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Bounds on the covering radius of repetition code in Z2Z6
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Abstract. In this paper, the covering radius of codes over R = Z2Z6 with different weight are discussed. The block repetition
codes over R is defined and the covering radius for block repetition codes R are obtained.
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1. Introduction and Background

Codes over finite commutative rings have been studied for almost 50 years. The main motivation of studying
codes over rings is that they can be associated with codes over finite fields through the Gray map. Recently, coding
theory over finite commutative non-chain rings is a hot research topic. Recently, there has been substantial interest
in the class of additive codes. In [11, 12], Delsarte contributes to the algebraic theory of association scheme where
the main idea is to characterize the subgroups of the underlying abelian group in a given association scheme.

The covering radius is an important geometric parameter of codes. It not only indicates the maximum error
correcting capability of codes, but also relates to some practical problems such as the data compression and
transmission. Studying of the covering radius of codes has attracted many coding scientists for almost 30 years.
The covering radius of linear codes over binary finite fields was studied in [9].

Additive codes over Z2Z4 have been extensively studied in [2, 4–6]. In [7], the authors, in particular, gave
lower and upper bounds on the covering radius of codes over the ring Z6 with respect to different distance. Using
above results motivate us to work in this Paper.
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2. Preliminaries

In Z2 and Z6 be the rings of integers modulo 2 and 6. Let Zn
2 and Zn

6 denote the space of n-tuples over these
rings. A ring R = Z2Z6 = {00, 01, 02, 03, 04, 05, 10, 11, 12, 13, 14, 15}, with integer modulo is 2 and 6. If C be
a non-empty subset of Zn

2 is called a code and if that subcode is a linear space, then C is said to be linear code.
Similarly, any non-empty subset C of Zn

6 is called a linear senary code.
In this section, some preliminary results are given [4, 6, 15]. A non-empty set C is a R-additive code if it is a

subgroup of Zγ
2 × Z6

δ. In this case, C is also isomorphic to an abelian structure Zλ
2 × Zµ

6 for some λ and µ and
type of C is a 2λ6µ as a group. It pursue that it has | C |= 2λ+2µ codewords and the number of order for two
codewords in C is | C |= 2λ+µ.

A linear code C of length n over Z6 is an additive subgroup of Zn
6 . An element of C is called a codeword

of C and a generator matrix of C is a matrix whose rows generate C. The Hamming weight wH(x) of a vector
x ∈ Zn

6 is the number of non-zero components. The Lee weight wL(x) of a vector x = (x1, x2, · · · , xn) is

wL(xi) =


0 if x = 0,

1 if x = 1, 5,

2 if x = 2, 4,

3 if x = 3.

The Euclidean weight wE(x) of a vector x is

wE(xi) =


0 if x = 0,

1 if x = 1, 5,

4 if x = 2, 4,

9 if x = 3.

The Chinese Euclidean weight wE(x) of a vector x is

wCE(xi) =


0 if x = 0,

1 if x = 1, 5,

3 if x = 2, 4,

4 if x = 3.

The Hamming, Lee, Euclidean, Chinese Euclidean distances dH(x, y), dL(x, y), dE(x, y) and dCE(x, y)

between two vectors x and y are wH(x − y), wL(x − y), wE(x − y) and wCE(x − y) respectively. The
minimum Hamming, Lee, Euclidean and Chinese Euclidean weights, dH , dL, dE and dCE of C are the smallest
Hamming, Lee, Euclidean and Chinese Euclidean weights among all non-zero codewords of C respectively.

The Gray map: µ : Z6 → Z2Z3 is defined as µ(0) = (00), µ(1) = (11), µ(2) = (02), µ(3) = (10), µ(4) =

(01), µ(5) = (12) and the extension of the Gray map
ρ : Zγ

2 × Zδ
6 → Zn

2Z3, where n = γ + δ is given by

ρ(u,w) = (u, µ(w1), · · · , µ(wδ)),∀u ∈ Zγ
2 and (w1, · · · , wδ) ∈ Zδ

6.

Then the binary image of a R-additive code under the extended Gray map is called a R-linear code of length
n = γ + δ.
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The Hamming weight of u denoted by wH(u) and wL(w), wE(w), wCE(w) be the Lee, Euclidean and
Chinese Euclidean weights of w respectively, where u ∈ Zγ

2 and w ∈ Zδ
6.

In Lee, Euclidean and Chinese Euclidean weights are x is defined as wD(x) = wH(u) + wD(w), where
D = {Lee(L), Euclidean(E), Chinese Euclidean(CE)}, and x = (u,w) ∈ Zγ

2 × Zδ
6, and u = (u1, · · · , uγ) ∈ Zγ

2

and w = (w1, · · · , wδ) ∈ Zδ
6. The Gray map defined above is an isometry which transforms the Lee distance

defined over Zγ
2 × Zδ

6 to the Hamming distance defined over Zn
2 , with n = γ + δ.

3. The covering radius of code and the block repetition codes over R

The covering radius of a code C is the smallest number r such that the spheres of radius r around the codewords
cover Zγ

2 × Zδ
6 = R and thus the covering radius of a code C over R with respect to the different distance, such

as(Lee, Euclidean, Chinese Euclidean) is given rd(C) = max
u∈R

{min
c∈C

d(u, c)}.

In Fq = {0, 1, β2, · · · , βq−1} is a finite field. Let C be a q-ary repetition code C over Fq. That is C = {β̄ =

(ββ · · ·β)|β ∈ Fq} and the repetition code C is an [n, 1, n] code. Therefore, the covering radius of the code C is
⌈n(q−1)

q ⌉ this true for binary repetition code. In [7], the authors studied for different classes of repetition codes
over Z6 and their covering radius has been obtained. Now, generalize those results for codes over R.

Consider the repetition codes over R. For a fixed 1 ≤ i ≤ 11. For all 1 ≤ j ̸= i ≤ 11, nj = 0, then the code
Cn = Cni is denoted by Ci. Therefore, the eleven basic repetition codes are the following table,

Generator Matrix Code Parameters [n, k, d∗], (n,M, d∗)

G1 = [

n︷ ︸︸ ︷
01(05) · · · 01(05)] = G5 C1, C5 [n, 1, n, n, n]

G2 = [

n︷ ︸︸ ︷
02(04) · · · 02(04)] = G4 C2, C4 (n, 3, 2n, 4n, 3n)

G3 = [

n︷ ︸︸ ︷
03 · · · 03] C3 (n, 2, 3n, 9n, 4n)

G6 = [

n︷ ︸︸ ︷
10 · · · 10] C6 (n, 2, n, n, n)

G7 = [

n︷ ︸︸ ︷
11(15) · · · 11(15)] = G11 C7, C11 [n, 1, n, n, n]

G8 = [

n︷ ︸︸ ︷
12(14) · · · 12(14)] = G10 C8, C10 (n, 6, n, n, n)

G9 = [

n︷ ︸︸ ︷
13 · · · 13] C9 (n, 4, n, n, n)

here,∗ = L(E)(CE)

C1 = {c0, c1, c2, c3, c4, c5} = C5,

C2 = {c0, c2, c4} = C4,

C3 = {c0, c3},
C6 = {c0, c6}
C7 = {c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11} = C11,

C8 = {c0, c2, c4, c6, c8} = C10,

C9 = {c0, c3, c6, c9} and {c0 = 00 · · · 00, c1 = 01 · · · 01, c2 = 02 · · · 02, c3 = 03 · · · 03, c4 = 04 · · · 04,
c5 = 05 · · · 05, c6 = 10 · · · 10, c7 = 11 · · · 11, c8 = 12 · · · 12, c9 = 13 · · · 13, c10 = 14 · · · 14, c11 = 15 · · · 15}.

Theorem 3.1. Let Cj ,1≤j≤11, be a code in R. Then,

1. 3n
4 ≤ rL(C1) = rL(C5) ≤ 7n

3 ,

2. 2n
3 ≤ rL(C2) = rL(C4) ≤ 7n

3 ,

3. 3n
4 ≤ rL(C3) ≤ 2n,
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4. n
4 ≤ rL(C6) ≤ 3n,

5. n ≤ rL(C7) = rL(C11) ≤ 2n,

6. 11n
12 ≤ rL(C8) = rL(C10) ≤ 2n and

7. n ≤ rL(C9) ≤ 2n, where rL(Cj) is a covering radius of Cj , 1≤j≤11 with Lee distance.

Proof. For c ∈ Cj ,1≤j≤11 be a codeword of code Cj in R. Let ti(c),0≤i≤11 is the number of occurrences of
symbol i in the codeword c.

Let x ∈ Rn by (t0, t1, t2, t3, t4, t5, t6, t7, t8, t8, t9, t10, t11), where
11∑
j=0

tj = n, then

dL(x, 00) = n− t0 + t2 + 2t3 + t4 + t7 + 2t8 + 3t9 + 2t10 + t11,

dL(x, 01) = n− t1 + t3 + 2t4 + t5 + t6 + t8 + 2t9 + 3t10 + 2t11,

dL(x, 02) = n− t2 + t0 + t4 + 2t5 + 2t6 + t7 + t9 + 2t10 + 3t11,

dL(x, 03) = n− t3 + t1 + t5 + 3t6 + 2t7 + t8 + t10 + 2t11 + 2t0,

dL(x, 04) = n− t4 + t0 + 2t1 + t2 + 2t6 + 3t7 + 2t8 + t9 + t11,

dL(x, 05) = n− t5 + t1 + 2t2 + t3 + t6 + 2t7 + 3t8 + 2t9 + t10,

dL(x, 10) = n− t6 + t1 + 2t2 + 3t3 + 2t4 + t5 + t8 + 2t9 + t10,

dL(x, 11) = n− t7 + t0 + t2 + 2t3 + 3t4 + 2t5 + t9 + 2t10 + t11,

dL(x, 12) = n− t8 + 2t0 + t1 + t3 + 2t4 + 3t5 + t6 + t10 + 2t11,

dL(x, 13) = n− t9 + 3t0 + 2t1 + t2 + t4 + 2t5 + 2t6 + t7 + t11,

dL(x, 14) = n− t10 + 2t0 + 3t1 + 2t2 + t3 + t5 + t6 + 2t7 + t8,

dL(x, 15) = n− t11 + t0 + 2t1 + 3t2 + 2t3 + t4 + t7 + 2t8 + t9,

In code C7 = C11 ∈ R, then dL(x,C7) = dL(x,C11) = min{dL(x, 00), dL(x, 01),
dL(x, 02), dL(x, 03), dL(x, 04), dL(x, 05), dL(x, 10), dL(x, 11)dL(x, 12), dL(x, 13),

dL(x, 14), dL(x, 15)} ≤ 2n and hence

rL(C7) = rL(C11) ≤ 2n.

If x = (

n
12︷ ︸︸ ︷

00 · · · 00

n
12︷ ︸︸ ︷

01 · · · 01

n
12︷ ︸︸ ︷

02 · · · 02

n
12︷ ︸︸ ︷

03 · · · 03

n
12︷ ︸︸ ︷

04 · · · 04

n
12︷ ︸︸ ︷

05 · · · 05

n
12︷ ︸︸ ︷

10 · · · 10

n
12︷ ︸︸ ︷

11 · · · 11
n
12︷ ︸︸ ︷

12 · · · 12

n
12︷ ︸︸ ︷

13 · · · 13

n
12︷ ︸︸ ︷

14 · · · 14

n
12︷ ︸︸ ︷

15 · · · 15) ∈ Rn. Then dL(x, 00) = dL(x, 01) = dL(x, 02) = dL(x, 03) =

dL(x, 04) = dL(x, 05) = dL(x, 10) = dL(x, 11) = dL(x, 12) = dL(x, 13) = dL(x, 14) = dL(x, 15) =
n
24 + 2( n

24 ) + 3( n
24 ) + 2( n

24 ) + n
24 + n

24 + 2( n
24 ) + 3( n

24 ) + 4( n
24 ) + 3( n

24 ) + 2( n
24 ) = n. Thus

rL(C7) = rL(C11) ≥ n and hence, n ≤ rL(C7) = rL(C11) ≤ 2n.

In Code, C3 ∈ R, dL(x,C3) = min{dL(x, 00), dL(x, 03)} ≤ 2n−n+3n
2 = 2n. Then rL(C3) ≤ 2n.

If x = (

n
2︷ ︸︸ ︷

00 · · · 00

n
2︷ ︸︸ ︷

03 · · · 03) ∈ Rn, then dL(x, 00) = dL(x, 03) = 3(n4 ) = 3n
4 . Thus rL(C2) ≥ 3n

4 and so
3n
4 ≤ rL(C3) ≤ 2n.

The remaining part of proof is follows from the above computation with respect to code. ■

Theorem 3.2. In Euclidean weight for the code Cj ,1≤j≤7, prove the following

1. 19n
12 ≤ rE(C1) = rCE(C5) ≤ 4n,

2. 4n
3 ≤ rE(C2) = rCE(C4) ≤ 13n

3 ,

3. 9n
4 ≤ rE(C3) ≤ 5n,
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4. n
4 ≤ rE(C6) ≤ 7n,

5. 11n
6 ≤ rE(C7) = rCE(C11) ≤ 11n

3 ,

6. 19n
12 ≤ rE(C8) = rCE(C10) ≤ 4n and

7. 5n
2 ≤ rE(C9) ≤ 5n.

Proof. Use to theorem 3.1 and in Code Ci, i=1 to 11 with Euclidean weight. ■

Theorem 3.3. In Chinese Euclidean weight of code of Cj ,1≤j≤11, to find

1. 5n
6 ≤ rCE(C1) = rCE(C5) ≤ 17n

6 ,

2. n ≤ rCE(C2) = rCE(C4) ≤ 8n
3 ,

3. n ≤ rCE(C3) ≤ 5n
2 ,

4. n
4 ≤ rCE(C6) ≤ 4n,

5. rCE(C7) = rCE(C11) ≤ 5n
2 ,

6. 5n
4 ≤ rCE(C8) = rCE(C10) ≤ 7n

3 and

7. 5n
4 ≤ rCE(C9) ≤ 5n

2 .

Proof. In Code Ci, i=1 to 11 with Chinese Euclidean weight is apply to theorem 3.1. ■

Block repetition code in R

The block repetition code Cn over R is a R-additive code.

Let G = [

n1︷ ︸︸ ︷
0101 · · · 01

n2︷ ︸︸ ︷
0202 · · · 02

n3︷ ︸︸ ︷
0303 · · · 03

n4︷ ︸︸ ︷
0404 · · · 04

n5︷ ︸︸ ︷
0505 · · · 05

n6︷ ︸︸ ︷
1010 · · · 10

n7︷ ︸︸ ︷
1111 · · · 11

n8︷ ︸︸ ︷
1212 · · · 12

n9︷ ︸︸ ︷
1313 · · · 13

n10︷ ︸︸ ︷
1414 · · · 14

n11︷ ︸︸ ︷
1515 · · · 15] be a generator matrix with the parameters of Cn :

[n =
11∑
j=1

nj , 12, dL = min{
11∑
j=6

nj ,
7,8,10,11∑
j=1,2,4,5,

2nj}, dE = min{
11∑
j=6

nj ,
7,8,10,11∑
j=1,2,4,5,

4nj}, dCE =

min{
11∑
j=6

nj ,
7,8,10,11∑
j=1,2,4,5,

3nj}].

Theorem 3.4. Let Cn be the block repetition code in R with length is n. Then the covering radius of block
repetition code is

1. 9(n1+n3+n5)+8(n2+n4)+3n6+12(n7+n9+n11)+11(n8+n10)
12 ≤ rL(C

n) ≤
30(n1+n3+n5)+31n2+24n4+36n6+26(n7+n8)+24(n9+n11)+25n10

12 ,

2. 19(n1+n5+n8+n10)+16(n2+n4)+27n3+3n6+22(n7+n11)+30n9

12 ≤ rE(C
n) ≤

52n1+56(n2+n4)+66n3+50(n5+n8+n10)+60(n6+n9)+45n7+44n11

12 and

3. 10(n1+n5)+12(n2+n3)+3n6+30(n7+n11)+15(n8+n9+n10)
12 ≤ rCE(C

n) ≤
36(n1+n2+n3+n4+n5)+48n6+32n7+31(n8+n10)+30(n9+n11)

12 .

Proof. Using [9], Theorem 3.1, 3.2 and 3.3, thus

• 9(n1+n3+n5)+8(n2+n4)+3n6+12(n7+n9+n11)+11(n8+n10)
12 ≤ rL(C

n),
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• 19(n1+n5+n8+n10)+16(n2+n4)+27n3+3n6+22(n7+n11)+30n9

12 ≤ rE(C
n) and

• 10(n1+n5)+12(n2+n3)+3n6+30(n7+n11)+15(n8+n9+n10)
12 ≤ rCE(C

n).

Let x = x1x2x3x4x5x6x7x8x9x10x11 ∈ Rn with x1, x2, x3, x4, x5, x6, x7, x8, x9,

x10, x11 is (ai), (bi), (ci), (di), (ei), (fi), (gi), (hi), (ki), (li), (mi), i=0,1,2,3,4,5,6,7,8,9,10,11 respectively such

that n1 =
11∑
j=0

aj , n2 =
11∑
j=0

bj , n3 =
11∑
j=0

cj , n4 =
11∑
j=0

dj ,

n5 =
11∑
j=0

ej , n6 =
11∑
j=0

fj , n7 =
11∑
j=0

gj , n7 =
11∑
j=0

gj , n8 =
11∑
j=0

hj , n9 =
11∑
j=0

kj , n10 =
11∑
j=0

lj , n11 =
11∑
j=0

mj .

Thus, rL(Cn) ≤ 30(n1+n3+n5)+31n2+24n4+36n6+26(n7+n8)+24(n9+n11)+25n10

12 ,

rE(C
n) ≤ 52n1+56(n2+n4)+66n3+50(n5+n8+n10)+60(n6+n9)+45n7+44n11

12 and
rCE(C

n) ≤ 36(n1+n2+n3+n4+n5)+48n6+32n7+31(n8+n10)+30(n9+n11)
12 . ■
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