

Characterization of fuzzy number fuzzy measure using fuzzy integral

D. Rajan¹* and A. Beulah²

Abstract

By using the concepts of fuzzy number fuzzy measures [2] and fuzzy valued functions [3] a theory of fuzzy integrals is investigated. In this paper we have established the fuzzy version of Generalised monotone Convergence theorem and generalised Fatous lemma.

Keywords

Fuzzy number, Fuzzy-valued functions, Fuzzy integral, Fuzzy number fuzzy measure.

AMS Subject Classification

26E50, 03E72.

Article History: Received 18 March 2018; Accepted 18 June 2018

©2018 MJM.

Contents

1	Introduction	585
2	Definitions and Properties	585
3	Convergence theorems	586
	References	587

1. Introduction

In this paper [2], we have introduced a concept of fuzzy number fuzzy measures, defined the fuzzy integral of a function with respect to a fuzzy number fuzzy measure and shown some properties and generalized convergence theorems. It is well-known that a fuzzy-valued function [3, 4] is an extension of a function (point-valued), and the fuzzy integral of fuzzy-valued functions with respect fuzzy measures(point-valued) has been studied [3]; so it is natural to ask whether we can establish a theory about fuzzy integrals of fuzzy valued function with respect to fuzzy number fuzzy measures, the answer is just the paper's purpose. In fact, it is also a continued work of [3]. Since what we will discuss in the following is a generalization of works in [2, 3].

Throughout the paper, R^+ will denote the interval $[0, \infty]$, X is an arbitrary fixed set, \bar{A} is a fuzzy σ -algebra [1] formed by the fuzzy-subsets of X, (X,\bar{A}) is a fuzzy measurable space, $\mu: \bar{A} \to R^+$ is a fuzzy measure in Sugeno's sense, $\int_{\bar{A}} f d\mu$ is the resulting fuzzy integral [1]. Operation $E\{+,.., \uparrow \}$, F(x) is the set of all \bar{A} -measurable functions from x to R^+ , M(x)

denotes the set of all fuzzy measures, (R^+) denotes the set of interval-numbers, R^+ denote the set of fuzzy numbers [2, 3], $\bar{F}(x)$ denotes the set of all \bar{A} -measurable interval-valued functions [3]. $\bar{F}(x)$ denotes the set of all \bar{A} -measurable fuzzy valued functions [3]. $\bar{M}(x)$ denotes the set of interval number fuzzy measures [2], $\bar{M}(x)$ denotes the set of fuzzy Number fuzzy Measures [2], we will adopt the preliminaries in [2–4]. Here we omit them for brevity, for more details see [2–4].

2. Definitions and Properties

Definition 2.1. Let $\bar{f} \in \bar{F}(x)$, $A \in \mathcal{A}$, $\bar{\mu} \in \bar{M}(x)$. Then the fuzzy integral of f and A with respect to $\bar{\mu}$ is defined as $\int_A f d\mu = \left[\int_A f^- d\mu^- \int_A f^+ d\mu^+ \right]$ where $\bar{f}(x) = \inf \bar{f}(x)$ and $f^+(x) = \sup f^+(x)\bar{\mu}(x) = \inf \bar{\mu}(x)$ and $\mu\mu^+(x) = \sup^+(x)$.

Definition 2.2. Let $\bar{f} \in \bar{F}(x)$, $A \in \mathcal{A}$, $\bar{\mu} \in \bar{M}(x)$. Then the fuzzy integral of \bar{f} and A with respect to μ is defined as $\int_A f d\mu(r) = \sup\{\lambda \in (0,1] : r \in \int_A f d\mu\}$, where $f_{\lambda}x = \{r \in (0,1] : f(x)(r) > \lambda\}$ and μ_{λ} is similar.

Theorem 2.3. Let $\varepsilon \in \bar{f}\bar{F}(x)$, AA, $\bar{\mu}\varepsilon\bar{M}(x)$. Then $\varepsilon \int_A f^- d\mu^- R^+$ and the following equation holds:

$$\left(\int_{A} \bar{f} d\bar{\mu}\right)_{\lambda} = \int_{A} f_{\lambda} d\mu_{\lambda} \quad for \quad (0,1]. \tag{2.1}$$

Proof. The condition is sufficient. To prove that the condition is necessary it is enough to verity equation (2.1).

For a fixed $\lambda \in (0,1]$ let $\lambda_n = (1-1/n+1)\lambda$ then $\lambda_n \uparrow \lambda$.

^{1,2}Department of Mathematics, T.B.M.L College, Porayar-609307, Tamil Nadu, India.

^{*}Corresponding author: 1 dan_rajan@rediffmail.com; 2beulahsrk02@gmail.com

It is easy to see that

$$\bar{f}_{\lambda}(x) = \bigcap_{\lambda' < \lambda} \bar{f}_{\lambda'}(x) = \bigcap_{n=1}^{\infty} \bar{f}_{\lambda n}(x) = \lim_{n \to \infty} \bar{f}_{\lambda n}(x)$$
Then we have $\bar{f}_{\bar{\lambda}, n} \uparrow f_{\lambda} \uparrow f_{\lambda} \uparrow f_{\lambda} \uparrow f_{\lambda} \uparrow f_{\lambda}$.

Similarly $\mu_{\lambda n}^- \uparrow \mu_{\lambda}^-, \mu_{\lambda n}^+ \uparrow \mu_{\lambda}^+$.

We have $\int_A \bar{f}_{\bar{\lambda}n} d\bar{\mu}_n \uparrow \int_A \bar{f}_{\bar{\lambda}} d\bar{\mu}^+ \downarrow \int_A f^+ d\mu^+$.

Hence

$$\begin{split} \left(\int_{A} \bar{f} d\bar{\mu}\right)_{\lambda} &= \bigcap_{n=1}^{\infty} \int_{A} \bar{f}_{\bar{n}} \bar{d}\bar{\mu}_{n} \lambda \\ &= \lim_{n \to \infty} \int_{A} \bar{f}_{\bar{n}} \bar{d}\bar{\mu}_{n} \\ &= \int_{A} \bar{f}_{\bar{\lambda}} \bar{d}\bar{\mu}. \end{split}$$

Hence the theorem.

Theorem 2.4. Fuzzy integral of fuzzy valued functions with respect to fuzzy number fuzzy measures have the following property:

$$f_1 \leqslant f_2 \leqslant \mu_1 \mu_2 \Rightarrow \int_A f_1 d\mu_1 \leqslant \int_A f_2 d\mu_2.$$

Proof. $\lambda \in (0,1]$. Let $\lambda_n = (1-1/n+1)\lambda$ then $\lambda_n \uparrow \lambda$. It is easy to see that

$$(\bar{f}_1)(x) = \bigcap_{\lambda' < \lambda} \bar{f}_{1\lambda'}(x) = \bigcap_{n=1}^{\infty} \bar{f}_{1\lambda_n(x)} = \lim_{n \to \infty} \bar{f}_{1\lambda_n(x)}.$$

Then we have $(\bar{f}_1)_{\lambda n}^- \uparrow (\bar{f}_1)_{\lambda}^-, (\bar{f}_1)_{\lambda n}^+ \uparrow (\bar{f}_1)_{\lambda}^+$.

By generalised monotone convergence theorem

 $\int_{A} (\bar{f}_{1})_{\bar{\lambda}n} d\bar{\mu}_{1n} \uparrow \int_{A} \bar{f}_{1\bar{\lambda}} d\bar{\mu}_{1} \int_{A} (f_{1})_{\lambda n}^{+} d\mu_{1n}^{+} \downarrow \int_{A} f_{1}^{+} d\mu_{1}^{+}.$ Hence

$$\left(\int_{A} (\bar{f}_{1}) d\bar{\mu}_{1}\right) = \bigcap_{n=1}^{\infty} \int_{A}^{\ell} \bar{f}_{1})_{\bar{\lambda}n} d\bar{\mu}_{1n}$$

$$= \lim_{n \to \infty} \int_{A} \bar{f}_{1\bar{\lambda}n} d\bar{\mu}_{1n}$$

$$= \int_{A} \bar{f}_{1\bar{\lambda}n} d(\bar{\mu}_{1\lambda})$$

$$= \int_{A} f_{1} d\mu_{1}$$

$$\leqslant \int_{A} f_{2} d\mu_{2}.$$

Hence the proof.

Theorem 2.5. Fuzzy integral of fuzzy valued functions with respect to fuzzy number fuzzy measure $A \subset B \Rightarrow \int_A f d\mu \leqslant$ $\int_B f d\mu$.

Proof. For a fixed $\lambda \in (0,1]$ let $\lambda_n = (1-1/n+1)\lambda$ then $\lambda_n \uparrow \lambda$.

$$\bar{f}_{\lambda}(x) = \bigcap_{\lambda' < \lambda} \bar{f}_{\lambda'}(x) = \bigcap_{n=1}^{\infty} \bar{f}_{\lambda n}(x) = \lim_{n \to \infty} \bar{f}_{\lambda n}(x).$$

Then we have $\lambda \bar{f}_{\lambda n}^{-} \uparrow f_{\lambda}^{-}$, $\bar{f}_{\lambda n}^{+} \uparrow f_{\lambda}^{+}$.

By Generalised monotone convergence theorem

$$\int_{A} (\bar{f}_{1})_{\bar{\lambda}n} d\bar{\mu}_{n} \uparrow \int_{A} \bar{f}_{\bar{\lambda}} d\bar{\mu}$$

$$= \int_{A} f_{\lambda n}^{+} d\mu_{n}^{+} \downarrow \int_{A} f_{\lambda}^{+} d\mu^{+}$$

$$= \left(\int_{A} (f d\mu)_{\lambda}\right)$$

$$= \bigcap_{n=1}^{\infty} \int_{A} f_{\lambda n} d\mu_{n}$$

$$= \lim_{n \to \infty} \int_{A} f_{\lambda n} d\mu_{\lambda n}$$

$$= \int_{A} f_{\lambda} d\mu_{\lambda}$$

$$= \int_{A} \int_{\lambda \in (0,1]} \lambda f_{\lambda} d\mu_{\lambda}$$

$$= \int_{A} \bar{f} d\mu \leqslant \int_{B} \bar{f} d\mu \ (A \subset B).$$

Hence the theorem.

3. Convergence theorems

In this section we canvass the convergence of sequences of fuzzy integrals.

Theorem 3.1 (Generalised Monotone Convergence theorem).

Let
$$\{\bar{f}_n \ (n \geqslant 1), \bar{f}\} \subset \bar{F}(x), \{\mu_n \ (n \geqslant 1), \mu\} \subset \bar{M}(x).$$
Then

(i)
$$\bar{f}_{n}^{-} \uparrow f^{-} \text{ on } A, \lambda \bar{\mu}^{+} \uparrow \bar{\mu}$$

$$\Rightarrow \int_{A} f_{n} d\mu_{n} \uparrow \int_{A} f_{d} \mu$$
(ii) $\lambda \bar{f}^{+} \downarrow \bar{f}^{+} \text{ on } A, \mu_{n}^{+} \downarrow \mu^{+}$

$$\Rightarrow \int_{A} f_{n}^{+} d\mu_{n} \downarrow \int_{A} f_{d}^{+} \mu^{+}.$$
(3.1)

Proof. To prove (i) it is sufficient to verify equation (3.1). For $\lambda_k = (1 - 1/1 + k)\lambda$ then $\lambda_k \uparrow \lambda$. By the proof of Theorem 2.3 we obtain

$$\bar{f}_{\lambda} = \lim_{n \to \infty} \lim_{k \to \infty} \bar{f}_{n\lambda k}$$
$$\bar{\mu}_{\lambda} = \lim_{n \to \infty} \lim_{k \to \infty} \bar{\mu}_{n\lambda k}.$$

Then

$$\begin{split} &\left(\lim_{n\to\infty}\int_A f_n d\mu_n\right)_{\lambda_k} \\ &= \bigcap_{n=1}^\infty \lim_{n\to\infty} \left(\int_A \bar{f}_n d\bar{\mu}_n\right)_{\lambda_k} \\ &= \lim_{k\to\infty} \lim_{n\to\infty} \int_A (\bar{f}_n)_{\lambda_k} d(\mu_n)_{\lambda_k} \\ &= \int_A \lim_{k\to\infty} \lim_{n\to\infty} (\bar{f}_n)_{\lambda_k} d(\lim_{k\to\infty} \lim_{n\to\infty} (\mu_n)_{\lambda_k} \\ &= \int_A f_{\lambda} d\mu_{\lambda} \\ &= \int_A (f_d \mu). \end{split}$$

This proves (i) and (ii) is similar.

Theorem 3.2 (Generalised Fatous lemma). Let $\{\bar{f}_n \ (n \ge 1), \bar{f}\} \subset \bar{F}(x)$, $\{\mu_n \ (n \ge 1), \underline{\lim}\mu_n \overline{\lim}\mu_n \subset \bar{M}(x)$.

Then (i) $\int_A \underline{\lim}\bar{f}_n d\underline{\lim}\mu_n \le \underline{\lim}\int_A \bar{f} d\bar{\mu}_n$ ii) $\overline{\lim}\int_{\bar{A}}\bar{f} d\mu_n \le \int_A (\overline{\lim}\bar{f}_n) d(\overline{\lim}\mu_n)$.

Proof. To prove(i), for $\lambda \in (0,1]$ let $\lambda_k = (1-1/1+k)\lambda$ then $\lambda_k \uparrow \lambda$.

$$f_{\lambda} = \lim_{k \to \infty} \lim_{n \to \infty} \bar{f}_{n\lambda k}$$

$$\mu_{\lambda} = \lim_{k \to \infty} \lim_{n \to \infty} \bar{\mu}_{n\lambda k}.$$

Then

$$\left(\lim_{n\to\infty} \int_{A} f_{n} d\mu_{n}\right)_{\lambda}$$

$$= \bigcap_{k=1}^{\infty} \lim_{n\to\infty} \left(\int_{A} f_{n} d\mu_{n}\right)_{\lambda k}$$

$$= \int_{A} \lim_{k\to\infty} \lim_{n\to\infty} (f_{n})_{\lambda k} d\lim_{k\to\infty} \lim_{n\to\infty} (\mu_{n})_{\lambda k}$$

$$= \int_{A} \lim_{k\to\infty} \lim_{n\to\infty} \inf (f_{n})_{\lambda k} d\lim_{k\to\infty} \lim_{n\to\infty} \inf (\mu_{n})_{\lambda k}$$

$$= \int_{A} \lim_{k\to\infty} \lim_{n\to\infty} \left(\underline{\lim} f_{n}\right)_{\lambda k} d\lim_{k\to\infty} \lim_{n\to\infty} \underline{\lim} (\mu_{n})_{\lambda k}$$

$$\leq \underline{\lim} \int_{A} \lim_{k\to\infty} \lim_{n\to\infty} (f_{n})_{\lambda k} d\lim_{k\to\infty} \lim_{n\to\infty} (\mu_{n})_{\lambda k}$$

$$\leq \underline{\lim} \int_{A} \bigcup_{(0,1]} (f_{n})_{d} (\mu_{n})_{\lambda}$$

$$= \underline{\lim} \int_{A} f_{n} d\mu_{n}.$$

(ii)
$$\left(\lim_{n\to\infty} \int_A f_n d\mu_n\right)_{\lambda}$$

$$= \bigcap_{k=1}^{\infty} \lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}$$

$$= \lambda \lim_{k\to\infty} \lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}$$

$$= \lim_{k\to\infty} \lim_{n\to\infty} \left(\sup \int_A f_n d\mu_n\lambda\right)_{\lambda k}$$

$$= \lambda \lim_{k\to\infty} \lim_{n\to\infty} \left(\lim \int_A f_n d\mu_n\lambda\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\lim \int_A f_n d\mu_n\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}$$

$$\leq \overline{\lim} \int_A \lim_{n\to\infty} \left(\int_A f_n d\mu_n\right)_{\lambda k}$$

Hence the theorem.

References

- [1] Z. Qiao, on Fuzzy Measure and fuzzy integral on fuzzy sets, *Fuzzy Sets and Systems*, 37(1990), 77–92.
- ^[2] C. Wu, D. Zhang and C. Guo, Fuzzy number fuzzy Measures and Fuzzy integrals(1), *Fuzzy Sets and Systems*, 98(1998), 355–360.
- D. Zhang and Z. Wang, Fuzzy integrals of fuzzy valued function, *Fuzzy Sets and Systems*, 54(1993), 63–67.
- [4] D. Zhang and Z. Wang, Fuzzy Measures and integrals, *Fuzzy Systems Mathematics*, 7(1993), 71–80.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
