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1. Introduction
In classical real analysis, Lusin’s theorem governs the

continuity and the approximation of measurable functions on
metric spaces in non-additive measure theory this well known
theorem was generalized by Wu and Ha [13] under the condi-
tions of continuity and auto continuity. This was furthered by
Jiang et. al [4, 5] and Li and Yasuda [8], Li and Yasuda [8]
proved Lusin’s theorem on finite fuzzy measure spaces by
using weak null–additivity. Alina Cristiana Gavriluj [1] using
monotone uniformly auto continuous functions has proved
the Lusin type theorems. We have proved Lusin’s theorem of
uniformly auto continuous functions.

The paper is organized as follows. Section 2 Preliminaries
and we have exposed the interconnection between uniform
auto continuity and pseudo metric generating property. In
Section 3 condition (E) of monotone measures is elaborated.

Section 4 is devoted to the issue of regularity of monotone
measures.

2. Preliminaries
We suppose that (X ,P) is a metric space and O and C are

the classes of all open and closed sets in (X ,P) respectively.
Let B is the Borel σ -algebra on X . It is the smallest σ algebra
containing O. Let F denote the class of all finite real valued
measurable functions on the Borel measurable space (X ,B)
unless stated otherwise all the subsets mentioned are supposed
to belong to B, and all the function mentioned are supposed
to belong to F .

Definition 2.1. A non-negative set function µ : B→ [0,+∞]
is said to be finite if µ(X)< ∞.

Definition 2.2. A non-negative set function µ : B→ [0,∞] is
continuous from below if lim

n→∞
µ (An) = µ(A) whenever An ↑

Aand there exists n0 with µ (An0)< ∞.

Definition 2.3. A non-negative set function µ : B→ [0,∞] is
continuous from above if lim

n→∞
µ (An) = µ(A) whenever An ↓A

and there exists n0 with µ (An)< ∞.

Definition 2.4. A non–negative set function µ : B→ [0,∞] is
continuous if µ is continuous from below and above.

Definition 2.5 ([3]). A non–negative set function µ : B→
[0,∞] is order continuous if lim

n→∞
µ (An) = 0 whenever An ↓ /0.



A type of Lusin’s theorem for regular monotone auto continuous measure space — 564/568

Definition 2.6 ([3]). A non–decreasing set function µ : B→
[0,∞] is exhaustive if lim

n→∞
µ (En) = 0 for any infinite disjoint

sequence {En}n∈N .

Definition 2.7 ([6]). A non–decreasing set function µ : B→
[0,∞] is strongly order continuous if lim

n→∞
µ (An) = 0 whenever

An ↓A and µ(A) = 0.

Definition 2.8 ([12]). A non–decreasing set function µ : B→
[0,∞] is null additive if µ (E ∪F) = µ(F) whenever E, F ∈ B
and µ(F) = 0

Definition 2.9 ([12]). A non-decreasing set function µ : B→
[0,∞] is weakly null additive if µ (E ∪F)= 0 whenever µ(E)=
µ(F) = 0.

Definition 2.10 ([11]). A non-decreasing set function µ : B→
[0,∞] is called auto continuous from above (resp from be-
low) if for every ε > 0 and every A ∈ B there exists δ =
δ (A,ε)> 0 such that m(A)−ε 6 m(A∪B)+ε(resp. m(A)−
ε 6 m(AB

B ) 6 m(A)+ ε). Whenever B ∈ B, A∩B = /0 (resp
B⊂ A) and m(B)< δ holds.

Definition 2.11 ([10]). A monotone measure on B is an ex-
tended real valued set function µ : B→ [0,∞] satisfying

1. µ (ϕ) = 0

2. µ(A)6 µ(B) whenever A⊂ B and A,B ∈ B

when µ is a monotone measure the triple (X ,Bµ) is called
a monotone measure space. In this paper we always assume
that µ is a monotone measure on B.

Definition 2.12. µ is called countably weakly null additive if

µ

(
∞⋃

n=1
An

)
= 0 whenever {An}n∈N ⊂ B and µ(A) = 0, n =

1,2, . . ..

Definition 2.13 ([1]). µ is called null continuous if

µ

(
∞⋃

n=1
An

)
= 0 for every increasing sequence

{An}n∈N ⊂ B such that µ(A) = 0, n = 1,2, . . ..

Definition 2.14 ([9]). µ is countably weakly null additive if
and only if µ is both weakly null additive and null continuous.

Theorem 2.15 ([1]). If µ is strongly order continuous and
weakly null additive then it is null continuous.

Theorem 2.16 ([9]). If µ is strongly order continuous and
weakly null additive then it is countably weakly null additive.

We define the Hausdorff pseudo metric h on Pf (x) as
h(M,N) = max{e(M,N),e(N,M)} for every M,N ∈ Pf (X)
where
e(M,N) = supX∈M d(X ,N), e is called the excess of M over
N.

Definition 2.17. If µ : C→ Pf (x) is a set multifunction by
|µ| we mean the real extended value set function defined by
|µ|(A) = |µ(A)| for every A ∈C where Pf (x) is the farmly of
closed non-void sets of X.

Definition 2.18. A set multi function µ : C→ Pf (x) is said
to be uniformly auto continuous if for every ε > 0 there is
δ (ε)> 0 so that for every A,B ∈C with |µ(B)|< δ we have
h(µ(A∪B), µ(A))< ε .

Remark 2.19. If µ : C→ Pf (x) is uniformly auto continuous
then it Has the pseudo metric generating property.

3. Condition (E) of monotone measures
In [7] Li Introduced the concept of condition (E) of a

set function and proved that it is a necessary and sufficient
condition for Egroffs theorem. In this Section We present
some properties for the condition (E) (Or Egroffs condition)
of a monotone measure. They play important roles in proving
regularity and Lusin’s theorem.

Definition 3.1 ([7]). A set Function µ : B→ [0,∞] is said
to fulfill condition (E) if for every double sequence {E(m)

n |
n,M ∈ N}< B satisfying the conditions:
For any fixed m = 1,2, . . .E

(m)
n → Em(n→ ∞) and

µ

(
∞⋃

m=1
E(m)

)
= 0.

There exits increasing sequences {ni}i∈N and {mi}i∈N of

natural numbers such that lim
n→∞

µ

(
∞⋃

r=k
E
(mr)
nr

)
= 0.

Theorem 3.2 ([7]). If µ is a finite continuous monotone mea-
sure then it fulfills the condition (E)

Theorem 3.3 ([7]). If µ fulfills condition (E) then it is strongly
order continuous and hence it is order continuous and exhaus-
tive.

Theorem 3.4 ([9]). If µ is weakly null additive and fulfills
condition (E) then it is null continuous and countably weakly
null additive.

Theorem 3.5 ([9]). The following conditions are equivalent:

1. µ fulfills the Condition (E).

2. For any ε > 0 and a double sequence {
{

E
(m)
n | n,m ∈ N

}
⊂ B satisfying the conditions for any fixed m = 1,2, . . .,

E
(m)
n → E(m)(n→ ∞) and µ

(
∞⋃

m=1
E(m)

)
= 0. There

exists an increasing sequence {nm}M ∈ N of natural

numbers such that µ

(
∞⋃

m=1
E
(m)
nm

)
< ε .

Theorem 3.6 ([9]). The following conditions are equivalent

1. µ is weakly null additive and fulfills condition (E)
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2. For any ε > 0 and double sequence
{

E
(m)
n |n,m ∈ N

}
⊂ B satisfying the conditions for any fixed m = 1,2, . . .,

E
(m)
n → E(m)(n→∞) and µ

(
E(m)

)
= 0 there exists an

increasing sequence {nm}M∈N of natural numbers such

that µ

(
∞⋃

m=1
E
(m)
nm

)
< ε .

3. For any fixed K∈N and any double sequence{
E
(m)
n |n,m ∈ N

}
⊂ B satisfying conditions for any

fixed m = 1,2,. . . E
(m)
n → E(m)(n→∞) and µ

(
E(m)

)
=

0 there exists an increasing sequence {nm(K)}m ∈ N

of natural numbers such that µ

(
∞⋃

m=1
E
(m)
nm(k)

)
< 1

K . and

for any fixed m = 1,2, . . ., nm(k) 6 nm(K+1).

Note: In the above statement (3) for the double subsequence{
E
(m)
nm(K)

| m,K ∈ N
}

of
{

E
(m)
n |n,m ∈ N

}
, We have

∞⋃
m=1

E
(m)
nm(k)

⊇
∞⋃

m=1
E
(m)
nm(k+1) K = 1,2,. . . and lim

K→∞
µ

(
∞⋃

m=1
E
(m)
nm(k)

)
= 0.

4. Regularity of monotone measures
on metric spaces

It is known that every probability measure P on a metric
space is regular. Now we prove that this property is also
enjoyed by monotone measures with condition (E).

Definition 4.1. A set function µ is called regular if for every
A ∈ B and ε > 0 there exists a closed set Fε and an open set
Gε of X such that Fε ⊂ A⊂ Gε and µ (Gε −Fε)< ε .

Theorem 4.2. If µ fulfils condition (E) and auto continuous
then µ is regular.

Proof. Let A be the class of all sets A ∈ B such that for any
ε > 0 there exist a closed set Fε and an open set Gε satisfying
Fε ⊂ A⊂ Gε and µ(Gε −Fε)< ε .

To prove the theorem it is sufficient to show that B⊂ A.
It is easy to verify that A is an algebra we shall now prove

that A is closed under the formation of pairwise disjoint count-
ably unions. Let{

A(m)
}

M∈N
< A be the sequence of pairwise disjoint sets and

ε > 0 be given.
By Remark 2.19, since µ is auto continuous it possesses

pseudo metric generating properly.
From the definition of A and A(m) ∈ A we know that for

every
m = 1,2, . . ., there exists a sequence

{
G(m)

n

}∞

n=1
is decreasing

and
{

F(m)
n

}∞

m=1
is increasing. Therefore for any fixed m =

1,2, . . .,
{

G(m)
n −F(m)

n

}∞

n=1
is a decreeing sequence of sets

with respect to n an as n→ ∞

G(m)
n −F(m)

n →
∞⋂

n=1

G(m)
n −F(m)

n

Denote Dm =
∞⋂

n=1

(
G(m)

n −F(m)
n

)
Then G(m)

n − F(m)
n → Dm

as n→ ∞, noting that µ (Dm) 6 µ

(
G(m)

n −F(m)
n

)
< 1

n ; n =

1,2, . . ..
We have µ (Dm) = 0; m = 1,2, . . .. Applying Theorem 3.6

to the double sequence
{

G(m)
n −F(m)

n |n,m ∈ N
}

and the se-

quence {Dm}∞

m=1 of sets then for δ > 0 mentioned above there

exists a sub sequence
{

G(m)
nm −F(m)

nm

}
of
{

G(m)
n −F(m)

n

}
, such

that µ

(
∞⋃

m=1
G(m)

nm −F(m)
nm

)
< δ .

On the other hand
∞⋃

m=1
F
(m)
nm −

K⋃
m=1
→ ϕ(K→ ∞).

We observe that µ fulfills condition (E) if follows from
Theorem 3.3 that it is order continuous. So we have

lim
K→∞

µ

(
∞⋃

m=1
F
(m)
nm −

K⋃
m=1

F
(m)
nm

)
= 0

There exists to such that

µ

(
∞⋃

m=1
F
(m)
nm −

Ko⋃
m=1

F
(m)
nm

)
= δ

Denote Gε =
∞⋃

m=1
G
(m)
nm and Fε =

Ko⋃
m=1

F
(m)
nm then Gε is an open

set and Fε is a closed set and Fε ⊂
∞⋃

m=1
A(m) ⊂ Gε and

µ (Gε−Fε)

= µ

(
∞⋃

m=1
G
(m)
nm −

∞⋃
m=1

F
(m)
nm

)

6 µ

(
∞⋃

m=1
G
(m)
nm −F

(m)
nm

)
∪

(
∞⋃

m=1
G
(m)
nm −

∞⋃
m=1

F
(m)
nm

)
< ε

∴
∞⋃

m=1
A(m) ∈ A

Thus we proved that A is a σ -algebra.
We know that for any closed set F ∈ { there exists se-

quence of open sets {Gm}∞

m=1 such that Gm−F → ϕ(m→
∞). Therefore it follows from the order continuity of µ that
limm→ ∞µ (Gm−F) = 0. Thus C ⊂ A since A is a closed
under the formation of complements we have O⊂ A.

Thus shows that A is a σ -algebra containing O.
∴ B⊂ A.

Corollary 4.3. Under the assumptions of Theorem 4.2 for
any E ∈ B there exists an increasing sequence {Fn}∞

n=1 of
closed sets and a decreasing sequence {Gn}∞

n=1 of open sets
such for every n = 1,2, . . .,
Fn ⊂ E ⊂ Gnµ (Gn−E)< 1

n and µ (E−Fn)<
1
n .

By Theorem 4.2 and invoking the condition that µ is con-
tinuous from below, exhaustive and auto continuous then if
fulfills the condition (E) we can obtain the following corollary
immediately.
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Lemma 4.4 ([8]). µ is weakly null additive if and only if for
any ε > 0 and any double sequence

{
A(K)

n

}
n > 1,K > 1⊂ B

satisfying
A(K)

n → Dn(K→ ∞), µ (Dn) = 0, n = 1,2, . . ., there exists a

subsequence
{

A(Km)
n

}
of
{

A(K)
n

}
, n > 1, K > 1 such that

µ

(
∞⋃

n=1
A(Kn)

n

)
< ε(K1 < K2 < · · ·).

5. Lusin’s theorem on monotone
measure spaces

In [7] Li Proved that the condition (E) is a necessary and
sufficient condition for Egroffs theorem on monotone measure
spaces

Theorem 5.1 ([7]). The following conditions are equivalent:

1. µ fulfils condition(E)

2. For f ∈ F and { fn}n∈N ⊂ F if any { fn} converges to
f almost every where on X then for any ε > 0 there
is a subset Xε ∈ B such that µ (X/Xε) < ε and { fn}
converges to f uniformly on Xε .

Theorem 5.2 (Egroffs theorem). let a monotone measure µ

fulfils condition (E) and auto continuous. If { fn} converges
to f almost everywhere on X then for any ε > 0 there exists
a closed subset Fε ∈ C such that µ (X−Fε) < ε and { fn}
converges to f uniformly on Fε .

Proof. Given that { fn} converges to f almost everywhere on
X . Then there exists an increasing sequence {Xm}∞

m=1 ⊂B

such that µ

(
X−

∞⋃
m=1

Xm

)
= 0 and fn converges to f on Xm

uniformly for any fixed m = 1,2, . . ..

Denote H = X−
∞⋃

m=1
Xm then µ(H) = 0.

µ is weakly null additive. Then for any E∈B there exists a
sequence

{
F(k)

}∞

k=1
of closed sets and a sequence

{
G(k)

}∞

k=1
of open sets such that for every
K = 1,2, . . ., F(K) ⊂ E ⊂ G(K)µ

(
G(K)−E

)
< 1

K and

µ

(
E−F(k)

)
< 1

k .

Here the sequence
{

F(k)
}∞

k=1
is increasing in K and the

sequence
{

G(k)
}∞

k=1
is decreasing in K.

∴ for every fixed Xm, m = 1,2, . . .. There exists a se-
quence

{
F(k)

m

}∞

k=1
of closed sets satisfying F(k)

m ⊂ Xm and

µ

(
Xm−F(k)

m

)
< 1

k for any K = 1,2, . . ., without loss of gener-

ality we can assume that for fixed m= 1,2, . . ..
{

Xm−F(k)
m

}∞

k=1
is decreasing as K→ ∞ thus

Xm−Fk
m ↓

∞⋂
k=1

(
Xm−F(k)

m

)
as K→ ∞. Write

Dm =

(
∞⋂

k=1

(
Xm−F(k)

m

))
= lim

k→∞
µ

(
Xm−F(k)

m

)
= 0

and log the weakly null additivity of µ .

We get µ (Dm) = µ

(
∞⋂

k=1

(
Xm−F(K)

m

)
∪H

)
= 0, m =

1,2, . . .
By Lemma 4.4 the double sequence,

{(
Xm−F(k)

m

)
∪H

}
of sets and the sequence {Dm}∞

m=1 of sets then for any ε > 0

there exists a subsequence
{(

Xm−F(km)
m

)
∪H

}
of{(

Xm−F(k)
m

)
∪H

}
such that

µ

(
∞⋃

m=1

(
Xm−F(km)

m

)
∪H

)
< ε .

Since X−
∞⋃

m=1
F(km)

m ⊂
∞⋃

m=1

(
Xm−F(k)

m

)
∪H.

We have µ

(
X−

∞⋃
m=1

F(km)
m

)
< ε .

From X −
N⋃

m=1
F(km)

m ↓ X −
∞⋃

m=1
F(km)

m as N→ ∞ and the

continuity from above of µ , We have

lim
N→∞

µ

(
X−

N⋃
m=1

F(km)
m

)
= µ

(
X−

∞⋃
m=1

F(km)
m

)
< ε

∴ there exists N0 such that

µ

(
X−

N0⋃
m=1

F(km)
m

)
< ε

Denote Fε =
N0⋃

m=1
F(km)

m then Fε is a closed set µ (X−Fε)< ε

and from Fε ⊂
N0⋃

m=1
Xm, we know that { fn}n converges to f

uniformly on Fε .

Theorem 5.3. Lusin’s Theorem
Let a monotone measure µ fulfils condition (E) auto con-

tinuous and f be a real valued measurable function on X.
Then for each ε > 0 there exists a closed subset Fε ∈C such
that µ (X−Fε) < ε and f/Fε the restriction of f to Fε is
continuous on Fε .

Proof. We prove the theorem in the following two situations.

1. Suppose that f is a simple function

(i.e.,) f (x) =
s
∑

n=1
CkχEn(x);x ∈ χ ,

where χEn(x) is the characteristic function of the set En
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and X=
s⋃

n=1
En (a disjoint finite union). For every fixed

En, n = 1,2, . . ., µ being weakly null additive then for
any E ∈ B there exists a sequence

{
F(k)

}∞

k=1
of closed

set and a sequence
{

G(k)
}∞

k=1
of open sets such that for

each k = 1,2, . . ., F(k) ⊂ E ⊂ G(k),

µ

(
G(k)−E

)
<

1
k

and µ

(
E−F(k)

)
<

1
k
.

Applying this to the double sequence
{

En−F(k)
n

}
, n =

1,2, . . .,
k= 1,2, . . . of sets there exists a sub sequence

{
En−F(kn)

n

}
of
{

En−F(k)
n

}
such that

µ

(
s⋃

n=1

(
En−F(kn)

n

))
< ε.

We take Fε =
s⋃

n=1
F(kn)

n then f is continuous on the

closed set Fε on X and

µ (X−Fε)6 µ

(
s⋃

n=1

En−
s⋃

n=1

F(kn)
n

)

6 µ

(
s⋃

n=1

(
En−F(kn)

n

))
< ε

2. Let f be a real valued measurable function. Then there
exists a sequence {ϕn(x)}∞

n=1 of simple functions such
that ϕn→ f (n→∞) on X . By the result obtained in (a)
for each simple function ϕn and every k = 1,2, . . ., there
exists closed set X (k)

n ⊂ X such that ϕn is continuous on
X (k)

n and µ

(
X−X (k)

n

)
< 1

k k = 1,2, . . ..

There is no loss of generality in assuming the sequence{
X (k)

n

}∞

n=1
of closed sets in increasing with respect to

k for any fixed n.

∴ X−X (k)
n ↓

∞⋂
k=1

(
X−X (k)

n

)
as k→ ∞.

And thus we have

µ

(
∞⋂

k=1

(
X−X (k)

n

))
= lim

n→∞
µ

(
X−X (k)

n

)
= 0, n = 1,2, . . . .

Now we consider the double sequence{
X−X (K)

n |n > 1,K > 1
}

of sets. By Lemma 4.4 for
every m, m = 1,2, . . ., we may take a sub sequence{

X−XKn
(m)

n

}∞

n=1
of
{

X−X (K)
n

}
, n > 1, K > 1 such

that

µ

(
∞⋃

n=1

X−X
Kn(m)

n

)
<

1
m

namely µ

(
X−

∞⋂
n=1

XKn(m)

n

)
<

1
m
.

Since the double sequence
{

X−X (K)
n

}
, n > 1, K > 1

of sets is decreasing in k for fixed n, without any loss of
generality we can assume that for fixed n, n = 1,2, . . .,
K(1)

n < K(2)
n < · · ·< K(M)

n . . ..

Write HM =
∞⋂

n=1
XKn(m)

n , m = 1,2, . . ..

Then we obtain a sequence {Hm}∞

m=1 of closed sets
satisfying
H1 ⊂ H2 ⊂ ·· ·

µ

(
X−

∞⋃
m=1

Hm

)
= lim

n→∞
µ (X−Hm) = 0.

Noting that ϕn is continuous on XKn(M)

n and Hm⊂XKn(m)

n ,
n = 1,2, . . .. ∴ For each Hm,ϕn is continuous on Hm for
every n = 1,2, . . ..

Since ϕn→ F(n→ ∞) on X by Egroffs Theorem there
exists an increasing sequence {Xm}∞

m=1 of closed sets
satisfying

X−Xm→ X−
∞⋃

m=1

Xm(n→ ∞)

µ

(
X−

∞⋃
m=1

Xm

)
= 0 and {ϕn} converges to f uni-

formly on closed set for each m = 1,2, . . ..

Considering the sequence {(X−Hm)∪ (X−Xm)}∞

m=1
of sets then as m→ ∞

(X−Hm)∪(X−Xm)→

(
X−

∞⋃
m=1

Hm

)
∪

(
X−

∞⋃
m=1

Xm

)
By using the continuity from above and weakly null
additivity of fuzzy measures we have

lim
m→∞

µ ((X−Hm)∪ (X−Xm))

= µ

((
X−

∞⋃
m=1

Hm

)
∪

(
X−

∞⋃
m=1

Xm

))
= 0

That is limn→∞ µ (X−Hm∩Xm) = 0.

Therefore given ε > 0 we can take moε such that
µ (X−Hmo∩Xmo) < εs. Put Fε = Hmo ∩Xmo then Fε

is a closed set and µ (X−Fε) < ε we how show that
f is continuous on Fε . In fact Fε ⊂ Hmo and ϕn is
continuous on Hmo. Therefore ϕn is continuous on Fε

for every n = 1,2, . . .. We observe that {ϕn} converges
to f on Fε uniformly then f is continuous on Fε .
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