

Operators in 2-fuzzy n-n inner product space

Thangaraj Beaula^{1*} and Daniel Evans²

Abstract

In this paper various 2-fuzzy operators are introduced in 2-fuzzy n-n inner product space and the properties of 2-fuzzy self-adjoint, 2-fuzzy normal, 2-fuzzy unitary and 2-fuzzy projection operators are studied.

Keywords

2- fuzzy n-n inner product space, 2-fuzzy self-adjoint operator, 2-fuzzy normal operator, 2-fuzzy unitary operator, 2-fuzzy projection operator.

AMS Subject Classification

03E72.

*Corresponding author: 1 edwinbeaula@yahoo.co.in

Article History: Received 28 March 2018; Accepted 13 June 2018

©2018 MJM.

Contents

1	Introduction	556
2	Preliminaries	556
3	2-Fuzzy operators	557
3.1	Linearity	558
3.2	2-Fuzzy self adjoint operator	559
3.3	2-Fuzzy normal operator	560
3.4	2-Fuzzy unitary operator	561
4	2-Fuzzy projection	561
	References	562

1. Introduction

Gahler [4] introduced the theory of 2-norm on a linear space in 1964. In 1984 Katsaras [7] gave the notion of fuzzy norm on a linear space. Further, fuzzy normed spaces were defined in various ways by Cheng and Mordeson [2] and by Bag and Samanta [1]. R.M. Somasundaram and Thangaraj Beaula [9] introduced the notion of fuzzy 2-normed linear space, $\{F(X), N\}$. The concept of 2-inner product space was introduced by C.R. Diminnie, S. Gahler and A. White [5]. Parijat Sinha, Ghanshayam Lal and Divya Mishra introduced the concept of fuzzy 2-inner product space and the notion of α – 2-norm in [8]. The notions of fuzzy inner product space and of fuzzy normed linear space were established in [6]. Also, Vijayabalaji and Thillaigovindan [10] introduced the fuzzy n-inner product space as a generalization of the concept of n-inner product space given by Y.J. Cho, M. Matic and J.

Pecaric in [3]. Thangaraj Beaula and Daniel Evans introduced the concept of 2-fuzzy n-n inner product space in [11] as an extension of [10]. In this paper operators are introduced in 2-fuzzy n-n inner product space and their properties are studied.

2. Preliminaries

Definition 2.1. Let $n \in N$ and X be a real linear space of dimension greater or equal to n. Then a real valued function $\|.,...,\|$ on X^n is called a n-norm on X, if it satisfies the following four properties

- i) $||x_1, \ldots, x_n|| = 0$ if and only if x_1, \ldots, x_n linearly dependent
- *ii)* $||x_1, \dots, x_n||$ *is invariant under any permutation*
- iii) $||x_1,...,\alpha x_n|| = |\alpha|||x_1,...,x_n||$, for any α is a real number

$$|x_1, \dots, x_{n-1}, y + z||$$

 $\leq ||x_1, \dots, x_{n-1}, y|| + ||x_1, \dots, x_{n-1}, z||$

The pair $(X, \|., ..., \|)$ is called a n-normed linear space.

Definition 2.2. Let X be a nonempty set, let F(X) be the set of all fuzzy sets in X and let K be the field of real numbers. Then F(X) becomes a linear space over the field K, where the addition and scalar multiplication are defined by $f+g=\{(x,\mu)+(y,\eta)\}=\{(x+y,\mu\wedge\eta):(x,\mu)\in f \text{ and } (y,\eta)\in g\}$ and $kf=\{(kf,\mu):(x,\mu)\in f,\},\quad k\in K.$

^{1,2}Department of Mathematics, T.B.M.L College, Porayar-609307, Tamil Nadu, India.

The linear space F(X) is said to be a normed space, if, every $f \in F(X)$, is associated with a non-negative real number ||f|| called the norm of f in such a way that

(i)
$$||f|| = 0$$
, if and only if $f = 0$. For $||f|| = 0$
 $\Leftrightarrow \{||(x,\mu)||/(x,\mu) \in f\} = 0$,
 $\Leftrightarrow x = 0, \mu \in (0,1] \Leftrightarrow f = 0.||(x,\mu)||$

(ii)
$$||kf|| = |k|||f||, k \in K$$
. For $||kf|| = {||k(x,\mu)||/(x,\mu) \in f \text{ and } k \in K} = {|k|||(x,\mu)||/(x,\mu) \in f} = |k|||f||$.

(iii)
$$||f+g|| \le ||f|| + ||g||$$
 for every $f, g \in F(X)$. For $||f+g||$ $= \{||(x,\mu) + (y,\eta)|| : x,y \in X, \mu, \eta \in (0,1]\}$ $= \{||(x+y), (\mu \wedge \eta)||/x, y \in X, \mu, \eta \in (0,1]\}$ $\le \{||(x,\mu \wedge \eta)|| + ||(y,\mu \wedge \eta)||/(x,\mu) \in f \text{ and } (y,\eta) \in g\} = ||f|| + ||g||.$

Definition 2.3. Let $F(X^n)$ be a linear space over a real field. A fuzzy subset N of $F(X^n)^n \times R$ is called 2-fuzzy n-n norm if and only if

(N1) for all
$$t \in R, t \le 0, N(f_1, ..., f_n, t) = 0$$

- (N2) for all $t \in R, t > 0, N(f_1, ..., f_n, t) = 1$ if and only if $f_1, ..., f_n$ are linearly dependent
- (N3) $N(f_1,...,f_n,t) = is invariant under any permutation of <math>f_1,...,f_n$

(N4) for all
$$t \in R, t > 0, N(f_1, \dots, cf_n, t) = N(f_1, \dots, f_n, \frac{t}{|c|})$$

(N5) for all
$$s,t \in R, N(f_1, ..., f_n + f_n, s + t)$$

 $\geq \min\{N(f_1, ..., s), N(f_1, ..., f_n, t)\}$

(N6) $N(f_1,...,f_n,t)$ is a non-decreasing function of $t \in R$ and $\lim_{t\to\infty} N(f_1,...,f_n,t)$

The space $(F(X^n)^n, N)$ is called a 2-fuzzy n-n normed linear space.

Definition 2.4. Let $F(X^n)$, be a linear space over \mathbb{C} . Define a fuzzy subset η defined as a mapping from $[F(X^n)]^{n+1} \times \mathbb{C}$ to [0,1] such that $(f_1,\ldots,f_n,f_{n+1}) \in [F(X^n)]^{n+1} \alpha \in \mathbb{C}$ satisfying the following conditions

$$(I_1) \ for \ g,h \in F(X), s,t \in s$$

$$\eta(f_1 + g,h,f_2,...,f_n,|t| + |s|)$$

$$\geq \min\{\eta,(f_1,f_2,...,f_n,|t|),$$

$$\eta(g,h,f_2,...,f_n,|s|)\}$$

(I₂) for
$$s, t \in \mathbb{C}$$

 $\eta(f_1, g, f_2, \dots, f_n, |st|)$
 $\geq \min\{\eta, (f_1, f_2, \dots, f_n, |s|^2), \eta(g, g, f_2, \dots, f_n, |t|^2)\}$

(
$$I_3$$
) for $t \in \mathbb{C}$

$$\eta(f_1, g, f_2, \dots, f_n, |t|)$$

$$= \eta, (g, f_1, f_2, \dots, f_n, |t|)$$

(I₄) for
$$\alpha_1, \alpha_2 \in \mathbb{C}, \ \alpha_1 \neq 0, \alpha_2 \neq 0$$

$$\eta(\alpha_1 f_1 \alpha_2 f_1, \dots, f_n, |t|)$$

 $\eta(f_1, f_2, \dots, f_n, \frac{t}{|\alpha_1, \alpha_2|})$

- (I₅) $\eta(f_1, f_1, f_2, \dots, f_n, t) = 0$ $t \in \mathbb{C}/R^+$ $\eta(f_1, f_1, f_2, \dots, f_n, t) = 1 \ \forall \ t > 0 \ \text{if and only if } f_1, \dots, f_n$ are linearly independent.
- (I₆) $\eta(f_1, gf_2, \dots, f_n, t)$ is invariant under any permutation of (f_2, \dots, f_n)

$$(I_7)$$
 $t > 0, \eta(f_1, f_2, \dots, f_n, t) = \eta(f_2, f_2, f_1, f_3, \dots, f_n, t)$

(I₈) $\eta(f_1, g, f_2, \dots, f_n, t)$ is a monotonic non-decreasing function of \mathbb{C} and $\lim_{t\to\infty} \eta(f_1, g, f_2, \dots, f_n, t) = 1$.

Then η is said to be the 2-fuzzy n-n inner product $F(X)^n$ and the pain $(F(X)^n, \eta)$ is called 2-fuzzy n-n IPS.

Definition 2.5. Let $(F(X^n), \eta)$ be a 2-fuzzy n-n IPS satisfying the condition $\eta(f_1, f_1, f_2, \ldots, f_n, t^2) > 0$, when t > 0 implies that $f_1, f_2, \ldots f_n$ are linearly dependent. Then for all $\alpha \in (0,1)$, define $||f_1, \ldots, f_n||_{\alpha} = \inf\{t; \eta(f_1, f_1, f_2, \ldots, f_n, t^2) \geq \alpha\}$ a crisp norm on $F(X^n)$ called the $\alpha - n - n$ norm and the space is $(F(X^n), ||\cdot||_{\alpha})$ generated by η .

3. 2-Fuzzy operators

Let T be a 2-fuzzy operator on 2-fuzzy n-n inner product space $F(X^n)$. Then T gives rise to a 2-fuzzy operator T^* on $[F(X^n)]^*$ where T^* is defined by $(T^*H)f = H(Tf)$. Let $f \in F(X^n)$ and Hf its corresponding 2-fuzzy functional in $[F(X^n)]^*$ operate with T^* on Hf to obtain a 2-fuzzy functional $Hg = T^*Hf$ and return to its corresponding 2-fuzzy set g in $F(X^n)$. There are three mappings here as,

$$f \to H_f \to T^*H_f = H_g \to g$$

write $g = T^*f$ and call this new mapping T^* to map $F(X^n)$ into itself the adjoint of T. The same symbol is used for the adjoint of T as for its conjugate since these two mappings are the same if $F(X^n)$ and $[F(X^n)]^*$ are identified by means of the natural correspondence.

It can be observed that

$$(T^*H_f)h = H_f(Th) = \langle Th, f \rangle_{\alpha}$$

and

$$(T^*H_f)h = H_g(h) < h, g >_{\alpha} = < h, T^*f >_{\alpha}$$

so that

$$< Th, f>_{\alpha} = < h, T^*f>_{\alpha}$$

Theorem 3.1.

Conversely for any $\varepsilon > 0$

 $= \langle f + h, g \rangle_{\alpha}$

let,

$$A = \min\{(1 - (1 - \eta(f, g, f_2, \dots, f_n, < f, g >_{\alpha} - \frac{\varepsilon}{2})),$$

$$(1 - \eta(h, g, f_2, \dots, f_n, < h, g >_{\alpha} - \frac{\varepsilon}{2}))\}$$

$$= \min\{(1 - \eta(-f, g, f_2, \dots, f_n, - < f, g >_{\alpha} + \frac{\varepsilon}{2})),$$

$$\eta(-h, g, f_2, \dots, f_n, - < h, g >_{\alpha} + \frac{\varepsilon}{2})\}$$

$$\geq 1 - \eta(-f, -h, g, f_2, \dots, f_n, - < f, g >_{\alpha} - < h, g >_{\alpha} + \varepsilon)$$

$$= \eta(f|h, g, f_2, \dots, f_n, < f, g >_{\alpha}| < h, g >_{\alpha} \varepsilon)$$

By the definition of infimum

$$\begin{split} & \eta(f,g,f_2,\ldots,f_n,< f,g>_{\alpha}-\frac{\varepsilon}{2})<\alpha\\ & \text{Hence } 1-\eta(f,g,f_2,\ldots,f_n,< f,g>_{\alpha}-\frac{\varepsilon}{2})<1-\alpha\\ & \text{Similarly } 1-\eta(h,g,f_2,\ldots,f_n,< h,g>_{\alpha}-\frac{\varepsilon}{2})<1-\alpha \end{split}$$

$$\min\{(1 - \eta(f, g, f_2, \dots, f_n, < f, g >_{\alpha} - \frac{\varepsilon}{2})),$$

$$(1 - \eta(h, g, f_2, \dots, f_n, < h, g >_{\alpha} - \frac{\varepsilon}{2}))\} > 1 - \alpha$$

$$(i.e)1 - A > 1 - \alpha$$

Hence $A < \alpha$

which implies

$$\eta(f+h,g,f_2,\ldots,f_n,< f,g>_{\alpha}+< h,g>_{\alpha}-\varepsilon) \leq A < \varepsilon$$

(i.e) $< f+h,g>_{\alpha} \geq < f,g>_{\alpha}+< h,g>_{\alpha}-\varepsilon$
Since ε is arbitrary,

$$\langle f+h,g\rangle_{\alpha} \ge \langle f,g\rangle_{\alpha} + \langle h,g\rangle_{\alpha}$$
 (3.2)

From (3.1) and (3.2)

$$< f + h, g >_{\alpha} = < f, g >_{\alpha} + < h, g >_{\alpha}$$
.

3.1 Linearity

 T^* is linear.

Consider for any $f, g \in F(X^n)$ and for all $h \in F(X^n)$

$$\langle h, T^{*}(f+h) \rangle_{\alpha} - \langle Th, f+g \rangle_{\alpha}$$

$$= \inf\{t_{1} + t_{2} : \eta(Th, f+g, f_{2}, \dots, f_{n}, t_{1} + t_{2}) \geq \alpha\}$$

$$= \inf\{t_{1} + t_{2} : \min[\eta(Th, f, f_{2}, \dots, f_{n}, t_{1}),$$

$$\eta(Th, g, f_{2}, \dots, f_{n}, t_{2}) \geq \alpha\}$$

$$= \inf\{t_{1} + t_{2} : \eta(Th, f, f_{2}, \dots, f_{n}, t_{1}) \geq \alpha,$$

$$\eta(Th, g, f_{2}, \dots, f_{n}, t_{2}) \alpha\}$$

$$= \inf\{t_{1} | t_{2} : \eta(h, T^{*}f, f_{2}, \dots, f_{n}, t_{1})$$

$$\geq \alpha, \eta(h, T^{*}g, f_{2}, \dots, f_{n}, t_{2}) \geq \alpha\}$$

$$(3.3)$$

Consider

(3.1)

$$\langle h, T^*f + T^*g \rangle_{\alpha}$$

$$= \inf\{t_1 + t_2 : \eta(h, T^*f + T^*g, f_2, \dots, f_n, t_1 + t_2) \ge \alpha\}$$

$$\geq \inf\{t_1 + t_2 : \eta(h, T^*f, f_2, \dots, f_n, t_1)$$

$$\geq \alpha, \eta(h, T^*g, f_2, \dots, f_n, t_2) \ge \alpha\}$$

$$(3.4)$$

From (3.3) and (3.4)

$$< h, T^*(f+g)>_{\alpha} = < h, T^*f + T^*g>_{\alpha}$$

hence

$$T^*(f+g) = T^*f + T^*g$$

$$< h, T^*(\beta f) > \alpha$$

$$= < Th, \beta f > \alpha$$

$$= \inf\{t : \eta(Th, \beta f, f_2, \dots, f_n, t) \ge \alpha\}$$

$$= \inf\{t : \eta(Th, f, f_2, \dots, f_n, \frac{t}{|\beta|}) \ge \alpha\}$$

$$= \inf\{t : \eta(h, T^*f, f_2, \dots, f_n, \frac{t}{|\beta|}) \ge \alpha\}$$

$$= \inf\{t : \eta(h, \beta T^*f, f_2, \dots, f_n, t) \ge \alpha\}$$

$$= < h, \beta T^*f > \alpha$$

hence $T^*(\beta f) = \beta T^* f$ and so T^* is linear. Consider

$$||T^*, f, f_1, f_3, \dots, f_n||_{\alpha}^2$$

$$= < T^*f, T^*f >_{\alpha}$$

$$= < TT^*f, f >_{\alpha}$$

$$= ||TT^*f, f, f_3, \dots, f_n||_{\alpha}^2$$

$$\leq ||Tf, f, f_3, \dots, f_n||_{\alpha} ||T^*f, f, f_3, \dots, f_n||_{\alpha}$$

hence

$$||T^*f, f, f_3, \dots, f_n||_{\alpha} \le ||Tf, f, f_3, \dots, f_n||_{\alpha}$$

Theorem 3.2. The 2-fuzzy adjoint operator $T \to T^*$ satisfies the following properties

$$\Box$$
 (i) $(T_1 + T_2)^* = T_1^* + T_2^*$

(ii)
$$(\beta T)^* = \beta T^*$$

(iii)
$$(T_1T_2)^* = T_2^*T_1^*$$

(*iv*)
$$T^{**} = T$$

(*v*)
$$||T^*|| = T$$

(vi)
$$||T^*T|| = ||T||^2$$

Proof.

$$\begin{aligned} &(i) < h, (T_1 + T_2)^* g >_{\alpha} \\ &= < (T_1 + T_2)h, g >_{\alpha} \\ &= \inf\{t_1 + t_2 : \eta((T_1 + T_2)h, g, f_2, \dots, f_n, t_1 + t_2) \ge \alpha\} \\ &= \inf\{t_1 + t_2 : \eta(T_1h + T_2h, g, f_2, \dots, f_n, t_1 + t_2) \ge \alpha\} \\ &= \inf\{t_1 + t_2 : \min[\eta(T_1h, g, f_2, \dots, f_n, t_1 + t_2) \ge \alpha, \\ \eta(T_2h, g, f_2, \dots, f_n, t_1 + t_2) \ge \alpha\} \end{aligned}$$

The reverse inequality follows from Theorem 3.1

Therefore, $(T_1 + T_2)^* = T_1^* + t_2^*$

$$(ii) < h, (\beta T)^* g >_{\alpha}$$

$$= < (\beta T)h, g >_{\alpha}$$

$$= \inf\{t : \eta(\beta Th, g, f_2, ..., f_n, t) \ge \alpha\}$$

$$= \inf\{t : \eta(Th, g, f_2, ..., f_n, \frac{t}{|\beta|}) \ge \alpha\}$$

$$= \inf\{t : \eta(h, T^* g, f_2, ..., f_n, \frac{t}{|\beta|}) \ge \alpha\}$$

$$= \inf\{t : \eta(h, T^* g, f_2, ..., f_n, t) \ge \alpha\}$$

$$= < h, \beta T^* g >_{\alpha}$$

$$(\beta T)^* = \beta T^*$$

$$(iii) < h, (T_1 T_2)^* g >_{\alpha}$$

$$= < (T_1 T_2)h, g >_{\alpha}$$

$$= \inf\{t : \eta((T_1 T_2)h, g, f_2, ..., f_n, t) \ge \alpha\}$$

$$= \inf\{t : \eta(h, T_2^* T_1^* g, f_2, ..., f_n, t) \ge \alpha\}$$

$$= < h, T_2^* T_1^* g >_{\alpha}$$

$$(T_1 T_2)^* = T_2^* T_1^*$$

$$(iv) < h, T^{**}g >_{\alpha}$$

$$= < h, (T^{*})^{*}g >_{\alpha}$$

$$= \inf\{t : \eta((h, T^{*})^{*}, g, f_{2}, \dots, f_{n}, t) \ge \alpha\}$$

$$= \inf\{t : \eta(T^{*}h, g, f_{2}, \dots, f_{n}, t) \ge \alpha\}$$

$$= \inf\{t : \eta(h, Tg, f_{2}, \dots, f_{n}, t) \ge \alpha\}$$

$$= < h, Tg >_{\alpha}$$

(v) Consider

$$||T^*f, f_2, \dots, f_n||_{\alpha}$$

 $\leq ||Tf, f_2, \dots, f_n||_{\alpha}$ (3.5)

Applying (3.5) for T^*

$$||(T^*)^* f, f_2, \dots, f_n||_{\alpha}$$

$$\leq ||T^* f, f_2, \dots, f_n||_{\alpha}$$

$$||T f, f_2, \dots, f_n||_{\alpha}$$

$$\leq ||T^* f, f_2, \dots, f_n||_{\alpha}$$
(3.6)

From (3.5) and (3.6)

$$||T^*f, f_2, \dots, f_n||_{\alpha} \le ||Tf, f_2, \dots, f_n||_{\alpha}$$

$$(vi) \|T^*Tf, f_2, \dots, f_n\|_{\alpha}$$

$$\leq \|T^*f, f_2, \dots, f_n\|_{\alpha} \|Tf, f_2, \dots, f_n\|_{\alpha}$$

$$= \|Tf, f_2, \dots, f_n\|_{\alpha} \|Tf, f_2, \dots, f_n\|_{\alpha}$$

$$= \|Tf, f_2, \dots, f_n\|_{\alpha}^2$$

$$\|T^*f, f_2, \dots, f_n\|_{\alpha}^2$$

$$= \langle Tf, Tf \rangle_{\alpha}$$

$$= \langle T^*Tf, f \rangle_{\alpha}$$

$$= \|T^*Tf, T^*Tf_2, \dots, f_n\|_{\alpha}$$

$$= \inf\{t : \eta(T^*Tf, T^*Tf, f_2, \dots, f_n, t) > \alpha\}$$

$$= \|T^*Tf, f_2, \dots, f_n\|_{\alpha}^2$$

$$\leq \|T^*Tf, f_2, \dots, f_n\|_{\alpha}.$$

From (3.5) and (3.6)

$$||T^*Tf, f_2, \dots, f_n||_{\alpha} = ||Tf, f_2, \dots, f_n||_{\alpha}^2$$

3.2 2-Fuzzy self adjoint operator

 $T \in \beta(\mathscr{F}(X^n)), T$ is said to be 2-fuzzy self adjoint when $T = T^*, 0^* = 0, I^* = I$

$$< f, 0^* g >_{\alpha} = < 0 f, g >_{\alpha}$$

= $\inf\{t : \eta(0f, g, f_2, ..., f_n, t) \ge \alpha\}$
= $\inf\{t : \eta(0, g, f_2, ..., f_n, t) \ge \alpha\}$
= 0

Now to prove if A_1 , A_2 are 2-fuzzy self adjoint then $(\beta_1 A_1 + \beta_2 A_2)^*$ is also 2-fuzzy self adjoint.

$$< h, (\beta_{1}A_{1} + \beta_{2}A_{2}) * g >_{\alpha}$$

$$= < h(\beta_{1}A_{1} + \beta_{2}A_{2})g >_{\alpha}$$

$$= \inf\{t : \eta((\beta_{1}A_{1} + \beta_{2}A_{2})h, g, f_{2}, \dots, f_{n}, t) \geq \alpha\}$$

$$= \inf\{t_{1} + t_{2} : \eta((\beta_{1}A_{1} + \beta_{2}A_{2})h, g, f_{2}, \dots, f_{n}, t) \geq \alpha\}$$

$$\geq \inf\{t_{1} + t_{2} : \min[\eta(\beta_{1}A_{1}h, g, f_{2}, \dots, f_{n}, t) \geq \alpha,$$

$$\eta(\beta_{2}A_{2}h, g, f_{2}, \dots, f_{n}, t) \geq \alpha\} \}$$

$$= \inf\{t_{1} + t_{2} : \min[\eta(\beta_{1}A_{1}^{*}h, g, f_{2}, \dots, f_{n}, t) \geq \alpha,$$

$$\eta(\beta_{2}A_{2}^{*}h, g, f_{2}, \dots, f_{n}, t) \geq \alpha\} \}$$

the reverse inequality follows from Theorem 3.1

Hence

$$(\beta_1 A_1 + \beta_2 A_2)^* = \beta_1 A_1^* + \beta_2 A_2^* + \beta_1 A_1 + \beta_2 A_2$$

Theorem 3.3. If A_1, A_2 are 2-fuzzy self adjoint then their product A_1A_2 is also 2-fuzzy self adjoint if and only if $A_1A_2 =$ A_2A_1 .

Proof. Since we have
$$(A_1A_2)^* = A_2^*A_1^*$$

Let $A_1A_2 = A_2A_1$
 $(A_1A_2)^* = A_2^*A_1^* = A_2A_1 = A_1A_2$.
Hence the product is 2-fuzzy self adjoint
Conversely assume that the product is 2-fuzzy self adjoint
Consider $(A_1A_2)^* = A_2^*A_1^* = A_2A_1$.
Since $(A_1A_2)^* = A_1A_2$,
we have $A_2A_1 = A_1A_2$. □

Theorem 3.4. If T is a 2-fuzzy operator for which

$$\eta(Tf, f, f_2, \dots, f_n, t) = 0$$

for all f then T = 0.

Proof. Consider

$$\eta(T(\beta_{1}f + \beta_{2}g), \beta_{1}f + \beta_{2}g, f_{2}, \dots, f_{n}, t)$$

$$\geq \min[\eta(Tf, f, f_{2}, \dots, f_{n}, \frac{t}{|\beta|}),$$

$$\eta(Tf, f, f_{2}, \dots, f_{n}, \frac{t}{|\beta_{1}\beta_{2}|})$$

$$(\times)\eta(Tg, f, f_{2}, \dots, f_{n}, \frac{t}{|\beta_{2}\beta_{1}|}),$$

$$\eta(Tg, g, f_{2}, \dots, f_{n}, \frac{t}{|\beta_{2}\beta_{1}|})]$$

$$\Rightarrow \eta(Tf, g, f_{2}, \dots, f_{n}, t) = 0$$

$$= 0, \text{ then } \eta(0f, g, f_{2}, \dots, f_{n}, t) = 0$$
then $T \neq 0$, put $g = Tf$

If T = 0, then $\eta(0f, g, f_2, ..., f_n, t) = 0$ when $T \neq 0$, put g = Tfthen

$$\eta(Tf, Tf, f_2, \dots, f_n, t) = 0$$

$$\Rightarrow ||Tf, f_2, \dots, f_n||_{\alpha} = 0$$

$$\Rightarrow Tf = 0$$

$$\Rightarrow T = 0.$$

3.3 2-Fuzzy normal operator

An operator N is said to be 2-fuzzy normal if it commutes with its adjoint i.e) $NN^* = N^*N$.

Theorem 3.5. An operator T is 2-fuzzy normal if and only if

$$||T^*f, f_2, \dots, f_n||_{\alpha} = ||Tf, f_2, \dots, f_n||_{\alpha}$$

for all f.

Proof.

$$||T^*f, f_2, \dots, f_n||_{\alpha} = ||Tf, f_2, \dots, f_n||_{\alpha}$$

$$||T^*f, f_2, \dots, f_n||_{\alpha}^2 = ||T^*f, f_2, \dots, f_n||_{\alpha}^2$$

$$\Leftrightarrow \inf\{t : \eta(T^*f, T^*f, f_2, \dots, f_n, t) \ge \alpha\}$$

$$= \inf\{t : \eta(Tf, Tf, f_2, \dots, f_n, t) \ge \alpha\}$$

$$\Leftrightarrow \inf\{t : \eta(TT^*f, f, f_2, \dots, f_n, t) \ge \alpha\}$$

$$= \inf\{t : \eta(T^*Tf, f, f_2, \dots, f_n, t) \ge \alpha\}$$

$$\Leftrightarrow \inf\{t : \eta((TT^* - T^*T)f, f, f_2, \dots, f_n, t) \ge \alpha\} = 0$$

$$\Leftrightarrow \eta((TT^* - T^*T)f, f, f_2, \dots, f_n, t) \ge \alpha\} = 0$$

$$\Leftrightarrow TT^* - T^*T = 0$$

$$\Leftrightarrow TT^* = T^*T.$$

Theorem 3.6. If N is a 2-fuzzy normal operator and 2-fuzzy self adjoint on $\mathscr{F}(X^n)$ then $||N^2f, f_2, \ldots, f_n||_{\alpha} = ||Nf, f_2, \ldots, f_n||_{\alpha}^2$.

Proof. If N is a 2-fuzzy normal operator, then

$$||Nf, f_2, \dots, f_n||_{\alpha} = ||N^*f, f_2, \dots, f_n||_{\alpha}$$
 (3.7)

by replacing f by Nf (3.7) becomes

$$||NNf, f_{2}, ..., f_{n}||_{\alpha} = ||NN^{*}f, f_{2}, ..., f_{n}||_{\alpha}$$

$$\Rightarrow ||N^{2}f, f_{2}, ..., f_{n}||_{\alpha} = ||NN^{*}f, f_{2}, ..., f_{n}||_{\alpha}$$

$$||N^{2}f, f_{2}, ..., f_{n}||_{\alpha}$$

$$= \inf\{t : \eta(N^{2}f, N^{2}f, f_{2}, ..., f_{n}) \ge \alpha\}$$

$$= \inf\{t : \eta(NNf, NNf, f_{2}, ..., f_{n}) \ge \alpha\}$$

$$= \inf\{t : \eta(N^{*}Nf, N^{*}Nf, f_{2}, ..., f_{n}) \ge \alpha\}$$

$$= ||N^{*}Nf, f_{2}, ..., f_{n}||_{\alpha}$$

By Theorem 3.2,

$$||N^*Nf, f_2, \dots, f_n||_{\alpha} = ||Nf, f_2, \dots, f_n||_{\alpha}^2$$
 (3.8)

From (3.7) and (3.8)

$$||N^2 f, f_2, \dots, f_n||_{\alpha} = ||N f, f_2, \dots, f_n||_{\alpha}^2$$

3.4 2-Fuzzy unitary operator

An operator T is said to be 2-fuzzy unitary if $T^*T = T^*T = I$.

Theorem 3.7. If T is a 2-fuzzy operator on a 2-fuzzy n-n Hilbert space $\mathcal{F}(X^n)$, then the following conditions are equivalent to one another.

(*i*)
$$T^*T = I$$

(ii)
$$\langle Tf, Tg \rangle_{\alpha} = \langle f, g \rangle_{\alpha}$$
 for all $f, g \in \mathcal{F}(X^n)$

(iii)
$$||Tf, f_2, \dots, f_n||_{\alpha} = ||f, f_2, \dots, f_n||_{\alpha}$$

$$\begin{array}{l} \textit{Proof.} \ \ (i) \Rightarrow (ii) \\ \textit{Given } T^*T = I, < Tf, Tg >_{\alpha} \\ = < f, T^*Tg >_{\alpha} = < f, g >_{\alpha} \\ (ii) \Rightarrow (iii) \\ \textit{Given } < Tf, Tg >_{\alpha} = < f, g >_{\alpha} \\ \textit{taking } f = g \end{array}$$

$$< Tf, Tf>_{\alpha} = < f, f>_{\alpha}$$

 $||Tf, f_2, \dots, f_n||_{\alpha}^2 = ||f, f_2, \dots, f_n||_{\alpha}^2$
 $||Tf, f_2, \dots, f_n||_{\alpha} = ||f, f_2, \dots, f_n||_{\alpha}$

(iii)
$$\Rightarrow$$
 (i) Given $||Tf, f_2, \dots, f_n||_{\alpha} = ||f, f_2, \dots, f_n||_{\alpha}$
Therefore $||Tf, f_2, \dots, f_n||_{\alpha}^2 = ||f, f_2, \dots, f_n||_{\alpha}^2$

$$\Rightarrow < Tf, Tf >_{\alpha} = < f, f >_{\alpha}$$
$$\Rightarrow < Tf, T^{**}f >_{\alpha} = < f, f >_{\alpha}$$

hence

$$< T^*Tf, f>_{\alpha} = < Tf, T^{**}f>_{\alpha} = < f, f>_{\alpha}$$

 $\Rightarrow < (T^*T - I)f, f>_{\alpha} = 0$
 $\Rightarrow T^*T - I = 0$
 $\Rightarrow T^*T = I.$

Theorem 3.8. An operator T on a 2-fuzzy n-n Hilbert space $\mathscr{F}(X^n)$ is unitary if and only if it is an isomorphism of $\mathscr{F}(X^n)$ onto itself.

Proof. Let T be a 2-fuzzy unitary operator on $\mathscr{F}(X^n)$. Then from the definition of the unitary operator, it is invertible. Hence it is onto. Also $T^*T = I$.

But by Theorem 3.7

 $||Tf, f_2, \dots, f_n||_{\alpha} = ||f, f_2, \dots, f_n||_{\alpha}$ hence T is an isometric isomorphism of $\mathscr{F}(X^n)$ onto itself.

Conversely, let T be an isometric isomorphism of $\mathscr{F}(X^n)$ onto itself, then T is 1-1 and onto and T^{-1} exists.

But $||Tf, f_2, ..., f_n||_{\alpha} = ||f, f_2, ..., f_n||_{\alpha}$, by Theorem 3.7 $T^*T = I$

Hence

$$(T^*T)T^{-1} = T^{-1}$$

$$\Rightarrow T^*(TT^{-1}) = T^{-1}$$

$$\Rightarrow T^*I = T^{-1}$$

$$\Rightarrow T^* = T^{-1}$$

Pre multiply (3.7) by
$$T$$

 $TT^* = TT^{-1} = I \Rightarrow TT^* = I$
Post multiply (3.7) by T
 $T^*T = T^{-1}T = I$
 $\Rightarrow T$ is 2-fuzzy unitary.

4. 2-Fuzzy projection

A projection *P* on a 2-fuzzy n-n Hilbert space $\mathscr{F}(X^n)$ is an operator *P* an $\mathscr{F}(X^n)$ such that $P^2 = P$ and $P^* = P$.

Theorem 4.1. If P is a projection on a 2-fuzzy n-n Hilbert space with range M and null space N, then $M \perp N$ if and only if P is self adjoint and $N = M^{\perp}$.

Proof. Let *P* be a 2-fuzzy projection on $\mathscr{F}(X^n)$ with the range *M* and null space *N*.

Then
$$\mathscr{F}(X^n) = M \oplus N$$
.

Let M|N

Now to prove *P* is 2-fuzzy self adjoint. Each $h \in \mathcal{F}(X^n)$ can be written uniquely in the form h = f + g, where $f \in M$ and $g \in N$.

Here Ph = f and since

$$M \perp N, \langle f, g \rangle_{\alpha} = 0 \tag{4.1}$$

From (4.1)

$$< Ph, h >_{\alpha} = < f, h >_{\alpha}$$

$$= < f, f + g >_{\alpha}$$

$$= < f, f >_{\alpha} + < f, g >_{\alpha}$$

$$= < f, f >_{\alpha}$$

Also

$$< P^*h, h>_{\alpha} = < h, Ph>_{\alpha}$$

$$= < h, f>_{\alpha}$$

$$= < f+g, f>_{\alpha}$$

$$= < f, f>_{\alpha}$$

$$= < f, h>_{\alpha}$$

$$\Rightarrow < P^*h, h>_{\alpha} = < Ph, h>_{\alpha}$$

$$\Rightarrow < (P^*-P)h, h>_{\alpha} = 0$$

$$\Rightarrow P^* = P.$$

Therefore *P* is 2-fuzzy self adjoint.

Conversely assume P is 2-fuzzy self adjoint. Now to prove $M \perp N$.

Let
$$f \subset M, g \subset N$$

Then
$$Pf = f, Pg = 0$$

To prove in P is a 2-fuzzy projection on H with range M and null space N, then $M \perp N$.

$$N = M^{\perp}$$

Let $f \in N$, then $f \in M^{\perp} \Rightarrow N \subset M^{\perp}$ if $N \neq M^{\perp}$, assume N is a proper closed subspace of M^{\perp}

then exists a non zero $h_0 \in M^{\perp}$ such that $h_0 \perp N$. But $h_0 \in M^{\perp}$ implies $h_0 \perp M$.

Therefore $h_0 \perp M$ and $h_0 \perp N$.

Since
$$\mathscr{F}(X^n) = M \oplus N, h_0$$
 but $\mathscr{F}(X^n)$

$$\Rightarrow h_0 = 0$$
 leads to a contradiction

$$\Rightarrow N = M^{\perp}$$
.

-

References

- [1] T. Bag and S. K. Samanta, Finite Dimensional fuzzy normed linear spaces, *J. Fuzzy. Math.*, 11(3)(2003), 687–705.
- ^[2] S.C.Cheng and J. N. Mordenson, Fuzzy linear operators and fuzzy normed linear spaces, *Bull. Cal. Math. Soc.*, 86(1994), 429–436.
- [3] Y.J. Cho, M Matic and J.Pecaric, Inequalities of Hlawka's type in *n*-inner product spaces, *Commun. Korean Math. Soc.*, 17(2002), 583–592.
- [4] C.Dimminie, S. Gahler and A. White, 2-inner product spaces, *Demonstratio Math*, 6(1973), 525–536.
- ^[5] A. M. El-Abyad and H.M. El-Hamouly, Fuzzy inner product spaces, *Fuzzy Sets and Systems*, 44(1991), 309–326.
- [6] S. Gahler, Linear 2-normierte Raume, *Math Nachr*, 28(1964), 1–43.
- A.K.Katsaras, Fuzzy topological vector space, *Fuzzy Sets* and *Systems*, 12(1984), 143–154
- [8] P. Sinha, G. Lal and D. Mishra, On Fuzzy 2-Inner product spaces, *International Journal of Fuzzy Mathematics and Systems*, 3(3)(2016), 243–250.
- [9] R.M. Somasundaram and T. Beaula, Some aspects of 2-fuzzy 2-normed linear spaces, *Bull. Malyasian Math. Sci. Soc.*, 32(2009), 211–222.
- [10] S. Vijayabalaji and N. Thillaigovindan, Fuzzy n-inner product space, *Bull. Korean Math. Soc.*, 43(3)(2007), 447–459.
- [11] T. Beaula and D. Evans, Some Aspects of 2-Fuzzy n-n Normed Linear Space, *International Journal of Applications of Fuzzy Sets and Artificial Intelligence*, 7(2017), 23–44.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
