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1. Introduction

Gahler [4] introduced the theory of 2-norm on a linear
space in 1964. In 1984 Katsaras [7] gave the notion of fuzzy
norm on a linear space. Further, fuzzy normed spaces were
defined in various ways by Cheng and Mordeson [2] and by
Bag and Samanta [1]. R.M. Somasundaram and Thangaraj
Beaula [9] introduced the notion of fuzzy 2-normed linear
space, {F (X),N}. The concept of 2-inner product space was

introduced by C.R. Diminnie, S. Gahler and A. White [5].

Parijat Sinha, Ghanshayam Lal and Divya Mishra introduced
the concept of fuzzy 2-inner product space and the notion of
o —2-norm in [8]. The notions of fuzzy inner product space

and of fuzzy normed linear space were established in [6].

Also, Vijayabalaji and Thillaigovindan [10] introduced the
fuzzy n-inner product space as a generalization of the concept

of n-inner product space given by Y.J. Cho, M. Matic and J.

Pecaric in [3]. Thangaraj Beaula and Daniel Evans introduced
the concept of 2-fuzzy n — n inner product space in [11] as
an extension of [10]. In this paper operators are introduced
in 2-fuzzy n — n inner product space and their properties are
studied.

2. Preliminaries

Definition 2.1. Let n € N and X be a real linear space of
dimension greater or equal to n. Then a real valued function
I.;...,.|| on X" is called a n-norm on X, if it satisfies the
following four properties

i) ||x1,...,%:]| =0 ifand only if xy,. .. ,x, linearly depen-

dent.

ii) ||x1,...,Xq|| is invariant under any permutation

i) ||x1,...,0x,| = |e|||x1,- .., Xal|, for any o is a real
number

v) 1%, X1,y +2||

S ||X17. "7x11717y|| + Hxh' .. »xn717Z||
The pair (X, ||.,...,.||) is called a n-normed linear space.

Definition 2.2. Let X be a nonempty set, let F(X) be the set
of all fuzzy sets in X and let K be the field of real numbers.
Then F(X) becomes a linear space over the field K, where
the addition and scalar multiplication are defined by f+ g =
{Ce)+0om}t ={(x+y,uAn): (x,u) € fand (y,n) € g}
and kf = {(kf,u): (x,u) € f,}, keK.



The linear space F(X) is said to be a normed space, if,
every f € F(X), is associated with a non-negative real number
| f1| called the norm of f in such a way that

(i) [|f =0, ifand only if f =0. For || f|| =0
< {1, )/ (x, 1) € £} =0,
Sx=0,0€(0,1] & f=0.|(x,u)]

(it) |[kfI| = [K[llf]l,k € K. For [[kf [ = {[lk(x, )| / (x, 1) €
fand ke K}y = {[k[[|(x, )|/ (x, 1) € f} = |KIIF1]-

(iii) |[f +&ll <71+ llgll for every f,g € F(X). For

1/ +ll
= {lICe )+ o)l x,y € X, u,m € (0,1]}
={Ic+y), (wAnll/x,y € X, u,n € (0,1]}
<AllG,uAnm)[|+ 1,k AM)II/ (x, 1) € f and
() gt =111+l
Definition 2.3. Let F(X") be a linear space over a real field.

A fuzzy subset N of F(X")" X R is called 2-fuzzy n — n norm if
and only if

(N1) forallt € R,t <O,N(f1,...,fn,t) =0

(N2) for all t € R,t > O,N(f1,...,fn,t) = 1 if and only if
fi,..., fn are linearly dependent

(N3) N(fi,...,fn,t) = is invariant under any permutation of

flv-“afn
(N4) forallt € Rt > O,N(fi,....cfat) =N(fi,- o, fur i)

(N5) forall s,t € Ry N(fi1,...,fn+ fn,s+1)
2min{N(fh...,s),N(fl,...,f,,,t)}

(N6) N(fi,...,[ut) is a non-decreasing function of t € R
and}i_}mN(fl,...,fn,t)

The space (F(X")",N) is called a 2-fuzzy n — n normed linear
space.

Definition 2.4. Ler F(X"), be a linear space over C. Define
a fuzzy subset 1 defined as a mapping from [F(X")]"*! x C
to [0,1] such that (fi1,..., fu, fur1) € [F(X")]" o € C satis-
fying the following conditions

(L) forg,he F(X),s,t €s
n(fl+gahaf2a--'7fn’|t‘+|s‘)

Z min{n7(flaf27"'7fn7 |t|)7
n(gahvaa"'vfna |S|)}

(L) fors,teC

n(f17g7f27"'afna|5t|)
> min{n7(f]af27'--afna |S‘2)’
10(8:8 frr- - fus 1)}
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() forteC

n(flag7f2a"'7fn7 ‘t|)
= na(gaf17f27""fn7|t|)

(I4) for oy, 00 € C, o1 # 0,00 #0

n(alfla2f17"'afn7|t|)
n<f15f27"'7fn74

lou, 0]

)

(15) n(fl7f17f27"'7fnat)7:0 tG(C/R*
N(f1,f1s 2y fust) =1Vt >0ifand only if fi,. .., fu

are linearly independent.

(Is) N(f1,8f2s---,fu,t) is invariant under any permutation

0f(f27"'afn)
(17) > Oan(fhfZa'“afn?[) = n(f27f27f1;f37"'afn7[)

(I3) N(f1,8, /2, -, [n,1) is a monotonic non-decreasing func-
tion of C andlle N(f1,8 f2y-- - fn,t) = 1.

Then M is said to be the 2-fuzzy n — n inner product F(X)"
and the pain (F(X)",n) is called 2-fuzzy n —n IPS.

Definition 2.5. Let (F(X"),n) be a 2-fuzzy n— n IPS satisfy-
ing the condition N(f1, f1,f2,- .., fu,t*>) >0, whent > 0 im-
plies that f1, f, ... f, are linearly dependent. Then for all @ €
(07 1)7 define ||f17' = 7fn||06 = inf{t;n<flaf17f2a" : ?fmtz) 2
o} a crisp norm on F(X") called the & —n — n norm and the
space is (F(X"), |- ||a) generated by 1.

3. 2-Fuzzy operators

Let T be a 2-fuzzy operator on 2-fuzzy n — n inner product
space F(X"). Then T gives rise to a 2-fuzzy operator T*
n [F(X")]* where T* is defined by (T*H)f = H(T f). Let
f € F(X") and Hf its corresponding 2-fuzzy functional in
[F(X™)]* operate with 7% on H f to obtain a 2-fuzzy functional
Hg = T*H f and return to its corresponding 2-fuzzy set g in
F(X"™). There are three mappings here as,

f—=Hf—~T'Hr=Hy — g

write g = T*f and call this new mapping T* to map F(X")
into itself the adjoint of 7. The same symbol is used for the
adjoint of T as for its conjugate since these two mappings are
the same if F(X") and [F(X")]* are identified by means of
the natural correspondence.

It can be observed that

(T*"Hy)h=Hp(Th) =<Th, f >q

and
(T*Hp)h =Hy(h) < h,g >q=<h,T"f >4

so that
<Th,f>q=<hT"f >



Theorem 3.1.

<ft+hg>a=<f,g>a+<hg>q

where < f,g >q=1nf{t;0(f, 8, f2,- ., fas1) > 0}
Proof.

<f,g>a+<hg>q

=inf{r:n(f,8 fa,- -, fust) > @}

+ inf{s:n(h,g fa,..., fu,t >}

=inf{t+s:N(f,8 f2s- s fns1) =,
N(h,g fas---s fust) > 1}

=inf{t +s: min[n(f,g, f2,-.., fu:t) >,
N(h,g fas-- o fust) > @]}

>inf{t+s:N(f+hg fo,.., fu,t +5) > a}

=inf{r:n(f+hg fo....fu,r) >}

where r=t+s
=< f+hg>q (3.1

Conversely for any € >0
let,

A :l’l’lln{(l - (1 7n(fag7f27~--;fn7< f7g >a *g),

(1 _n(h7g7f27'-~afn,< h7g >0 —E))}

2
. €
= mln{(l _n(_f7g7f2>"'7fna_ < f7g >a +§)),
€
n(_hvgvaa"'vfm_ < hvg >a +§)}
> l_n(_fa _h7g7f2a~~'vfn7_ <f7g >o

— <h,g >q +€)
= n(f'hagvaa"'afi’l7<f7g >O£ | < h7g >O! 8)

By the definition of infimum
n(fvgaf27"'afﬂ7<fag >o _%) <a
Hence l_n(f7g7f27"'afl’l7<f7g >o _%) <l-o

Similarly 1 —n(h,g, f2,..., fn,<h,g >a —5) <1—-a
Then

min{(1-n(f,& f2,- -, fu, < .8 >a ,g))’

)
(1 _n(h7g7f25-"7fna<hag >a _E))} >l-a
(ile)l-A>1—-a
Hence A < &
which implies
n(f+h7gaf27"'7fm<fvg>0t +<h,g>05 78) §A<8

(ie) < f+hg>a>< f,g>a+<hg>q—¢€
Since ¢ is arbitrary,

<fHhg>a><f,g>a+<hg>q (3.2)
From (3.1) and (3.2)
<f+hg>a=<f,g>a+<hg>¢.
O
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3.1 Linearity
T* is linear.
Consider for any f,g € F(X") and for all h € F(X")

<h, T (f+h)>q—<Th,f+g>q

=inf{ty +12:0(Th,f+8, /2,-... fm11 +12) =2 O}

=inf{t; + 5 : min[n(Th, f, fa,..., fa 1),
N(Th,g, f2,-. . fnst2) > Q}

= inf{t1 +1: T](Th,f,fz,...,fn,tl) > o,
N(Th,g, fa,..., fas12) 0}

=inf{ti|t2: (0, T"f, for- -, fusth)

2O‘7Tl(h,T*g7f27~~»fnJ2)Z05} (33)

Consider

<hT'f+T*g>q

=inf{t; + 6 N(h,T*f+T7g f2,.- ., fo, 1 +12) > ot}

>inf{ty +6 :NWTf, fry- o, fustl)
>o,nhTg fr,...,[u,12) >}

From (3.3) and (3.4)

(3.4)

<hT(f4+g8) >a=<hT'f+T"g>q

hence
T*(f+g)=T"f+T"g

< ha T*(Bf) >Ot
=<Th,Bf >q

=inf{t: N(Th.Bf . far. . font) = @}

=inf{t : n(Th,f,fz,..-,fn,ﬁ

t

=inf{t: n(h,T"f, f2,-- - o, W) > a}

=inf{t: N (b, BT £, fa,.... fuut) > 0}
=< h,ﬁT*f >a

)= o}

hence T*(Bf) = BT*f and so T* is linear.
Consider

HT*afaflaffw"'vfn“tzx
=< T*f7T*f >a
=< TT*faf >Ot

=TT f,f S fulla
< ||Tf7faf37'"aan(X||T*faf7f3a'"7fn||oc

hence
||T*f7f7f37"'aan(X S ||Tf7f7f37"'afn||(x

Theorem 3.2. The 2-fuzzy adjoint operator T — T* satisfies
the following properties

(i) (T + D) =T7 + T3



(ii) (BT)" = BT*

(iii) ()" =T, T}

(iv) T =T

) [T =T

vi) |T*T|| =||T|]
Proof.

(D) <h(Ti +T2)"g >a

=< (Ti +Ta)h, & >q

=inf{t; +:N((T1 + T2)h, g f2,- - fn, 1 +12) > Ot}

= inf{t1 +0:n(Th+Thg, fo,..., fu, 1 +12) > OC}

=inf{t; + 1, : min[n(T1h,g, f2,..., fu,11 + 1) > «,
N(h,g, fo,...  fat1 +12) > ot}

The reverse inequality follows from Theorem 3.1
Therefore, (T1 +12)* =T + 13

(ii) <h,(BT)"g >a
=< (BT)h,g >q
= inf{t: N(BTh,g, fa-... fust) > @}

—inf{t ; TI(Th,g,fz,uwfmﬁ) > a)
= inf{r n(h,T*g,fz,...,fn,ﬁ > a}
:inf{t : n(h?T*gaf27"'afn7t) Z a}
=<h,BT"g >4

(BT)* = BT*

(iii) < h, (T] Tz)*g >
=< (T'Th)h,g >«
=inf{t : (T T2)h, &, f2,- -, fust) > O}
=inf{t : N(GLh,T{'g, f>,. .., fn,t) > O}
=inf{t : n(h, Ty g, fo,..., fa,t) >}
=<nT;Tg >a

(ML) =51

(iv) <h,T*g >4

=<h,(T")"¢>a

=inf{t: n((h,T7)".8, f2,.... fu,t) = O}
=inf{t : n(T*h,g, f2,..., fn,t) > A}
=inf{r: n(h,Tg, f2,..., [ n,t) > Ot}

=< h,Tg >q
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(v) Consider
HT*fv.va"'aanOt
S ||Tf7f27---7fn||oc (35)
Applying (3.5) for T*
H(T*)*ﬁfbaana
< ||T*faf2v~~'7an06
HTfafZV"vfn”OC
<IT°f.for-- s fulla (3.6)
From (3.5) and (3.6)
HT*fvfzrnaana < ||Tf7f27~~-afn||a
OITT S, fa,--- fulla
S ||T*faf27""anOCHTf7f2a'-'7fn||a
= ||Tf7f27"'7fn||06||Tfaf27"'aan(X
= ||vaf2avfn||¢2x
IT*f. for- s ulla
=< Tf,Tf >a
=< T*Tf7f >OC
=TT, TT fa,.... fulla
= il’lf{t : n(T*Tf7T*Tfaf27-“afn7t) > (X}
= ||T*Tf7f2a7fn||¢21
S ||T*Tf7f2w"7fn||06-
From (3.5) and (3.6)
||T*Tf7f2a"'7fn||a: ||Tf7f2a,fn||%g
0

3.2 2-Fuzzy self adjoint operator

T € B(F(X")),T is said to be 2-fuzzy self adjoint when
T=T0"=0,I=1

< f,0"°g >4 =<0f,8 >«
=inf{r: n(0f, g, fo,.... fu,t) > O}

:inf{t N n(oag7f2a"'7fn’t) Z a}
=0.

Now to prove if Aj,A; are 2-fuzzy self adjoint then (B4 +
B2A2)* is also 2-fuzzy self adjoint.



< h,(Bi1A1 + BrA2) x g >¢

=< h(B1A1 + BrA2)g >a

=inf{t : n((B1A1 + 2A2)h, g, fo, ..., fn,t) > O}

=inf{t; +1 : N((Bi1A1 + BrA2)h, g, fo, ..., fust) = O}

> inf{t; +1 : min[n(B1A1h, g, f2,- .., fn ) > &,
(B8, o font) > ]}

=inf{r; + 1, : min[N(B1ATh, &, f2, -, fn,t) > Q,
N(B2A3h, 8, f2,- -, fust) > O]}

the reverse inequality follows from Theorem 3.1
Hence
(BiA1 + BoA2)" = BiAT + BoAS + BiA 1 + BrAs

Theorem 3.3. If A1,A; are 2-fuzzy self adjoint then their
product A1A; is also 2-fuzzy self adjoint if and only if A1Ay =
AsAj.

Proof. Since we have (A1A2)* = A3A}
LetAjAy = AsA
(A1A2)* = AJAT = A)A| = AjAs.
Hence the product is 2-fuzzy self adjoint
Conversely assume that the product is 2-fuzzy self adjoint
Consider (AlAz)* :AEAT :A2A1.
Since (AlAz)* :A1A2,
we have AA| = AA;. ]

Theorem 3.4. If T is a 2-fuzzy operator for which

n(Tf7f7f2a~~-7fn7t) =0
forall f then T = 0.
Proof. Consider

n(T(ﬁlf+ﬁ2g)aﬁlf+ﬁ2g7f23'"7fnvt>

Z min[n(vafafZP-'vfmﬁ)a
NS S foreees i )

t
(X)n(Tg7f7f27"'>fn7m),
n(Tg7gaf2>-~'afnu mztiﬁ”)]

:>T'(Tf7gaf27---7fn,t) =0

If T =0, then n(0f,g, f2,---,fn,t) =0
when T #0,putg=Tf
then
n(Tf7Tf7f27"'7fn7t) :0
= ||Tf7f27"'7fn||06 :O
=Tf=0
=T=0.
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3.3 2-Fuzzy normal operator

An operator N is said to be 2-fuzzy normal if it commutes
with its adjoint i.e) NN* = N*N.

Theorem 3.5. An operator T is 2-fuzzy normal if and only if
HT*f7f27'~'aan0l = ||Tf7f27"'afn||0¢
forall f.

Proof.

IT*fs fase s fulle = T f5 fas s fulle

T f o foreeos falle = 7 fs ol

< inf{t: (T £, T*f, fa,.... fn,t) > A}

=inf{t : n(Tf,Tf,foy-.. [ n,t) > A}

< inf{t:nN(TTf,f,fa,.- - fn,t) > A}

=inf{t : n(T*Tf, f, f2,..., fn,t) > O}

< inf{t:n((TT*=T*T)f,f, fa,--- Jfn,t) >} =0
SN(TT =TT)f,f, fas-- -, fust) = 0} =0
STT*—T*T=0

STT =T'T.

O

Theorem 3.6. If N is a 2-fuzzy normal operator and 2-fuzzy

self adjoint on F (X") then |N*f, f2, ., falla = INf, fos - full-

Proof. If N is a 2-fuzzy normal operator, then

HNfaf2a"'7fn||OC:HN*faf27"'7anlX (37)

by replacing f by Nf (3.7) becomes

INNf, fas. falla = INN*f, fas- o fulla
= |N*f, fre s fulla = INN* £, fos - il
IN*f, fas- - fulla

=inf{t : n(N*f,N*f, fo,....[) > o}

= inf{t : N(NNf,NNf, f,....fn) > o}
=inf{t : n(N*Nf,N*Nf,fr,....[fn) > 0t}
=|IN*Nf, f2,- s fulla

By Theorem 3.2,
IN*NE, foree s falla = INF, foroos ful & (3.8)
From (3.7) and (3.8)

INfo foreeos Fulla = INSS oo ful 3



3.4 2-Fuzzy unitary operator

An operator T is said to be 2-fuzzy unitary if 7*T =
T"T =1

Theorem 3.7. If T is a 2-fuzzy operator on a 2-fuzzy n-n
Hilbert space & (X"), then the following conditions are equiv-
alent to one another.

(i) T*T =1
(ii) <Tf,Tg>q=<f,g>qforall f,g € F(X")

(l”) HTfafZa"wfn”OC = Hf7f27"'7fn||06

Proof. (i) = (if)
GivenT*T =1,<Tf,Tg >q
=< f,T*Tg >4=< f,8 >q
(if) = (iii)
Given < Tf,Tg >q=<f,8 >a
taking f =g

<Tf,Tf>a=<f,f>a
HvafZa"'vfn”%C: HfafZa”'?fn”(zx
|‘Tf7f27"'7fn||a: Hf7f27~--7fn||a

(”l) = (l) Given ||Tf7f27"'afn||06 - ||faf27"'7an(X
Therefore || T f, fa, ..., full5 = 1> for - full%

=< vaTf>Oc :<fvf>oc
S<Tf,Tf>q=<[,f>a

hence

<TTf,f >q=<Tf, Tf >¢=<f,f >a
=< (T'T-1)f,f >oa=0

=T'T-1=0

=TT =1

O

Theorem 3.8. An operator T on a 2-fuzzy n — n Hilbert space
F (X") is unitary if and only if it is an isomorphism of & (X")
onto itself.

Proof. Let T be a 2-fuzzy unitary operator on .% (X"). Then
from the definition of the unitary operator, it is invertible.
Hence it is onto. Also T*T = 1.

But by Theorem 3.7

NTf,fay-sfulla =If, fas- -, fulla hence T is an isomet-
ric isomorphism of .% (X") onto itself.

Conversely, let 7 be an isometric isomorphism of .Z (X")
onto itself, then 7 is 1 — 1 and onto and T~! exists.

But |Tf,f2,-- s falla = fs /2, -+ fallas by Theorem 3.7
T*T =1
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Hence

(r*ryr'=r-!
=T (TT")=T1"
ST =T"
=T =T""
Pre multiply (3.7) by T
TT* =TT '=I1=TT"=1
Post multiply (3.7) by T
T"T=T7'T=1I
= T is 2-fuzzy unitary.

4. 2-Fuzzy projection

A projection P on a 2-fuzzy n — n Hilbert space .% (X") is
an operator P an .% (X") such that P> = P and P* = P.

Theorem 4.1. If P is a projection on a 2-fuzzy n — n Hilbert
space with range M and null space N, then M LN if and only
if P is self adjoint and N = M.

Proof. Let P be a 2-fuzzy projection on .% (X") with the range
M and null space N.

Then Z (X") =M ®N.

Let M|N

Now to prove P is 2-fuzzy self adjoint. Each h € % (X")
can be written uniquely in the form 4 = f+ g, where f € M
and g € N.

Here Ph = f and since

MIN,< f,g >4=0 A.1)

From (4.1)

< Phh>q =< f,h>q
=<f,f+&8>a
=<fif>at+<[f.8>a
=<f,f>a

Also

< P*h,h>q =< h,Ph>q

=<h,f>q
=<f+&[f>a
=<f.f>a
=< P'h,h >4=< Ph,h >4
=< (P*=P)hh>4=0
=P"=P

Therefore P is 2-fuzzy self adjoint.

Conversely assume P is 2-fuzzy self adjoint. Now to prove

M1N.
LetfCM,gCN
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Then Pf = f,Pg=0 kK kKKK K K
ISSN(P):2319 — 3786
_<p Malaya Journal of Matematik
</.g>a=<Pf.8>a ISSN(0):2321 — 5666
£3
=<[f,P'g§>q ]k ok Kk ok K kK
=< fng >Ot
< f,0>¢
=0
= MLN.

To prove in P is a 2-fuzzy projection on H with range M and
null space N, then M_LN.

N=M"t

Let f € N, then f € M+ = N C M* if N # M*, assume
N is a proper closed subspace of M~

then exists a non zero hy € M+ such that iy LN. But
ho € M+ implies hg L M.

Therefore hy_LM and hy LN.

Since # (X") = M &N, hg but F (X")

= hyp = 0 leads to a contradiction

=N=M".
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