) with the help of
Monch’s fixed point theorem.

In order to prove the existence result for the problem (1.1)
- (1.2), we list the following hypotheses:

(H1) A : D(A) ⊂ E → E is the infinitesimal generator of a
uniformly continuous cosine family {Cα(t)}t≥0. Let

Mc = sup{‖Cα(t)‖C([−r,0],E); t ≥ 0}

and
Ms = sup{‖Sα(t)‖C([−r,0],E); t ≥ 0}

(H2) f : J×C([−r,0],E)→ E is a Caratheodory.

(H3) There exist functions p ∈ L∞(J,R+) such that

| f (t,u)| ≤ p(t)(‖u‖C +1), for a.e t ∈ J

and u ∈C([−r,0],E).

(H4) For almost each t ∈ J and each bounded set
B⊂C([−r,0],E), we have

lim
k→0+

β ( f (Jt,k×B))≤ p(t)β (B),

Jt,k = [t− k, t]∩ J.

(H5) The function t→ g is a continuous on J and there exist
constants c1,c2 > 0 such that

(a) |g(t,u)−g(t,v)| ≤ c1‖u−v‖C([−r,0],E), for each
u,v ∈C([−r,0],E).
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(b) |g(t,u)| ≤ c1‖u‖C([−r,0],E)+ c2, t ∈ J,
u ∈C([−r,0],E).

(c) For each bounded set B ⊂ C([−r,0],E), and
t ∈ J, we have β (g(t,B))≤ c1(t)β (B).

(H6) For each t ∈ J and any bounded set B⊂C([−r,0],E),
the set {g(t,u) : u ∈ B} is relatively compact in E.

Theorem 3.1. Assume that the hypotheses (H1) - (H6) are
satisfied. Then the problem (1.1) - (1.2) has at least one mild
solution on [−r,b], provided that

c1 +M‖p‖L∞ < 1. (3.1)

Proof. Transform the problem (1.1) - (1.2) into a fixed point
problem. Consider the operator N :C([−r,0],E)→C([−r,0],E)
defined by

N(x)(t) =


φ(t), i f t ∈ [−r,0],
Cα (t)[φ(0)+g(0,φ(0))]+Sα (t)[y0 +η ]−g(t,xt)

+
∫ t

0
Pα (t− s) f (s,x(s−ρ(x(s))))ds, t ∈ J.

(3.2)

Let ν > 0 be such that

ν ≥ Λ+M‖p‖L∞

(1− [c1 +M‖p‖L∞ ])
, (3.3)

where Λ = Mc[|φ(0)|+ |g(0,φ(0))|] + Ms[|y0|+ |η |] + c2,
and consider the set

Dν = {x ∈C([−r,0],E) : ‖x‖∞ ≤ ν}.

Clearly the subset Dν is closed, bounded and convex. We
shall show that N satisfies the assumptions of Theorem 2.11.

Now, we prove that N is completely continuous. For our
convenience, we break the proof into sequences of steps.
Step 1: We prove that N is continuous.

Let {xn} be a sequence such that xn → x as n→ ∞ in
C([−r,0],E), then for t ∈ [0,b]. Note that−r≤ s−ρ(x(s))≤
s for each s ∈ J, we have

|N(xn)(t)−N(x)(t)|
≤ |g(t,xnt )−g(t,xt) |

+

∫ t

0
Pα (t− s)[ f (s,xn(s−ρ(xn(s))))− f (s,x(s−ρ(x(s))))]ds

.
Since f is a Caratheodory function for t ∈ J, and from

the continuity of ρ , we have by the dominated convergence
theorem of Lebesgue, the right member of the above inequality
tends to zero as n→ ∞.

|N(xn)−N(x)| → 0 as n→ ∞.

Thus the operator N is continuous.
Next, we will show that N(Dν)⊂ Dν is bounded. For

each x ∈Dν by hypotheses (H1), (H3), (H5) we have for each

t ∈ [0,b],

|N(x)(t)|

≤
Cα(t)[φ(0)+g(0,φ(0))]+Sα(t)[y0 +η ]−g(t,xt)

+
∫ t

0
Pα(t− s) f (s,x(s−ρ(x(s))))ds


≤Mc[|φ(0)|+ |g(0,φ(0))|]+Ms[|y0|+ |η |]+ c1‖x(t)‖

+ c2 +M
∫ t

0
p(s)(‖x(s)‖+1)ds

≤Mc[|φ(0)|+ |g(0,φ(0))|]+Ms[|y0|+ |η |]+ c1ν

+ c2 +M
∫ t

0
p(s)(ν +1)ds

≤ Λ+ c1ν +M(ν +1)‖p‖L∞ ,

Then N(Dν)⊂ Dν .

Now, we prove that N(Dν) is equicontinuous. Let
τ1,τ2 ∈ J,τ2 > τ1. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have
for any x ∈ Dν ;

|N(x)(τ2)−N(x)(τ1)|
≤|φ(0)+g(0,φ(0))||Cα(τ2)−Cα(τ1)|

+ |y0 +η ||Sα(τ2)−Sα(τ1)|
+ |g(τ2,xτ2)−g(τ1,xτ1) |

+

∫ τ2

0
Pα(τ2− s) f (s,x(s−ρ(x(s))))ds

−
∫

τ1

0
Pα(τ1− s) f (s,x(s−ρ(x(s))))ds


≤|φ(0)+g(0,φ(0))||Cα(τ2)−Cα(τ1)|

+ |y0 +η ||Sα(τ2)−Sα(τ1)|
+ |g(τ2,xτ2)−g(τ1,xτ1) |

+‖p‖L∞(ν +1)
{∫ τ1−ε

0

[
Pα(τ2− s)

−Pα(τ1− s)
]

ds


+

∫ τ1

τ1−ε

[Pα(τ2− s)−Pα(τ1− s)]ds


+

∫ τ2

τ1

Pα(τ2− s)ds
}.

As τ1 → τ2 and ε is sufficiently small, the right hand
side of the above inequality tends to zero, then N(Dν) is
continuous and completely continuous.

Now let V be a subset of Dν such that V ⊂ conv(N(V )∪
{0}).
V is bounded and equi-continuous and therefore the function
v→ v(t) = β (V (t)) is continuous on [−r,b]. By hypothesis
(H4) and Lemma 2.12 and the properties of the measure β ,
we have for each t ∈ [−r,b]
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‖v(t)‖ ≤ β (N(V )(t)∪{0})
‖v‖∞ ≤ β (N(V )(t))

≤ c1β (V (t))+M
∫ t

0
p(s)β (V (s))ds

≤ c1v(t)+M
∫ t

0
p(s)v(s)ds

‖v‖∞ ≤ c1‖v‖∞ +M‖p‖L∞‖v‖∞.

This means that

‖v‖∞ [1− (c1 +M‖p‖L∞)]≤ 0.

By (3.1) it follows that ‖v‖∞ = 0, that is v(t) = 0 for each
t ∈ [−r,b], and then V (t) is relatively compact in E. In view
of the Ascoli-Arzela theorem, V is relatively compact in Dν .
Applying now Theorem 2.11, we conclude that N has a fixed
point which is a mild solution for the problem (1.1) - (1.2).

Our next existence result for the problem (1.3) - (1.4) is
based on the Monch’s fixed point theorem. Before, we present
and prove the results for the problem, first we define the mild
solution for the problem (1.3) - (1.4).

Definition 3.2. We say that a continuous function x : [−r,b]→
E is a mild solution of problem (1.3) - (1.4) if x(0) = φ ∈
[−r,0],x′(0) = y0 ∈ E, we have

x(t) =Cα(t)[φ +g(0,φ ,0)]+Sα(t)[y0 +η ]

−g
(

t,xt ,
∫ t

0
k1 (t,s,xs)ds

)
+
∫ t

0
Pα(t− s) f

(
s,x(s−ρ(x(s))),∫ s

0
k2 (s,τ,x(τ−ρ(x(τ))))dτ

)
ds, t ∈ J. (3.4)

Next, to prove the existence result for the problem (1.3) -
(1.4), we list the following additional hypotheses:

(H3*) There exist functions p ∈ L∞(J,R+) such that

(a) ‖ f (t,x,y)‖ ≤ p(t)Ω[‖x‖C +‖y‖E ], t ∈ J,
x ∈C([−r,0],E) and y ∈ E.

(b) For almost each t ∈ J and each bounded set B⊂
C([−r,0],E), F ⊂ E, we have

lim
k→0+

β ( f (t,B(θ),F))

≤ p(t)
[

sup
−r≤θ≤0

βB(θ)+β (F)

]
for a.e t ∈ J,

where B(θ) = {u(θ) : u ∈ B}.

(H4*) The function g : J×C([−r,0],E)×E→ E is a contin-
uous and there exists a constant c1 > 0 such that the
function satisfies the following conditions:

(a) ‖g(t,x1,x2)−g(t,y1,y2)‖≤ c1[‖x1−y1‖C+‖x2−
y2‖]; t ∈ J, x1,y1 ∈C and x2,y2 ∈ E.

(b) There exist constants Lg and L̃g such that ‖g(t,x,y)‖≤
Lg[‖x‖C +‖y‖]+ L̃g, t ∈ J, x ∈C, y ∈ E.

(c) For each bounded set B ∈ C([−r,0],E), F ⊂ E,
there exists a positive function γ ∈ L1(J,R+),
such that
lim

k→0+
β (g(t,B(θ),F))

≤ γ(t)
[

sup
−r≤θ≤0

βB(θ)+β (F)

]
for a.e t ∈ J,

where B(θ) = {u(θ) : u ∈ B}.

(H5*) The functions ki : J× J×C([−r,0],E)→ E, i = 1,2;
are continuous maps and there exist positive constants
Lki > 0 such that

(i)
wwww∫ t

0
[ki(t,s,z1)− ki(t,s,z2)]ds

wwww≤ Lki‖z1− z2‖C
for each z1,z2 ∈C,

(ii)
wwww∫ t

0
ki(t,s,z)ds

wwww≤ Lki [1+‖z‖C] for each z∈C,

i = 1,2.

(iii) There exists µ ∈ L1(J× J,R+) such that

‖β (ki(t,s,H))‖ ≤ µi(t,s)
[

sup
−r≤θ≤0

H(θ)

]
,

for a.e. t,s ∈ J, (for i = 1,2)

where H(θ) = {w(θ) : w ∈H} and β is the Haus-
droff MNC.

Remark 3.3. For our convenience, let us take

µ∗1 = sup
(t,s)∈J

∫ t

0
µ1(t,s)ds and µ∗2 = sup

(t,s)∈J

∫ t

0
µ2(t,s)ds.

Theorem 3.4. Assume that the conditions (H1),(H2),(H3∗)−
(H5∗) are satisfied. Then the problem (1.3) - (1.4) has at least
one mild solution on [−r,b], provided that

[‖γ‖(1+µ
∗
1 )+M‖p‖L∞(1+µ

∗
2 )]< 1. (3.5)

Proof. Transform the problem (1.3) - (1.4) into a fixed point
problem. Consider the operator N1 :C([−r,0],E)→C([−r,0],E)
defined by

N1(x)(t) =



φ(t), i f t ∈ [−r,0],
Cα(t)[φ(0)+g(0,φ(0),0)]+Sα(t)[y0 +η ]

−g
(

t,xt ,
∫ t

0
k1 (t,s,xs)ds

)
+
∫ t

0
Pα(t− s) f

(
s,x(s−ρ(x(s))),∫ s

0
k2 (s,τ,x(τ−ρ(x(τ)))dτ

)
ds, t ∈ J.

(3.6)
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Let ν > 0 be such that

ν ≥
Λ1 +LgLk1 −M‖p‖L∞

[1−Lg(1+Lk1)+M‖p‖L∞(1+Lk2)]
, (3.7)

where Λ1 = Mc[|φ(0)|+ |g(0,φ(0),0)|]+Ms[|y0 +η |]+ L̃g,
and consider the set

Dν = {x ∈C([−r,0],E) : ‖x‖∞ ≤ ν}.

Clearly the subset Dν is closed, bounded and convex. We
shall show that N1 satisfies the assumptions of Theorem 2.11.

Now, we prove that N1 is completely continuous. For our
convenience, we break the proof into sequences of steps.

Step1: We prove that N1 is continuous.

Let {xn} be a sequence such that xn → x as n→ ∞ in
C([−r,0],E), then for t ∈ [0,b]. Note that−r≤ s−ρ(x(s))≤
s for each s ∈ J, we have

|N1(xn)(t)−N1(x)(t)|

≤
g
(

t,xnt ,
∫ t

0
k1 (t,s,xns)ds

)
−g
(

t,xt ,
∫ t

0
k1 (t,s,xs)ds

)
+

∫ t

0
Pα(t− s) f

(
s,xn(s−ρ(xn(s))),∫ s

0
k2 (s,τ,xn(τ−ρ(xn(τ))))dτ

)
ds

−
∫ t

0
Pα(t− s) f

(
s,x(s−ρ(x(s))),∫ s

0
k2 (s,τ,x(τ−ρ(x(τ)))dτ

)
ds
.

Since f is a Caratheodory function for t ∈ J, and from the
continuity of ρ , we have by the dominated convergence the-
orem of Lebesgue, the right member of the above inequality
tends to zero as n→ ∞.

|N1(xn)−N1(x)| → 0 as n→ ∞.

Thus N1 is continuous.

Next, we will show that N1(Dν) ⊂ Dν is bounded. For
each x ∈ Dν by hypotheses (H3*) - (H5*) we have for each

t ∈ [0,b],

|N1(x)(t)|

≤
Cα(t)[φ(0)+g(0,φ(0),0)]+Sα(t)[y0 +η ]

−g
(

t,xt ,
∫ t

0
k1 (t,s,xs)ds

)
+
∫ t

0
Pα(t− s) f

(
s,x(s−ρ(x(s))),∫ s

0
k2 (s,τ,x(τ−ρ(x(τ)))dτ

)
ds


≤Mc[|φ(0)|+ |g(0,φ(0),0)|]+Ms[|y0|+ |η |]

+Lg

[
‖x(t)‖C +

wwww∫ t

0
k1(t,s,xs)ds

wwww]
+ L̃g +M

∫ t

0
p(s)Ω

[
‖x(s)‖C +Lk2 [1+‖x(s)‖C]

]
ds

≤Mc[|φ(0)|+ |g(0,φ(0),0)|]+Ms[|y0|+ |η |]

+Lg

[
‖x(t)‖C +Lk1 [1+‖x(t)‖C]

]
+ L̃g +M‖p‖L∞

[
‖x‖∞ +Lk2 [1+ |x‖∞]

]
≤Mc[|φ(0)|+ |g(0,φ(0),0)|]+Ms[|y0|+ |η |]
+Lg[ν +Lk1(1+ν)]+ L̃g

+M‖p‖L∞ [ν +Lk2(1+ν)]

≤ Λ1 +Lg[ν +Lk1(1+ν)]+M‖p‖L∞ [ν +Lk2(1+ν)].

Then N1(Dν)⊂ Dν .

Now, we prove that N1(Dν) is equicontinuous. Let τ1,τ2 ∈
J,τ2 > τ1. Then if ε > 0 and ε ≤ τ1 ≤ τ2 we have for any
x ∈ Dν ;

|N1(x)(τ2)−N1(x)(τ1)|
≤ |φ(0)+g(0,φ(0),0)||Cα(τ2)−Cα(τ1)|
+ |y0 +η ||Sα(τ2)−Sα(τ1)|

+

g
(

τ2,xτ2 ,
∫

τ2

0
k1 (τ2,s,xs)ds

)
−g
(

τ1,xτ1 ,
∫

τ1

0
k1 (τ1,s,xs)ds

)
+

∫ τ2

0
Pα(τ2− s) f

(
s,x(s−ρ(x(s))),∫ s

0
k2 (s,τ,x(τ−ρ(x(τ))))dτ

)
ds

−
∫

τ1

0
Pα(τ1− s) f

(
s,x(s−ρ(x(s))),∫ s

0
k2 (s,τ,x(τ−ρ(x(τ))))dτ

)
ds
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≤|φ(0)+g(0,φ(0),0)||Cα(τ2)−Cα(τ1)|
+ |y0 +η ||Sα(τ2)−Sα(τ1)|

+

g
(

τ2,xτ2 ,
∫

τ2

0
k1 (τ2,s,xs)ds

)
−g
(

τ1,xτ1 ,
∫

τ1

0
k1 (τ1,s,xs)ds

)
+‖p‖L∞ Ω[ν +Lk2(1+ν)]

{∫ τ1−ε

0

[
Pα(τ2− s)

−Pα(τ1− s)
]

ds


+

∫ τ1

τ1−ε

[Pα(τ2− s)−Pα(τ1− s)]ds


+

∫ τ2

τ1

Pα(τ2− s)ds
}.

As τ1 → τ2 and ε is sufficiently small, the right hand
side of the above inequality tends to zero, then N1(Dν) is
continuous and completely continuous.

Now let V be a subset of Dν such that V ⊂ conv(N1(V )∪
{0}).

V is bounded and equi-continuous and therefore the func-
tion v→ v(t) = β (V (t)) is continuous on [−r,b]. By hypothe-
ses (H3∗)− (H5∗) and Lemma 2.12 and the properties of the
measure β , we have for each t ∈ [−r,b]

‖v(t)‖ ≤ β (N1(V )(t)∪{0})
‖v‖∞ ≤ β (N1(V )(t))

≤ β

[
g
(

t,V (t),
∫ t

0
k1(t,s,xs)ds

)]
+β

[∫ t

0
Pα(t− s) f

(
s,V (s−ρ(V (s))),∫ s

0
k2(s,τ,x(τ−ρ(x(τ))))ds

)]
≤ γ(t)

[
β (V (t))+β

(∫ t

0
k1(t,s,xs)ds

)]
+Mp(t)

∫ t

0
p(s)

[
β (V (s))

+β

(∫ s

0
k2(s,τ,x(τ−ρ(x(τ))))dτ

)]
ds

≤ γ(t)
[

v(t)+
∫ t

0
µ1(t,s)α(V (s))ds

]
+Mp(t)

∫ t

0
p(s)

[
v(s)+

∫ s

0
µ2(s,τ)V (τ)dτ

]
ds

≤ ‖γ‖‖v‖∞(1+µ
∗
1 )+M‖p‖L∞‖v‖∞(1+µ

∗
2 )

‖v‖∞ ≤ ‖v‖∞[‖γ‖(1+µ
∗
1 )+M‖p‖L∞(1+µ

∗
2 )]

This means that

‖v‖∞{1− [‖γ‖(1+µ
∗
1 )+M‖p‖L∞(1+µ

∗
2 )]} ≤ 0.

By (3.5) it follows that ‖v‖∞ = 0, that is v(t) = 0 for
each t ∈ [−r,b], and then V (t) is relatively compact in E. In

view of the Ascoli-Arzela theorem, V is relatively compact
in Dν . Applying now Theorem 2.11, we conclude that N1 has
a fixed point which is a mild solution for the problem (1.3) -
(1.4).
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