

https://doi.org/10.26637/MJM0603/0025

Doubly connected geodetic number of graphs

K.L. Bhavyavenu^{1*} and Venkanagouda M. Goudar²

Abstract

In this paper, we investigate the results on doubly connected geodetic number of a simple graph *G*, shadow distance graph and corona of two graphs. Further we verify how doubly connected geodetic number is affected by adding a pendant vertex.

Keywords

Corona, Geodetic number, shadow distance graphs, Vertex covering number.

AMS Subject Classification

10C75, 10C10, 10C12.

¹*Research Scholar, Sri Siddhartha Academy of Higher Education, Tumkur-572107, Karnataka, India.* ²*Sri Siddhartha Academy of Higher Education, Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur-572105, Karnataka, India.*

***Corresponding author**: 1*bhavyakl29@gmail.com; ²vmgouda@gmail.com **Article History**: Received **22** April **2018**; Accepted **05** August **2018** c 2018 MJM.

Contents

1. Introduction

Let $I(u, v)$ be the set of all vertices lying on some $u - v$ geodesic of *G* and for a nonempty subset *S* of $V(G)$, $I[S] =$ $∪_{u,v\in S}$ *I*(*u*,*v*). The set *S* of vertices of *G* is called a geodetic set in *G* if $I[S] = V(G)$ and a geodetic set of minimum cardinality is a minimum geodetic set in *G* is called the geodetic number $g(G)$ was studied in [2].

Nonsplit geodetic number of a graph was studied by Tejaswini, Venkanagouda M Goudar in [6]. Venkanagouda M Goudar, et al., [7] introduced the concept of strong nonsplit geodetic number of a graph. The connected geodetic number was introduced by Santhakumaran, et al., in [5].

A set $S \subseteq V$ in a graph G is a doubly connected geodetic set [*DCGS*] if *S* is a geodetic set and induced subgraphs $\langle S \rangle$ and $\langle V - S \rangle$ are both connected. The minimum cardinality of a doubly connected geodetic set and it is denoted by $g_{dc}(G)$ is called doubly connected geodetic number of a *G*. A doubly connected geodetic set of cardinality $g_{dc}(G)$ is called $g_{dc}(G)$ set and it was introduced by Bhavyavenu and Venkanagouda M Goudar[1]. To illustrate this concepts, consider the following examples:

Example 1.1. We depicted a graph *G* given in Figure 1, $S_1 = \{v_1, v_2, v_3, v_4,$

 v_5 } is a *g*_{*dc}*-set so that $g_{dc}(G) = 5$. Also $S_2 = \{v_3, v_4, v_5, v_6, v_7\}$ </sub> is another *gdc*-set of *G* is as shown in Figure 1.

Figure 1. *G*

For any undefined term in this paper, see [2,3,4,10].

The following theorems are used in the sequel.

Theorem 1.1. *[\[2\]](#page-5-3) For any cycle C_n of order* $n \geq 3$ *,*

$$
g(C_n) = \begin{cases} 2 & \text{if } n \text{ is even,} \\ 3 & \text{if } n \text{ is odd.} \end{cases}
$$

Theorem 1.2. *[\[2\]](#page-5-3) Every geodetic set of a graph contains its extreme vertices.*

Theorem 1.3. *[\[2\]](#page-5-3) For integers* $r, s \geq 2$, $g(K_{r,s}) = min\{r, s, 4\}.$

Theorem 1.4. *[\[3\]](#page-5-4) For any cycle C_n of order* $n \geq 3$ *,*

$$
\alpha_o(C_n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Theorem 1.5. *[\[3\]](#page-5-4) For any cycle C_n of order* $n \geq 3$ *,*

$$
\alpha_1(C_n) = \begin{cases} \frac{n}{2} & \text{if } n \text{ is even,} \\ \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}
$$

Theorem 1.6. *[\[6\]](#page-5-5) For any cycle C_n of order* $n \geq 3$ *,*

$$
g_{ns}(C_n) = \begin{cases} \frac{n}{2} + 1 & \text{if } n \text{ is even,} \\ \lfloor \frac{n}{2} \rfloor + 2 & \text{if } n \text{ is odd.} \end{cases}
$$

2. Main results

Theorem 2.1. *For the wheel* $W_n = K_1 + C_{n-1}$, $n \ge 5$, $g_{dc}(W_n) =$ *n*−2*.*

Proof. Let $W_n = K_1 + C_{n-1}$ and let $V(W_n) = \{x, v_1, \ldots v_{n-1}\},$ Let $P = \{x, v_{n-1}\}\)$ be the set and $S_1 = V(W_n) - P$ be the doubly connected geodetic set such that the induced subgraphs $< S_1 >$ and $< V - S_1 >$ are connected. Hence $|S_1| = n - 2$. Therefore $g_{dc}(W_n) = n - 2$. \Box

Corollary 2.2. *For any wheel* W_n $n \geq 4$, $g_{dc}(G) = n - d$, *where d is the diameter of wheel.*

Proof. Since the diameter of wheel is 2, hence it follows by the Theorem 2.1, that $g_{dc}(G) = n - d$. \Box

Theorem 2.3. *Let Kr*,*^s be the complete bipartite graph, such that* $r \ge 2$ *and* $s \ge 3$ *. Then* $g_{dc}(K_{rs}) = 4$ *.*

Proof. Let $G = K_{r,s}$ such that $X = \{x_1, x_2, \ldots x_r\}$ and $Y =$ $\{y_1, y_2, \ldots, y_r\}$ are the partite set of G and $V = X \cup Y$. Let $S = \{x_i, x_j, y_k, y_l\}$ for some $1 \le i, j \le r, 1 \le k, l \le s$, be the doubly connected geodetic set such that both induced subgraphs $\langle S \rangle$ and $\langle V - S \rangle$ are connected. Hence S is a doubly connected geodetic set. Therefore $g_{dc}(K_{rs}) = 4$. \Box

Corollary 2.4. *For any complete bipartite graph* $K_{r,s}$ *, r,s* \geq 4*,* $g_{dc}(K_{r,s}) = d + 2$, where *d* is *a* diameter.

Proof. For any complete bipartite graph, the diameter is 2. Hence the proof follows from the Theorem 2.3. \Box

Corollary 2.5. *For any complete tripartite graph* $K_{r,s,t}$, $r, s, t \geq$ 3*,*

$$
g_{dc}(K_{r,s,t})=4.
$$

Corollary 2.6. *For any connected graph G*, $g(G) \leq g_c(G) \leq$ $g_{dc}(G)$.

Theorem 2.7. *For any cycle* C_n *with* $n \geq 4$, $g_{dc}(C_n) = g_c(C_n)$ *.*

Proof. Let *Cⁿ* be a cycle. We consider the two cases.

Case(i) Suppose *n* is even, $n = 2p$. Let $S = \{v_1, v_2, ... v_{p+1}\}$ be a connected geodetic set of C_n such that $\lt S$ is connected and observed that $\langle V(C_n) - S \rangle$ is also connected. Hence $g_c(C_n) = g_{dc}(C_n).$

Case(ii) Suppose *n* is odd, $n = 2p + 1$. Let $S = \{v_1, v_2, \ldots v_{p+1}, v_{p+2}\}$ be a connected geodetic set of C_n . So that $\lt S$ is connected and also observed that $V(C_n) - S >$ is also connected. Hence $g_c(C_n) = g_{dc}(C_n)$. Clearly $g_c(C_n) = g_{dc}(C_n)$. П

Theorem 2.8. *For any cycle* C_n , $g_{ns}(C_n) = g_{dc}(C_n)$ *.*

Proof. Let C_n be a cycle. We discuss the two cases.

Case(i) Suppose *n* is even, $n = 2p$. Let $S = \{v_1, v_2, ... v_{p+1}\}$ be a nonsplit geodetic set of C_n such that $\langle V(C_n) - S \rangle$ is connected and observed that $\langle S \rangle$ is also connected, which is a doubly connected geodetic set. Hence $g_{ns}(C_n) = g_{dc}(C_n)$.

r tooj. Let $w_n = k_1 + c_{n-1}$ and let $v(w_n) = \{x, v_1, \ldots, v_{n-1}\}\$, **Case(ii)** Suppose *n* is odd, $n = 2p + 1$.
where $deg(x) = n - 1 > 3$ and $deg(v_i) = 3$ for all $i \in \{1, 2, \ldots, n-1\}\$ Let $S = \{v_1, v_2, \ldots, v_{n-1}, v_n\}$ be a nonsplit Let $S = \{v_1, v_2, \ldots v_{p+1}, v_{p+2}\}$ be a nonsplit geodetic set of C_n so that $\langle V(C_n) - S \rangle$ is connected and observed that $\langle S \rangle$ is also connected. So that the set *S* itself forms the minimum doubly connected geodetic set. Hence $g_{ns}(C_n) = g_{dc}(C_n)$. Clearly $g_{ns}(C_n) = g_{dc}(C_n)$. П

Corollary 2.9. *For cycle* C_n *, n* \geq 4*,* $g_{dc}(C_n) = \alpha_0(C_n) + 1$ *.*

In the following results we show that how the doubly connected geodetic number is affected by removing the edges of *Kn*.

Theorem 2.10. *If* $G = K_n - e$ *is a graph obtained from* K_n *by removing an edge e with* $e = \{v_i, v_j\}$ *,* $n \geq 5$ *, then* $g_{dc}(G) = 3$ *.*

Proof. Let $G = K_n - e$ be a graph with $e = \{v_i, v_j\}$. Clearly $S = \{v_i, v_j\}$ forms a strong non-split geodetic set. But $\langle S \rangle$ is not connected. Consider $S_1 = S \cup \{v_k\}$, where $\{v_k\}$ is the any vertex of *G* such that induced subgraphs $\langle S_1 \rangle$ and \langle $V - S_1$ > both are connected. Clearly S_1 is a doubly connected geodetic set. Thus $g_{dc}(K_n - e) = |S_1| = |S \cup \{v_k\}| = |S| + |\{v_k\}| = 3.$ $|\{v_k\}| = 3.$

Theorem 2.11. *If G* = *K*_{*n*} − { e_1, e_2 } *of order n* ≥ 5*, then*

$$
g_{dc}(G) = \begin{cases} 4 & when e_1, e_2 \text{ are adjacent,} \\ 3 & when e_1, e_2 \text{ are not adjacent.} \end{cases}
$$

Proof. Let $G = K_n - \{e_1, e_2\}$. We discuss the following cases.

Case(i) Suppose e_1 and e_2 are adjacent. Let $e_1 = xy$ and $e_2 = xz$ for some $x, y, z \in V(G)$ and they are extreme vertices. Clearly no two vertex set forms a geodetic set. Let $S = \{x, y, z\}$ be the nonsplit geodetic set with minimum cardinality. But the induced subgraph $\langle S \rangle$ is not connected. Consider S_1 = $S \cup \{u\}$, where $u \in V(G)$, be the doubly connected geodetic set of G such that induced subgraphs $\langle S_1 \rangle$ and $\langle V - \rangle$ *S*₁ > are connected. Hence $|S_1| = |S \cup \{u\}| = |S| + |\{u\}| = 4$. Therefore $g_{dc}(K_n - \{e_1, e_2\}) = 4$.

Case(ii) Suppose e_1 and e_2 are not adjacent. Let $e_1 = uv$ and $e_2 = xy$ for some $\{u, v, x, y\} \in V(G)$. Then $S = \{x, y\} = \{u, v\}$ is the nonsplit geodetic set with minimum cardinality. But < *S* > is not connected. Consider $S_1 = S \cup \{w\}$, where $w \in V(G)$, be the doubly connected geodetic set of G. Hence $|S_1|$ = $|S \cup \{w\}| = |S| + |\{w\}| = 3$. Therefore $g_{dc}(K_n - \{e_1, e_2\}) =$ 3. \Box

Theorem 2.12. *For a graph G, there is no doubly connected geodetic set if and only if G is one of the graph* P_n *or* K_n *or K*1,*^s . Where Pn, Kⁿ and K*1,*^s are the path, complete bipartite and star.*

Proof. Let $V(P_n) = \{v_1, v_2, ... v_n\}$ and $S = \{v_1, v_n\}$ be the nonsplit geodetic set but $\langle S \rangle$ is not connected. To make *S* connected, we required all the internal vertices of P_n . Clearly $g_{dc}(P_n) = n$ but $V - S = \{ \emptyset \}$, which is contradiction to our assumption. Therefore for path P_n there is no doubly connected geodetic set.

Let $V(K_n) = \{v_1, v_2, \ldots, v_n\}$ be the vertex set of K_n and $d(v_i, v_j) = 1$ in K_n . Therefore $S = V(K_n)$. Clearly the set *S* contains all the vertices of *Kⁿ* for the geodetic set, then $V - S = \{ \emptyset \}.$ Therefore there is no doubly connected geodetic set for *Kn*.

Let $V(K_{1,s}) = \{x, v_1, v_2, \dots v_s\}$ be the vertex set of $K_{1,s}$. consider the geodetic set $S = \{v_1, v_2, \dots v_s\}$, but $\langle S \rangle$ is not connected. To make *S* connected, we required internal vertex ${x}$. Consider $S_1 = \{x\}$ and $A = S \cup S_1 = S \cup \{x\}$ which contains all the vertices of $K_{1,s}$ that is $V - S = \{\emptyset\}$, which is contradiction to our assumption. Therefore for star $K_{1,s}$ there is no doubly connected geodetic set. \Box

3. Results on adding a pendant vertex

In the next theorem we show that how doubly connected geodetic number is affected by adding pendent vertices.

Theorem 3.1. Let $G = C_n$ be a cycle of order $n \geq 4$ and G' *be the graph obtained by adding a pendant edge* (*vⁱ* ,*u*) *with* $v_i \in G$, $u \notin G$, then

$$
g_{dc}(G') = \begin{cases} \frac{n}{2} + 2 & \text{if } n \text{ is even,} \\ \frac{n-1}{2} + 3 & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. Let $V(G) = \{v_1, v_2, v_3, \dots, v_n, v_1\}$ be the cycle with n vertices. If G' be the graph obtained from $G = C_n$ by adding a pendant edge (v_i, u) such that $u \notin G$ and for any $v_i \in G$. We have two cases.

Case(i) Suppose n is even. Then $S = \{u, v_j\}$ be a nonsplit geodetic set of G' , where v_j is the antipodal vertex of v_i . But the induced subgraph $\langle S \rangle$ is not connected. Consider S' $\{v_i, v_{i+1}, \ldots v_{j-1}\}\$ and let $S_1 = S \cup S'$ is a doubly connected geodetic set. Clearly induced subgraphs $\langle S_1 \rangle$ and $\langle V - \rangle$ $S_1 >$ are connected. Hence $|S_1| = |S| + |S'| = 2 + \frac{n}{2}$. Therefore $g_{dc}(G') = \frac{n}{2} + 2.$

Case(ii) Suppose n is odd. Then $S = \{u, v_j, v_{j+1}\}$ be a nonsplit geodetic set with minimum cardinality of G' , where v_j , v_{j+1} are the antipodal vertices of v_i . But $\lt S$ > is not connected. Consider $S' = \{v_i, v_{i+1}, \dots v_{j-1}\}$ and let $S_1 = S \cup S'$ is a doubly connected geodetic set. Clearly induced sub graphs $\langle S_1 \rangle$ and $\langle V - S_1 \rangle$ are connected. Hence $|S_1|$ = $|S| + |S'| = 3 + \frac{n-1}{2}$. Therefore $g_{dc}(G') = \frac{n-1}{2} + 3$. □

Theorem 3.2. Let $G = C_n$ be a cycle of order $n \geq 4$ and G' be *the graph obtained by adding k pendant edges* $\{(v_i, w_1), (v_i, w_2), (v_i, w_3), \ldots, (v_i, w_k)\}$ *to the cycle* C_n *with* $v_i \in$ *G* and $\{w_1, w_2, w_3, ... w_k\}$ ∉ *G* then,

$$
g_{dc}(G') = \begin{cases} \frac{n}{2} + 1 + k & \text{if } n \text{ is even,} \\ \frac{n-1}{2} + 2 + k & \text{if } n \text{ is odd.} \end{cases}
$$

Proof. Consider $V(G) = \{v_1, v_2, v_3, \dots v_n, v_1\}$ be the cycle with n vertices. If *G*^{\prime} be the graph obtained from $G = C_n$ by adding pendant edges $\{(v_i, w_1), (v_i, w_2), (v_i, w_3), ..., (v_i, w_k)\}$ such that $\{w_1, w_2, w_3, \ldots w_k\} \notin G$ and v_i is a single vertex of G. We discuss the following cases.

Case(i) Let *n* is even. Then $S = \{w_1, w_2, w_3, ... w_k \cup v_j\}$ be a geodetic set of G' , where $\{w_1, w_2, w_3, ... w_k\}$ are the k pendant vertices and v_j is the antipodal vertex of v_i . But the induced subgraph $\lt S$ is not connected. Consider S' = $\{v_i, v_{i+1}, \ldots, v_{j-1}\}$ and let $S_1 = S \cup S'$ is a doubly connected geodetic set. Clearly induced subgraphs $\langle S_1 \rangle$ and $\langle V - \rangle$ S_1 > are connected. Hence

$$
|S_1| = |S| + |S'|
$$

= |\{w_1, w_2, w_3, ... w_k \cup v_j\}| + |S'|
= |\{w_1, w_2, w_3, ... w_k\}| + |v_j| + |S'|
= k + 1 + \frac{n}{2}. Therefore g_{dc}(G') = \frac{n}{2} + k + 1.

Case(ii) Let *n* is odd. Then $S = \{w_1, w_2, w_3, ... w_k, v_j, v_{j+1}\}\$ be a geodetic set with minimum cardinality of G' , where $\{w_1, w_2, w_3, \ldots w_k\}$ are the *k* pendant vertices and v_j, v_{j+1} are the antipodal vertices of v_i . But the induced subgraph $\langle S \rangle$ is not connected. Consider $S' = \{v_i, v_{i+1}, \dots v_{j-1}\}$ and let $S_1 =$ *S*∪*S*['] is a doubly connected geodetic set. Clearly induced subgraphs $\langle S_1 \rangle$ and $\langle V - S_1 \rangle$ are connected. Hence $|S_1| = |S| + |S'|$

$$
= |\{w_1, w_2, w_3, ... w_k \cup v_j \cup v_{j+1}\}| + |S'|= |\{w_1, w_2, w_3, ... w_k\} + v_j + v_k| + |S'|= k + 1 + 1 + \frac{n-1}{2}= k + 2 + \frac{n-1}{2}. Therefore gdc(G') = \frac{n-1}{2} + k + 2. □
$$

Theorem 3.3. Let $G = C_n$ be a graph and G' obtained from G *by adding k pendent veritces* $\{u, v_1, v_2, v_3, \ldots, v_k\}$ *with* $v_1, v_2, \ldots, v_k \notin$ G and $u \in G$ then $g_{dc}(G') = \alpha_o(C_n) + 1 + k$.

Proof. Let C_n be the cycle of order $n \geq 4$. We have two cases.

Case(i) Let C_n be the cycle and it is even and $\alpha_o(c_n)$ be the vertex covering number. By Theorem 3.2, for even cycle $g_{dc}(G') = \frac{n}{2} + k + 1$. Also by Theorem 1.4, $\alpha_o(C_n) = \frac{n}{2}$. Therefore $g_{dc}(C_n) = \alpha_o(C_n) + k + 1$.

Case(ii) Let C_n be the cycle and it is odd and $\alpha_o(c_n)$ be the vertex covering number. By theorem 3.2, for odd cycle $g_{dc}(G') = \frac{n+1}{2} + k + 1$. Also by theorem 1.4, $\alpha_o(C_n) = \frac{n+1}{2}$, hence $g_{dc}(\overline{C_n}) = \alpha_o(C_n) + k + 1$.

In the next section, we obtain the doubly connected geodetic number on shadow distance graph.

4. Shadow distance graph

Definition 4.1.

Let D be the set of all distance between distinct pairs of vertices in G and let D^s (called the distance set) be a subset of D. The distance graph G denoted by D(*G*,*Ds*) *is the graph having the same vertex as that of G and two vertices u and v are adjacent in* $D(G, D_s)$ *whenever* $d(u, v) \in D_s$ *.*

The shadow distance graph of G, denoted by $D_{sd}(G, D_s)$ *is constructed from G with the following conditions:*

i) Consider two copies of G say G itself and G'

ii)*if* $u \in V(G)$ (first copy) then we denoted the corresponding $vertex as u' \in V(G')$ *(second copy)*

iii) The vertex set of $D_{sd}(G,D_s)$ is $V(G) \cup V(G')$

 i *v) The edge set of* $D_{sd}(G, D_s)$ *is* $E(G) \cup E(G') \cup E_{ds}$ *, where* E_{ds} *is the set of all edges between two distinct vertices* $u \in$ $V(G)$ *and* $v' \in V(G')$ *that satisfy the condition* $d(u, v) \in D_s$ *in G.*

The shadow distance graphs $D_{sd}(P_8, \{2\})$ and $D_{sd}(C_7, \{3\})$ are as shown in figure 2 and 3.

Figure 2. $D_{sd}(P_8, \{2\})$

Figure 3. $D_{sd}(C_7, \{3\})$

Theorem 4.2. *For* $n \geq 3$ *,*

$$
g_{dc}(D_{sd}(P_n,\{2\})) = \begin{cases} n+1 & \text{for } n=3, \\ n+2 & \text{for } n>3. \end{cases}
$$

Proof. Let $G = g_{dc}(D_{sd}(P_n, \{2\}))$ be the shadow distance graph. Let $V(G) = V_1 \cup V'_1$, where $V_1 = \{v_1, v_2, ... v_i / 1 \le i \le n\}$ *n*} be the vertex set of P_n and $V_1' = \{v_1', v_2', \dots v_i'/1 \le i \le n\}$ be the vertex set of P'_n . Then $|V(G)| = 2n$.

Case(i) For $n = 3$, $G = C_6$. By Theorem 3.7 it follows that $g_{dc}(G) = 4$. Hence $g_{dc}(D_{sd}(P_3, {2})) = n + 1$.

Case(ii) For $n > 3$. Consider $S = \{v_1, v_n, v'_1, v'_n\}$ be the geodetic set with minimum cordinality, but $\langle S \rangle$ is not connected. Consider $S_1 = S \cup \{v_2, v_3, \ldots v_{n-1}\}$ be the doubly connected geodetic set of *G*.

Suppose $v_i \in V(P_n)$ for $2 \le i \le n-1$ and $v_i \notin S_1$, then $\langle S_1 \rangle$ is disconnected. So that every vertices of P_n must exists in the set S_1 . For $v'_i \in V'(P_n)$, where v'_i is the end vertices of $V'(P_n)$ and $v'_i \notin S_1$ for *i*=1 or *n* then $\langle S_1 \rangle$ is not a geodetic set. So that end vertices of P'_n must exists in the set S_1 . There $f \circ g_{dc}(G) = |S_1| = |S \cup \{v_2, v_3, \ldots, v_{n-1}\}| = 4 + n - 2 = n + 2.$ Hence $g_{dc}(D_{sd}(P_n, \{2\})) = n + 2$. \Box

Corollary 4.3. *For n* \geq 4, $g_{dc}(D_{sd}(P_n, \{3\})) = n+2$.

Theorem 4.4. *For* $n \geq 4$ *,*

$$
g_{dc}(D_{sd}(C_n,\{2\})) = \begin{cases} 4 & \text{for } n=4,5\\ \frac{n}{2}+2 & \text{for } n=6,8\\ \frac{n+1}{2}+2 & \text{for } n=7,9\\ \frac{n+6}{2} & \text{for } n \ge 10 \text{ and } n \text{ is even} \\ \frac{n+9}{2} & \text{for } n \ge 11 \text{ and } n \text{ is odd.} \end{cases}
$$

Proof. Consider two copies of C_n namely C_n itself and C'_n . Let $\{u_1, u_2, \ldots, u_n\}$ be the vertices of first copy of C_n and $\{u'_1, u'_2, \ldots, u'_n\}$ be the vertices of second copy of C'_n . Let $G = D_{sd}(C_n, \{2\})$ be a shadow distance graph with $|V(G)| = |V(C_n) \cup V(C'_n)| = 2n$ and $|E(G)| = 4n$. We discuss the following cases.

Case(i) For $n = 4, 5$. The set $S = \{v_1, v_2, v_3, v'_1\}$ is a doubly connected geodetic set with minimum cardinality. Hence $g_{dc}(D_{sd}(C_n, \{2\})) = 4.$

Case(ii) For $n = 6, 8$. The geodetic set $S = \{v_1, v_{\frac{n}{2}}, v'_1, v'_{\frac{n}{2}}\},\$ but $\langle S \rangle$ is not connected, then *S* is not a doubly connected geodetic set. Now consider $S_1 = S \cup \{v_2, \dots, v_{\frac{n}{2}-1}\}\$ forms a *g*_{*dc}* − *set*. Therefore $g_{dc}(D_{sd}(C_n, \{2\})) = |S_1| = \frac{n}{2} + 2$.</sub>

Case(iii) For $n = 7, 9$. The geodetic set $S = \{v_1, v_{\frac{n+1}{2}}, v'_1, v'_{\frac{n+1}{2}}\}$, but $\langle S \rangle$ is not connected . Now consider $S_1 = S \cup \{v_2, ... v_{\frac{n-1}{2}}\}$ forms a $g_{dc} - set$. Therefore $g_{dc}(D_{sd}(C_n, \{2\})) = |S_1| = \frac{n+1}{2} + \frac{n+1}{2}$ 2.

Case(iv) For $n \geq 10$ and is even. Consider the set $S = \{v_1, v_2, \dots v_i, v'_1, v'_i/1 \le i \le \frac{n}{2} + 1\}$ is a *gdc* − *set* with minimum cardinality . Suppose for any vertex $v_j \in S$, $F = S - v_j$ is not a doubly connected geodetic set in *G*, because $\langle F \rangle$ or $\langle V - F \rangle$ are not connected. If v_j is an end vertex then it is not a geodetic set. Therefore $g_{dc}(D_{sd}(C_n,\{2\})) = |S| = \frac{n+6}{2}.$

Case(v) For $n \ge 11$ and is odd. Consider the set $S = \{v_1, v_{\frac{n+1}{2}}, \dots, v_{\frac{n+1}{n}}\}$ $v_{\frac{n+1}{2}+1}, v'_1, v'_{\frac{n+1}{2}}, v'_{\frac{n+1}{2}+1}$ is a nonsplit geodetic set. But $\langle S \rangle$ is not connected. Consider a set $S_1 = \{v_2, v_3, \dots v_{\frac{n+1}{2}-1}\}\$ are the vertices between v_1 and $v_{\frac{n+1}{2}+1}$. Then doubly connected geodetic set $A = S \cup S_1$. Therefore $g_{dc}(D_{sd}(C_n, \{2\})) = |A| =$ $|\mathbf{S} \cup \mathbf{S}_1| = |\mathbf{S}| + |\mathbf{S}_1| = 6 + \frac{n-3}{2} = \frac{n+9}{2}.$

Corollary 4.5. *For* $n \geq 8$,

$$
g_{dc}(D_{sd}(C_n,\{3\})) = \begin{cases} \frac{n+6}{2} & \text{for } n \text{ is even} \\ \frac{n+9}{2} & \text{for } n \text{ is odd.} \end{cases}
$$

In the next section, we obtain the doubly connected geodetic number on corona of two graphs.

5. Corona of two graphs

Definition 5.1. *Let G and H be two graphs and let n be the order of G. The corona product G*◦*H is defined as the graph obtained from G and H by taking one copy of G and n copies of H and then joining by an edge, all the vertices form the i th copy of H with the ith vertex of G.*

Theorem 5.2. *For the cycle* C_n *of order* $n \geq 4$, $g_{dc}(K_1 \circ C_n) =$ *n*−2*.*

Proof. Consider $H = K_1$ and $G = C_n$, $n > 3$. Let $u_1 \in V(K_1)$ and $v_i \in V(C_n)$, $1 \leq i \leq n$. For each v_i is the adjacent to the vertex u_1 , then $K_1 \circ C_n$ form the wheel. By the Theorem 2.2, we have $g_{dc}(W_n) = n - 2$. It follows that $g_{dc}(K_1 \circ C_n) =$ \Box *n*−2.

Theorem 5.3. *Let G be a connected graph of order n, such that* $\triangle(G) = n - 1$ *. Then* $g_{dc}(K_1 \circ G) = g(G) + 1$ *, where* $g(G)$ *is the geodetic number of G.*

Proof. Let $H = K_1 = \{u\}$ and $V(G) = \{v_1, v_2, v_3, \dots, v_n\}$ be the vertex set of *H* and *G* respectively, we have $\triangle(G) = n - 1$. Let $S = \{v_1, v_2, \ldots v_l/1 \leq l < n\}$ be the geodetic set of *G*. Consider $G_1 = H \circ G$ be the corona graph. It is easy to verify that *S* is the geodetic set of G_1 , but the induced subgraph $\langle S \rangle$ is not connected. Consider $S_1 = S \cup \{u\}$ be a doubly connected geodetic set so that induced subgraphs $\langle S \rangle$ and $\langle V - S \rangle$ are connected. Hence $|S_1| = |S \cup \{u\}| = |S| + 1$. Therefore $g_{dc}(G_1) = g(G) + 1.$ \Box

Theorem 5.4. *Let* P_{n_1} *and* P_{n_2} *be the paths of order* $n_1 \geq 2$ *,* $n_2 \geq 3$ *then* $g_{dc}(P_{n_1} \circ P_{n_2}) = n_1 + n_1 n_2 - 1$.

Proof. Let P_{n_1} : $v_1, v_2, \ldots v_{n_1}$ and P_{n_2} : $u_1, u_2, \ldots u_{n_2}$ are the vertices of P_{n_1} and P_{n_2} with $|V((P_{n_1} \circ P_{n_2}))| = n_1 + n_1 n_2$.

Case(i) If n_2 is odd, then $S = \{ \bigcup_{i=1}^{n_1} v_i \cup \{u_1, u_3, \dots u_{n_2}\}_{n_1 \text{times}} \}$ is a connected geodetic set but it is not a doubly connected geodetic set, because $\langle V(P_{n_1} \circ P_{n_2}) - S \rangle$ is not connected. To make $\langle V(P_{n_1} \circ P_{n_2}) - S \rangle$ connected, we consider $A = S \cup$ ${u_2, u_4, ... u_{n_2-1}}_{n_1 \text{ times}} - {u}$ where $u \in V(P_{n_2})$ which forms a doubly connected geodetic set of $P_{n_1} \circ P_{n_2}$ with minimum cardinality. Thus we have,

$$
g_{dc}(P_{n_1} \circ P_{n_2}) = |A|
$$

\n
$$
= |S| \{u_2, u_4, \dots u_{n_2-1}\} - \{u\}|
$$

\n
$$
= |S| + |\{u_2, u_4, \dots u_{n_2-1}\} - \{u\}|
$$

\n
$$
= |\{u_{i=1}^{n_1} v_i \cup \{u_1, u_3, \dots u_{n_2}\}_{n_1 \text{times}}\}| + |\{u_2, u_4, \dots u_{n_2-1}\}_{n_1 \text{times}} - \{u\}|
$$

\n
$$
= n_1 + \frac{n_1 n_2}{2} + \frac{n_1 n_2}{2} - 1
$$

\n
$$
g_{dc}(P_{n_1} \circ P_{n_2}) = n_1 + n_1 n_2 - 1.
$$

Case(ii) If n_2 is even, then $S = \{ \bigcup_{i=1}^{n_1} v_i \cup \{u_1, u_3, ..., u_{n_2-1}, u_{n_2}\}_{n_1 \text{times}} \}$ is a connected geodetic set but it is not a doubly connected geodetic set, because $\langle V(P_{n_1} \circ P_{n_2}) - S \rangle$ is not connected. To make $\langle V(P_{n_1} \circ P_{n_2}) - S \rangle$ P_{n_2}) – *S*) connected we consider $A = S \cup \{u_2, u_4, ... u_{n_2-2}\}_{n_1 \text{times}} - I$

 $\{u\}$ where $u \in V(P_{n_2})$ which forms a doubly connected geodetic set of $P_{n_1} \circ P_{n_2}$ with minimum cardinality. Thus we have, $g_{dc}(P_{n_1} \circ P_{n_2}) = |A|$ $=|S\cup \{u_2, u_4, ... u_{n_2-2}\} - \{u\}|$ $= |S| + |\{u_2, u_4, \ldots, u_{n-1}\} - \{u\}|$ $= |\{\bigcup_{i=1}^{n_1} v_i \cup \{u_1, u_3, ..., u_{n_2-1}, u_{n_2}\}\rangle_{n_1 \text{times}}\}|$ $+|\{u_2, u_4, ... u_{n_2-2}\}_{n_1 \text{ times}} - \{u\}|$ $=n_1 + \frac{n_1 n_2 + 1}{2} + \frac{n_1 n_2 - 1}{2} - 1.$ Therefore $g_{dc}(P_{n_1} \circ P_{n_2}) = n_1 + n_1 n_2 - 1$. \Box

Corollary 5.5. Let P_{n_1} and C_{n_2} are the path and cycle of order $n_1 \geq 2$, $n_2 \geq 4$, then $g_{dc}(P_{n_1} \circ C_{n_2}) = n_1 + n_1 n_2 - 1$.

Corollary 5.6. *Let* C_{n_1} *and* C_{n_2} *are the cycles of order* $n_1 \geq 3$ *,* $n_2 \geq 4$, then $g_{dc}(C_{n_1} \circ C_{n_2}) = n_1 + n_1 n_2 - 1$.

Corollary 5.7. *Let* C_{n_1} *and* C_{n_2} *are the cycles of order* $n_1 \geq 3$ *,* $n_2 \geq 4$, then $g_{dc}(C_{n_1} \circ C_{n_2}) = n_1 + n_1 n_2 - 1$.

6. Conclusion

In this paper, we discussed the doubly connected geodetic number of a graph. Also we obtained how doubly connected geodetic number is affected by adding a pendant vertex, corona and shadow distance graph.

Acknowledgment

We are very thankful to the referees for reading the paper and giving valuable suggestions.

References

- [1] K.L. Bhavyavenu and Venkanagouda M. Goudar, Doubly connected geodetic number on operations in Graphs, *Journal of Engineering and Applied Sciences*, 13(7)(2018), 4330–4335.
- [2] G. Chartrand, F. Harary and P. Zhang, On the geodetic number of a graph, *Networks*, 39(1)(2002), 1–6.
- [3] G. Chartrand and P. Zhang, *Introduction to Graph Theory* , Tata Mc-Graw Hill Pub. Co. Ltd, 2006.
- [4] F. Harary, *Graph theory*, Addition-Weseley, 1969.
- [5] A.P. Santhakumaran, P.Titus and J.John, On the connected geodetic number of a graph, *Journal of Combinatorial Mathematics and Combinatorial Computing*, 69(2009), 219–229.
- [6] K.M. Tejaswini and Venkanagouda M. Goudar, Non split geodetic number of a graph, *International Journal of Mathematical Combinatorics*, 2(2016), 109–120.
- [7] Venkanagouda M. Goudar, K.M. Tejaswini and Venkatesha, Strong Non-split geodetic number of a graph, *International Journal of Computer Application*, 5(2014), 171–183.
- [8] Venkanagouda M. Goudar, K.S. Ashalatha and Venkatesh, Split geodetic number of a graph" *Advances and Applications in Discrete Mathematics*, 13(1)(2014), 9–22.
- [9] U. Vijaya Chandra Kumar and R. Muruli, Edge domination in the shadow distance graph of some star related graphs, *Annals of Pure and Applied Mathematics*, 13(1)(2017), 33–40.
- [10] D.B.West, *Introduction to Graph Theory*, 2nd edition, Prentice Hall, USA, 2001.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 *********

