

https://doi.org/10.26637/MJM0603/0022

Hopf real hypersurface of a complex space form

H. G. Nagaraja^{1*} and Uppara Manjulamma²

Abstract

In this paper we study Hopf real hypersurface of complex space form. We give a characterization of projective and hyperbolic complex space form based on curvature conditions of real hypersurface of complex space form.

Keywords

Complex space form, Real hypersurface, Hopf hypersurface, structure Jacobi operator.

AMS Subject Classification 53D10, 53D15.

^{1,2} Department of Mathematics, Bangalore University, Bangalore-560056, India.
 *Corresponding author: ¹ hgnraj@yahoo.com; ²umanjula1@gmail.com
 Article History: Received 23 January 2018; Accepted 28 June 2018

©2018 MJM.

Contents

1	Introduction610
2	Preliminaries
3	Hopf hypersurface of a complex space form 611
4	Conclusion
	References

1. Introduction

An *n*- dimensional Kaehler manifold (M_n, J, g) of constant holomorphic sectional curvature c is called a complex space form and it is denoted by $M_n(c)$, where J is a complex structure of $M_n(c)$. Let M be a real hypersurface of $M_n(c)$. If $A\xi = \lambda \xi$ is satisfied, then the structure vector field ξ of M is a principal vector and M is then called a Hopf hypersurface of $M_n(c)$, where A denotes the shape operator of M and $\lambda = g(A\xi, \xi)$. Complex space form is a complex Euclidean space E^n , a complex projective space $P_n(c)$ or a complex hyperbolic space $H_n(c)$ if c = 0, c > 0 or c < 0. Real hypersurfaces of complex space forms were studied by many differential geometers such as Okumura [10], Ki and Suh [4], Montiel and Romero ([7], [6]), Maeda [5] and Niebergall-Ryan [8]. Particularly first time Takagi ([12], [13]) classified all homogeneous real hypersurfaces in $P_n(c)$ into six model spaces A₁, A₂, B, C, D and E. Later on Cecil and Ryan [2] studied real hypersurfaces in $P_n(c)$ on which $J\xi$ is principal. Afterwards Berndt [1] characterised all homogeneous real hypersurfaces in $H_n(c)$ with ξ as principal vector into four model spaces A_0 , A_1 , A_2 , and B. The class of Riemannian manifolds satisfying the condition $\nabla R = 0$ is a natural general-

ization of the class of manifolds of constant curvature, where ∇ is the Levi-Civita connection on Riemannian manifold and *R* is the corresponding curvature tensor. A Riemannian manifold is called semi-symmetric if $R \cdot R = 0$. A general study of semi-symmetric Riemannian manifolds was made by Szabo [11] and Tripathi [14]. The semi-symmetric hypersurfaces of Euclidean spaces were classified by Nomizu [9]. A Riemannian manifold is said to be Ricci-semi-symmetric [3] if the condition $R \cdot S = 0$ is satisfied, where S is the Ricci tensor. The aim of the present paper is to classify complex space forms when Hopf hypersurface of complex space form satisfying certain symmetry and semi-symmetry conditions. The scope of studying Hopf hypersurfaces is that, computations are more tractable because of the structure vector field being a principal vector. The paper is organised as follows: In section 2, we give a brief introduction of real hypersurfaces of complex space forms. In section 3, we give a characterization of projective, hyperbolic and Euclidean complex space forms based on the semi-symmetry, symmetry and Ricci recurrency conditions on Hopf hypersurface of the complex space form.

2. Preliminaries

Let $M_n(c)$ be an *n*-dimensional complex space form and M be a connected real hypersurface of a complex space form. Then M has an almost contact structure (ϕ, ξ, η, g) induced from the Kahler structure (J,g) of $M^n(c)$. In an almost contact metric manifold (M, ϕ, ξ, η, g) , the structure tensors satisfy the following:

$$\phi^2 X = -X + \eta(X)\xi, \ g(\phi X, \phi Y) = -g(X,Y), \ \phi \xi = 0,$$

 $\eta(\phi X) = 0, \ \eta(\xi) = 1.$

(2.1)

From the parallelism of J, we get

$$(\nabla_X \phi) Y = \eta(Y) A X - g(A X, Y) \xi, \qquad (2.2)$$

$$\nabla_X \xi = \phi A X. \tag{2.3}$$

Let *R* be the curvature tensor of *M*. Then we have following equations of Gauss and Codazzi:

$$R(X,Y)Z = \frac{c}{4} \left[g(Y,Z)X - g(X,Z)Y + g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y - 2g(\phi X,Y)\phi Z \right] + g(AY,Z)AX - g(AX,Z)AY,$$

$$(2.4)$$

$$(\nabla_X A)Y - (\nabla_Y A)X = \frac{c}{4} \left[\eta(X)\phi Y - \eta(Y)\phi X - 2g(\phi X, Y)\xi \right].$$
(2.5)

From the Gauss equation (2.4), we have the following:

$$R(X,Y)\xi = \frac{c}{4} \big[\eta(Y)X - \eta(X)Y\big] + \lambda \big[\eta(Y)AX - \eta(X)AY\big],$$
(2.6)

$$S(Y,Z) = \frac{c}{4} \left[(2n+1)g(Y,Z) \right] + hg(AY,Z) - g(AY,AZ), \quad (2.7)$$

$$QY = \frac{c}{4} \left[(2n+1)Y \right] + hAY - A^2Y,$$
(2.8)

where *Q* is the Ricci operator defined by g(QX,Y) = S(X,Y). From (2.7), the scalar curvature *r* of *M* is given by

$$r = \frac{c}{4} \left[(2n)^2 - 1 \right] + h^2 - 2n + 1.$$
(2.9)

From the Gauss equation (2.4), the structure Jacobi operator R_{ξ} is given by

$$R_{\xi}X = R(X,\xi)\xi = \frac{c}{4} \left[X - \eta(X)\xi \right] + \eta(A\xi)AX - \eta(AX)A\xi.$$
(2.10)

A Riemannian manifold is called locally symmetric if its curvature tensor *R* is parallel i.e., $\nabla R = 0$, where ∇ denotes the Levi-civita connection. As a proper generalization of locally symmetric manifold the notion of semi-symmetric manifold [11] was defined by

$$(R(U,W) \cdot R)(X,Y)Z = 0.$$
 (2.11)

A 3-dimensional Riemannian manifold in which *R* satisfies the condition

 $R(\xi, X) \cdot S = 0 \tag{2.12}$

is called ξ -Ricci semi-symmetric manifold. The Ricci tensor of the Riemannian manifold is said to be cyclic-parallel if it satisfies

$$\sum \nabla S(X,Y,Z) = (\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y) = 0.$$
(2.13)

for any vector fields X, Y and Z, where \sum denotes the cyclic sum.

Definition 2.1. *The hypersurface* M *is totally* η *- umbilical if* $AX = \alpha X + \beta \eta(X) \xi$, where α and β are constants.

From this definition, we have

$$(\nabla_X A)Z = \beta(\nabla_X \eta)Z\xi + \beta\eta(Z)\nabla_X\xi.$$
(2.14)

3. Hopf hypersurface of a complex space form

Let *M* be a Hopf hypersurface of a complex space form $M^n(c)$ and $\{e_i\}$ be an orthonormal basis of the tangent space at each point of the manifold. Then $A\xi = \lambda \xi$, $\lambda = g(A\xi, \xi)$. Replacing *Y* by *AY* in (2.7), we get

$$S(AY,Z) = \frac{c}{4} \left[(2n+1)g(AY,Z) \right] + hg(A^2Y,Z) - g(A^2Y,AZ).$$
(3.1)

We now prove the following:

Theorem 3.1. Let M be a Hopf hypersurface of a complex space form $M^n(c)$ satisfying $R \cdot R = 0$. Then $M^n(c)$ is a complex hyperbolic space.

Proof. Suppose (2.11) holds in *M*. Then

$$\frac{R(U,\xi)R(X,Y)Z - R(R(U,\xi)X,Y)Z}{-R(X,R(U,\xi)Y)Z - R(X,Y)R(U,\xi)Z = 0.}$$
(3.2)

If $A\xi = \lambda \xi$, taking $Y = Z = \xi$ in (3.2) and using (2.4) in (3.2), we get

$$\begin{bmatrix} \frac{c^2}{8} + c\lambda^2 + \lambda^4 \end{bmatrix} \eta(X)\eta(U) + \begin{bmatrix} \frac{c\lambda}{4} + 2\lambda^3 \end{bmatrix} \eta(X)\eta(AU) - \frac{c\lambda}{4}\eta(U)\eta(AX) - \lambda^2\eta(AU)\eta(AX) = 0.$$
(3.3)

Taking $X = U = \xi$ in(3.3), we have

$$16\lambda^4 + 8c\lambda^2 + c^2 = 0. (3.4)$$

From (3.4), we obtain

$$c = -4\lambda^2$$
.

Theorem 3.2. Let M be a ξ -Ricci semi symmetric Hopf hypersurface of a complex space form $M_n(c)$ with trace $A = \lambda$, then complex space form $M_n(c)$ is a projective space.

Proof. Suppose $R(\xi, Y) \cdot S = 0$ holds in *M*. Then from equation (2.12), we have

$$S(R(\xi, X)Y, Z) + S(Y, R(\xi, X)Z) = 0.$$
 (3.5)

Taking $Z = \xi$ in (3.5) and using (2.4), we get

$$\frac{c}{4}S(X,Y) + \lambda S(AX,Y) = \left[\frac{(2n+1)c}{4} + \lambda h\right]$$
$$\left[\frac{c}{4}g(X,Y) + \lambda g(AX,Y) + \lambda^2 \eta(X)\eta(Y)\right]$$
$$-\lambda^2 \left[\frac{c}{4}g(X,Y) + \lambda g(AX,Y) - \eta(A^2X)\eta(Y)\right]$$
$$-\left[\frac{nc\lambda}{4} + \lambda^2 h\right]\eta(AX)\eta(Y) - \left[\frac{c\lambda}{4} + \lambda^3\right]\eta(X)\eta(AY).$$
(3.6)

Putting $X = Y = \xi$ in(3.6) and using (2.7), we have

$$16\lambda^4 - 16\lambda^3h - 2\lambda^2nc - 2\lambda hc + \lambda hc^2 = 0.$$
 (3.7)

For $h = \lambda$, from (3.7), we obtain

$$c = 2(n+1).$$

Theorem 3.3. Let M be a totally η - umbilical real hypersurface of a non flat complex space form $M_n(c)$. Then Ricci tensor in M is cyclic-parallel if and only if trA is a constant.

Proof. Differentiating the equation(2.7) covariantly with respect to X, we have

$$(\nabla_X S)(Y,Z) = \frac{(2n+1)c}{4} (\nabla_X g)(Y,Z) + (\nabla_X h)g(AY,Z) + hg((\nabla_X A)Y,Z) - g((\nabla_X A)Y,AZ) - g(AY,(\nabla_X A)Z).$$
(3.8)

Writing two more equations by cyclic permutation of X, Y, Z in the above equation and adding, we get from(2.13) the following.

$$\begin{aligned} (\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y) &= \\ (\nabla_X h)g(AY,Z) + (\nabla_Y h)g(AZ,X) + (\nabla_Z h)g(AX,Y) \\ &+ h \big[g((\nabla_X A)Y,Z) + g((\nabla_Y A)Z,X) + g((\nabla_Z A)X,Y) \big] \\ &- g((\nabla_X A)Y,AZ) - g(AY,(\nabla_X A)Z) - g((\nabla_Y A)Z,AX) \\ &- g(AZ,(\nabla_Y A)X) - g((\nabla_Z A)X,AY) - g(AX,(\nabla_Z A)Y). \end{aligned}$$

$$(3.9)$$

Suppose the Ricci tensor in M is cyclic parallel. Then LHS and hence RHS of (3.9) is zero. Substituting (2.3), (2.4) in

(3.9), letting $Y = Z = \{e_i\}$, and summing over i, $1 \le i \le n$, we get

$$(Xh)h + 2(AX)(h) = 0, (3.10)$$

$$h(Xh) + 2\alpha(Xh) + 2\beta\eta(X)(\xi h) = 0.$$
 (3.11)

Replacing X by ξ in above equation, we get either $h = -2(\alpha + \beta)$ or $(\xi h) = 0$. If $(\xi h) = 0$ in (3.11) then we get Xh = 0, provided $h \neq -2\lambda$. In either case h is a constant.

Conversely, suppose $h = -2(\alpha + \beta)$ or any other constant. Then from (3.9), we get

$$\begin{aligned} (\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y) &= \\ h \Big[g((\nabla_X A)Y,Z) + g((\nabla_Y A)Z,X) + g((\nabla_Z A)X,Y) \Big] \\ - g((\nabla_X A)Y,AZ) - g(AY,(\nabla_X A)Z) - g((\nabla_Y A)Z,AX) \\ - g(AZ,(\nabla_Y A)X) - g((\nabla_Z A)X,AY) - g(AX,(\nabla_Z A)Y. \end{aligned}$$

$$(3.12)$$

Using (2.4) in (3.12), we obtain

$$(\nabla_X S)(Y,Z) + (\nabla_Y S)(Z,X) + (\nabla_Z S)(X,Y) = 0.$$
 (3.13)

Definition 3.4. A complex space form is said to be a ϕ -recurrent manifold if there exists a non-zero 1-form α such that

$$\phi^2((\nabla_X R)(Y,Z)W) = \alpha(X)R(Y,Z)W, \qquad X,Y,Z,W \in TM.$$
(3.14)

Theorem 3.5. Let M be a totally η -umbilical ϕ -recurrent hypersurface of a complex space form $M^n(c)$ with h = trA. If $A\xi = \lambda \xi$ then $M^n(c)$ is (i) Euclidean (c = 0) if $h = \lambda$, (ii) projective (c > 0) if $h < \lambda$, (iii) hyperbolic(c < 0) if $h > \lambda$.

Proof. Using (2.1) in (3.14), we have

$$-((\nabla_X R)(Y,Z)W) + \eta((\nabla_X R)(Y,Z)W)\xi = \alpha(X)R(Y,Z)W.$$
(3.15)

Using (2.2), (2.3) and (2.4) in (3.15), we get

$$\begin{split} & \frac{c}{4} \Big[-g(AX,W)\eta(Z)\phi Y + g(AX,Z)\eta(W)\phi Y \\ & -g(\phi Z,W)\eta(Y)AX + g(\phi Z,W)g(AX,Y)\xi \\ & +g(AX,W)\eta(Y)\phi Z - g(AX,Y)\eta(W)\phi Z \\ & +g(\phi Y,W)\eta(Z)AX - g(\phi Y,W)g(AX,Z)\xi \\ & +2g(AX,Z)\eta(Y)\phi W - 2g(AX,Y)\eta(Z)\phi W \\ & +g(\phi Y,Z)\eta(W)AX - g(\phi Y,Z)g(AX,W)\xi \\ & +g(\phi Z,W)\eta(Y)\eta(AX)\xi - g(\phi Z,W)g(AX,Y)\xi \\ & -g(\phi Y,W)\eta(Z)\eta(AX)\xi + g(\phi Y,Z)g(AX,W)\xi \Big] \\ & -g(\phi Y,Z)\eta(W)\eta(AX)\xi + g(\phi Y,Z)g(AX,W)\xi \Big] \\ & -\beta g(\phi AX,Z)\eta(W)AY - \beta g(\phi AX,W)\eta(Z)AY \\ & -\beta g(AZ,W)g(\phi AX,Y) - \beta g(AZ,W)\eta(Y)\phi AX \\ & +\beta g(\phi AX,Y)\eta(W)AZ + \beta g(\phi AX,W)\eta(Y)AZ \\ & +\beta g(AX,Y)\eta(W)\eta(AY) + \beta g(\phi AX,W)\eta(Z) \phi AX \\ & +\beta g(\phi AX,Z)\eta(W)\eta(AY) + \beta g(\phi AX,W)\eta(Z) \\ & \eta(AY)\xi + \beta g(AZ,W)g(\phi AX,Y)\xi - \beta g(\phi AX,Y) \\ & \eta(W)\eta(AZ)\xi - \beta g(\phi AX,W)\eta(Y)\eta(AZ)\xi \\ & -\beta g(AY,W)g(\phi AX,Z)\xi = \alpha(X)R(Y,Z)W. \end{split}$$

Letting $W = Z = \xi$ in (3.16) and using (2.4), we get

$$\alpha(X)\left[\frac{c}{4}Y + \lambda AY - (\frac{c}{4} + \lambda^2)\eta(Y)\xi\right] = 0.$$
(3.17)

If $\alpha(X) \neq 0$, then contracting (3.17) with respect to *U* letting $Y = U = \{e_i\}$, and summing over i, $1 \leq i \leq n$, we obtain

$$c = \frac{2\lambda(\lambda - h)}{n - 1}.$$

Theorem 3.6. Let M be a real hypersurface of a complex space form $M_n(c)$, where the structure Jacobi operator R_{ξ} is of Lie-Codazzi type. Then $M_n(c)$ is a (i) complex Euclidean space if $\lambda = 1$, (ii) complex projective space if $\lambda > 1$, (iii) complex hyperbolic space if $0 < \lambda < 1$.

Proof. Suppose that

$$\begin{split} (L_X R_{\xi})(Y) &- (L_Y R_{\xi})(X) = (\xi \lambda) AY + \lambda \nabla_{\xi} AY \\ &- \eta (\nabla_{\xi} AY) \lambda \xi - \lambda \nabla_{AY} \xi - 2\lambda \nabla_{\xi} Y + 2\eta (A \nabla_{\xi} Y) \lambda \xi \\ &+ 2\lambda A \phi AY - 2\eta (A \phi AY) \lambda \xi + \frac{c}{4} \phi AY - \frac{c}{4} \nabla_{\xi} Y. \end{split}$$
(3.18)

Contracting $(L_X R_{\xi})(Y) - (L_Y R_{\xi})(X) = 0$ with ξ , we have

$$\left[2\lambda^2 - 2\lambda - \frac{c}{4}\right]\eta(\nabla_{\xi}Y) = 0. \tag{3.19}$$

Thus, we obtain

$$c = 8\lambda(\lambda - 1).$$

4. Conclusion

When a Hopf real hypersurface M^{n-1} of a complex space form $M^n(c)$ is semi-symmetric, then c < 0, but when it is Ricci-symmetric with $traceA = \lambda$ then c > 0. When M^{n-1} is totally η - umbilical, Ricci tensor is cyclic paralle. Further it is shown that $M^n(c)$ is projective, Euclidean and hyperbolic according as $traceA = \lambda$ (or) $traceA < \lambda$ (or) $traceA > \lambda$.

References

- J. Berndt, *Real hypersurfaces with constant principal curvatures in complex hyperbolic space*, J. Reine Angew. Math. 395 (1980), 132-141.
- [2] T. E. Cecil and P. J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans Amer. Math. Soc. 269 (1982), 481-499.
- [3] F. Defever, *Ricci Semi-Symmetric hypersurfaces*, Balkan J of Geom and Its Appl 5 (2000), 81-91.
- [4] U-H. Ki and Y. J. Suh, On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32(1990), 207-221.
- ^[5] Y. Maeda, *On real hypersurfaces of a complex projective space*, J. Math. Soc. Japan 28 (1976), 529-540.
- [6] S. Montiel, *Real hypersurfaces of a complex hyperbolic space*, J. Math. Soc. Japan 37 (1985), 515-535.
- [7] S. Montiel and Romero, On some real hypersurfaces of a complex hyperbolic space, Geom. Dedicata. 20(1986),245-261.
- [8] R. Niebergall and P. J. Ryan, *Real hypersurfaces in complex space forms, tight and taut submanifolds* (eds. T. E. Cecil and S. S. Chern), Math. Sci. Res. Inst. Publ.32(1997), Cambridge Univ. Press, 233-305.
- [9] Nomizu, On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. J. 20 (1986), 46-59.
- [10] M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1975), 355-364.
- [11] Z. Szabo, *Structure theorems on Riemannian spaces satisfying* R(X,Y).R = 0, the local version, J.Differential Geom. 17 (1982), 531-582.
- [12] R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 10 (1973), 495-506.
- [13] R. Takagi, *Real hypersurfaces in complex projective space with constant principal curvatures*, J. Math. Soc. Japan, 27 (1975), 43-53.
- ^[14] M. M. Tripathi, On a semi-symmetric metric connection in a Kenmotsu manifold, J. Pure Math. 16(1999), 67-71.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******