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Abstract
In this paper, we investigate the results on doubly connected geodetic number of a simple graph G, shadow
distance graph and corona of two graphs. Further we verify how doubly connected geodetic number is affected
by adding a pendant vertex.
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1. Introduction
Let I(u,v) be the set of all vertices lying on some u− v

geodesic of G and for a nonempty subset S of V (G), I[S] =
∪u,v∈SI(u,v). The set S of vertices of G is called a geodetic set
in G if I[S] =V (G) and a geodetic set of minimum cardinality
is a minimum geodetic set in G is called the geodetic number
g(G) was studied in [2].
Nonsplit geodetic number of a graph was studied by Tejaswini,
Venkanagouda M Goudar in [6]. Venkanagouda M Goudar,
et al., [7] introduced the concept of strong nonsplit geodetic
number of a graph. The connected geodetic number was in-
troduced by Santhakumaran, et al., in [5].
A set S⊆V in a graph G is a doubly connected geodetic set
[DCGS] if S is a geodetic set and induced subgraphs < S >
and <V −S > are both connected. The minimum cardinality
of a doubly connected geodetic set and it is denoted by gdc(G)
is called doubly connected geodetic number of a G. A doubly

connected geodetic set of cardinality gdc(G) is called gdc(G)-
set and it was introduced by Bhavyavenu and Venkanagouda
M Goudar[1]. To illustrate this concepts, consider the follow-
ing examples:

Example 1.1. We depicted a graph G given in Figure 1,
S1 = {v1,v2,v3,v4,
v5} is a gdc-set so that gdc(G)= 5. Also S2 = {v3,v4,v5,v6,v7}
is another gdc-set of G is as shown in Figure 1.

Figure 1. G

For any undefined term in this paper, see [2,3,4,10].

The following theorems are used in the sequel.
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Theorem 1.1. [2] For any cycle Cn of order n≥ 3,

g(Cn) =

 2 if n is even,
3 if n is odd.

Theorem 1.2. [2] Every geodetic set of a graph contains its
extreme vertices.

Theorem 1.3. [2] For integers r,s≥ 2, g(Kr,s) = min{r,s,4}.

Theorem 1.4. [3] For any cycle Cn of order n≥ 3,

αo(Cn) =


n
2 if n is even,
n+1

2 if n is odd.

Theorem 1.5. [3] For any cycle Cn of order n≥ 3,

α1(Cn) =


n
2 if n is even,
n+1

2 if n is odd.

Theorem 1.6. [6] For any cycle Cn of order n≥ 3,

gns(Cn) =


n
2 +1 if n is even,
b n

2c+2 if n is odd.

2. Main results

Theorem 2.1. For the wheel Wn =K1+Cn−1, n≥ 5, gdc(Wn)=
n−2.

Proof. Let Wn = K1 +Cn−1 and let V (Wn) = {x,v1, ...vn−1},
where deg(x)= n−1> 3 and deg(vi)= 3 for all i∈{1,2, ...n−1}.
Let P = {x,vn−1} be the set and S1 =V (Wn)−P be the dou-
bly connected geodetic set such that the induced subgraphs
< S1 > and < V − S1 > are connected. Hence |S1| = n− 2.
Therefore gdc(Wn) = n−2.

Corollary 2.2. For any wheel Wn n ≥ 4, gdc(G) = n− d,
where d is the diameter of wheel.

Proof. Since the diameter of wheel is 2, hence it follows by
the Theorem 2.1, that gdc(G) = n−d.

Theorem 2.3. Let Kr,s be the complete bipartite graph, such
that r ≥ 2 and s≥ 3. Then gdc(Kr,s) = 4.

Proof. Let G = Kr,s such that X = {x1,x2, ...xr} and Y =
{y1,y2, ...yr} are the partite set of G and V = X ∪Y . Let
S = {xi,x j,yk,yl} for some 1 ≤ i, j ≤ r, 1 ≤ k, l ≤ s, be the
doubly connected geodetic set such that both induced sub-
graphs < S > and < V − S > are connected. Hence S is a
doubly connected geodetic set. Therefore gdc(Kr,s) = 4.

Corollary 2.4. For any complete bipartite graph Kr,s, r,s≥ 4,
gdc(Kr,s) = d +2, where d is a diameter.

Proof. For any complete bipartite graph, the diameter is 2.
Hence the proof follows from the Theorem 2.3.

Corollary 2.5. For any complete tripartite graph Kr,s,t , r,s, t ≥
3,
gdc(Kr,s,t) = 4.

Corollary 2.6. For any connected graph G, g(G)≤ gc(G)≤
gdc(G).

Theorem 2.7. For any cycle Cn with n≥ 4, gdc(Cn) = gc(Cn).

Proof. Let Cn be a cycle. We consider the two cases.

Case(i) Suppose n is even, n = 2p. Let S = {v1,v2, ...vp+1}
be a connected geodetic set of Cn such that < S > is connected
and observed that < V (Cn)− S > is also connected. Hence
gc(Cn) = gdc(Cn).

Case(ii) Suppose n is odd, n = 2p + 1.
Let S = {v1,v2, ...vp+1,vp+2} be a connected geodetic set
of Cn. So that < S > is connected and also observed that
< V (Cn)− S > is also connected. Hence gc(Cn) = gdc(Cn).
Clearly gc(Cn) = gdc(Cn).

Theorem 2.8. For any cycle Cn, gns(Cn) = gdc(Cn).

Proof. Let Cn be a cycle. We discuss the two cases.

Case(i) Suppose n is even, n = 2p. Let S = {v1,v2, ...vp+1}
be a nonsplit geodetic set of Cn such that < V (Cn)− S > is
connected and observed that < S > is also connected, which
is a doubly connected geodetic set . Hence gns(Cn) = gdc(Cn).

Case(ii) Suppose n is odd, n = 2p + 1.
Let S = {v1,v2, ...vp+1,vp+2} be a nonsplit geodetic set of Cn
so that <V (Cn)−S > is connected and observed that < S >
is also connected. So that the set S itself forms the minimum
doubly connected geodetic set. Hence gns(Cn) = gdc(Cn).
Clearly gns(Cn) = gdc(Cn).

Corollary 2.9. For cycle Cn, n≥ 4, gdc(Cn) = α0(Cn)+1.

In the following results we show that how the doubly con-
nected geodetic number is affected by removing the edges of
Kn.

Theorem 2.10. If G = Kn−e is a graph obtained from Kn by
removing an edge e with e = {vi,v j}, n≥ 5, then gdc(G) = 3.

Proof. Let G = Kn− e be a graph with e = {vi,v j}. Clearly
S = {vi,v j} forms a strong non-split geodetic set. But < S >
is not connected. Consider S1 = S∪{vk}, where {vk} is the
any vertex of G such that induced subgraphs < S1 > and <
V−S1 > both are connected. Clearly S1 is a doubly connected
geodetic set. Thus gdc(Kn− e) = |S1| = |S∪ {vk}| = |S|+
|{vk}|= 3.
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Theorem 2.11. If G = Kn−{e1,e2} of order n≥ 5, then

gdc(G) =

 4 when e1,e2 are adjacent,
3 when e1,e2 are not adjacent.

Proof. Let G = Kn − {e1,e2} . We discuss the following
cases.

Case(i) Suppose e1 and e2 are adjacent. Let e1 = xy and
e2 = xz for some x,y,z ∈V (G) and they are extreme vertices.
Clearly no two vertex set forms a geodetic set. Let S= {x,y,z}
be the nonsplit geodetic set with minimum cardinality. But
the induced subgraph < S > is not connected. Consider S1 =
S∪{u}, where u ∈V (G), be the doubly connected geodetic
set of G such that induced subgraphs < S1 > and < V −
S1 > are connected. Hence |S1|= |S∪{u}|= |S|+ |{u}|= 4.
Therefore gdc(Kn−{e1,e2}) = 4.

Case(ii) Suppose e1 and e2 are not adjacent. Let e1 = uv and
e2 = xy for some {u,v,x,y} ∈V (G). Then S = {x,y} = {u,v}
is the nonsplit geodetic set with minimum cardinality. But <
S> is not connected. Consider S1 = S∪{w}, where w∈V (G),
be the doubly connected geodetic set of G. Hence |S1| =
|S∪{w}|= |S|+ |{w}|= 3. Therefore gdc(Kn−{e1,e2}) =
3.

Theorem 2.12. For a graph G, there is no doubly connected
geodetic set if and only if G is one of the graph Pn or Kn or
K1,s. Where Pn, Kn and K1,s are the path, complete bipartite
and star.

Proof. Let V (Pn) = {v1,v2, ...vn} and S = {v1,vn} be the non-
split geodetic set but 〈S〉 is not connected. To make S con-
nected, we required all the internal vertices of Pn. Clearly
gdc(Pn) = n but V −S = { /0}, which is contradiction to our as-
sumption. Therefore for path Pn there is no doubly connected
geodetic set.

Let V (Kn) = {v1,v2, ...vn} be the vertex set of Kn and
d(vi,v j) = 1 in Kn. Therefore S = V (Kn). Clearly the set
S contains all the vertices of Kn for the geodetic set, then
V −S = { /0}. Therefore there is no doubly connected geodetic
set for Kn.

Let V (K1,s) = {x,v1,v2, ...vs} be the vertex set of K1,s.
consider the geodetic set S = {v1,v2, ...vs}, but 〈S〉 is not
connected. To make S connected, we required internal vertex
{x}. Consider S1 = {x} and A = S∪ S1 = S∪ {x} which
contains all the vertices of K1,s that is V −S = { /0}, which is
contradiction to our assumption. Therefore for star K1,s there
is no doubly connected geodetic set.

3. Results on adding a pendant vertex

In the next theorem we show that how doubly connected
geodetic number is affected by adding pendent vertices.

Theorem 3.1. Let G =Cn be a cycle of order n ≥ 4 and G
′

be the graph obtained by adding a pendant edge (vi,u) with
vi ∈ G, u /∈ G, then

gdc(G
′
) =


n
2 +2 if n is even,
n−1

2 +3 if n is odd.

Proof. Let V (G) = {v1,v2,v3, ...vn,v1} be the cycle with n
vertices. If G

′
be the graph obtained from G =Cn by adding

a pendant edge (vi,u) such that u /∈ G and for any vi ∈ G. We
have two cases.

Case(i) Suppose n is even. Then S = {u,v j} be a nonsplit
geodetic set of G

′
, where v j is the antipodal vertex of vi. But

the induced subgraph < S > is not connected. Consider S
′
=

{vi,vi+1, ...v j−1} and let S1 = S∪ S
′

is a doubly connected
geodetic set. Clearly induced subgraphs < S1 > and <V −
S1 > are connected. Hence |S1|= |S|+ |S

′ |= 2+ n
2 . Therefore

gdc(G
′
) = n

2 +2.

Case(ii) Suppose n is odd. Then S = {u,v j,v j+1} be a non-
split geodetic set with minimum cardinality of G

′
, where

v j,v j+1 are the antipodal vertices of vi. But < S > is not con-
nected. Consider S

′
= {vi,vi+1, ...v j−1} and let S1 = S∪ S

′

is a doubly connected geodetic set. Clearly induced sub
graphs < S1 > and <V −S1 > are connected. Hence |S1|=
|S|+ |S′ |= 3+ n−1

2 . Therefore gdc(G
′
) = n−1

2 +3.

Theorem 3.2. Let G =Cn be a cycle of order n≥ 4 and G
′
be

the graph obtained by adding k pendant edges
{(vi,w1),(vi,w2),(vi,w3), ...(vi,wk)} to the cycle Cn with vi ∈
G and {w1,w2,w3, ...wk} /∈ G then,

gdc(G
′
) =


n
2 +1+ k if n is even,
n−1

2 +2+ k if n is odd.

Proof. Consider V (G)= {v1,v2,v3, ...vn,v1} be the cycle with
n vertices. If G

′
be the graph obtained from G =Cn by adding

pendant edges {(vi,w1),(vi,w2),(vi,w3), ...(vi,wk)} such that
{w1,w2,w3, ...wk} /∈ G and vi is a single vertex of G. We dis-
cuss the following cases.

Case(i) Let n is even. Then S = {w1,w2,w3, ...wk ∪ v j} be
a geodetic set of G

′
, where {w1,w2,w3, ...wk} are the k pen-

dant vertices and v j is the antipodal vertex of vi. But the
induced subgraph < S > is not connected. Consider S

′
=

{vi,vi+1, ...v j−1} and let S1 = S∪ S
′

is a doubly connected
geodetic set. Clearly induced subgraphs < S1 > and <V −
S1 > are connected. Hence
|S1|= |S|+ |S

′ |
= |{w1,w2,w3, ...wk ∪ v j}|+ |S

′ |
= |{w1,w2,w3, ...wk}|+ |v j|+ |S

′ |
= k+1+ n

2 . Therefore gdc(G
′
) = n

2 + k+1.
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Case(ii) Let n is odd. Then S = {w1,w2,w3, ...wk,v j,v j+1}
be a geodetic set with minimum cardinality of G

′
, where

{w1,w2,w3, ...wk} are the k pendant vertices and v j,v j+1 are
the antipodal vertices of vi. But the induced subgraph < S >
is not connected. Consider S

′
= {vi,vi+1, ...v j−1} and let S1 =

S∪ S
′

is a doubly connected geodetic set. Clearly induced
subgraphs < S1 > and < V − S1 > are connected. Hence
|S1|= |S|+ |S

′ |
= |{w1,w2,w3, ...wk ∪ v j ∪ v j+1}|+ |S

′ |
= |{w1,w2,w3, ...wk}+ v j + vk|+ |S

′ |
= k+1+1+ n−1

2
= k+2+ n−1

2 . Therefore gdc(G
′
) = n−1

2 + k+2.

Theorem 3.3. Let G =Cn be a graph and G
′
obtained from G

by adding k pendent veritces {u,v1,v2,v3, ...vk}with v1,v2, ...vk /∈
G and u ∈ G then gdc(G

′
) = αo(Cn)+1+ k.

Proof. Let Cn be the cycle of order n≥ 4. We have two cases.

Case(i) Let Cn be the cycle and it is even and αo(cn) be
the vertex covering number. By Theorem 3.2, for even cy-
cle gdc(G

′
) = n

2 + k+1. Also by Theorem 1.4, αo(Cn) =
n
2 .

Therefore gdc(Cn) = αo(Cn)+ k+1.

Case(ii) Let Cn be the cycle and it is odd and αo(cn) be
the vertex covering number. By theorem 3.2, for odd cycle
gdc(G

′
) = n+1

2 + k+1. Also by theorem 1.4, αo(Cn) =
n+1

2 ,
hence gdc(Cn) = αo(Cn)+ k+1.

In the next section, we obtain the doubly connected geodetic
number on shadow distance graph.

4. Shadow distance graph
Definition 4.1.
Let D be the set of all distance between distinct pairs of
vertices in G and let Ds (called the distance set) be a subset
of D. The distance graph G denoted by D(G,Ds) is the graph
having the same vertex as that of G and two vertices u and v
are adjacent in D(G,Ds) whenever d(u,v) ∈ Ds.
The shadow distance graph of G, denoted by Dsd(G,Ds) is
constructed from G with the following conditions:
i) Consider two copies of G say G itself and G′

ii)if u ∈V (G) (first copy) then we denoted the corresponding
vertex as u′ ∈V (G′) (second copy)
iii) The vertex set of Dsd(G,Ds) is V (G)∪V (G′)
iv) The edge set of Dsd(G,Ds) is E(G)∪E(G′)∪Eds, where
Eds is the set of all edges between two distinct vertices u ∈
V (G) and v′ ∈V (G′) that satisfy the condition d(u,v) ∈Ds in
G.

The shadow distance graphs Dsd(P8,{2}) and Dsd(C7,{3})
are as shown in figure 2 and 3.

Figure 2. Dsd(P8,{2})

Figure 3. Dsd(C7,{3})

Theorem 4.2. For n≥ 3 ,

gdc(Dsd(Pn,{2})) =

 n+1 for n=3,
n+2 for n > 3.

Proof. Let G = gdc(Dsd(Pn,{2})) be the shadow distance
graph. Let V (G) =V1∪V ′1, where V1 = {v1,v2, ...vi/1≤ i≤
n} be the vertex set of Pn and V ′1 = {v′1,v′2, ...v′i/1≤ i≤ n} be
the vertex set of P′n. Then |V (G)|= 2n.
Case(i) For n = 3, G = C6. By Theorem 3.7 it follows that
gdc(G) = 4 . Hence gdc(Dsd(P3,{2})) = n+1.
Case(ii) For n > 3. Consider S = {v1,vn,v′1,v

′
n} be the geode-

tic set with minimum cordinality, but 〈S〉 is not connected.
Consider S1 = S∪{v2,v3, ...vn−1} be the doubly connected
geodetic set of G.
Suppose vi ∈ V (Pn) for 2 ≤ i ≤ n− 1 and vi 6∈ S1, then 〈S1〉
is disconnected. So that every vertices of Pn must exists in
the set S1. For v′i ∈ V ′(Pn), where v′i is the end vertices of
V ′(Pn) and v′i 6∈ S1 for i=1 or n then 〈S1〉 is not a geodetic set.
So that end vertices of P′n must exists in the set S1. There-
fore gdc(G) = |S1|= |S∪{v2,v3, ...vn−1}|= 4+n−2= n+2.
Hence gdc(Dsd(Pn,{2})) = n+2.

Corollary 4.3. For n≥ 4, gdc(Dsd(Pn,{3})) = n+2.
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Theorem 4.4. For n≥ 4 ,

gdc(Dsd(Cn,{2}))=



4 for n=4,5
n
2 +2 for n=6,8
n+1

2 +2 for n=7,9
n+6

2 for n≥ 10 and n is even
n+9

2 for n≥ 11 and n is odd.

Proof. Consider two copies of Cn namely Cn itself and C′n. Let
{u1,u2, ...un} be the vertices of first copy of Cn and {u′1,u′2, ...u′n}
be the vertices of second copy of C′n. Let G = Dsd(Cn,{2}) be
a shadow distance graph with |V (G)|= |V (Cn)∪V (C′n)|= 2n
and |E(G)|= 4n. We discuss the following cases.

Case(i) For n = 4,5. The set S = {v1,v2,v3,v′1} is a doubly
connected geodetic set with minimum cardinality. Hence
gdc(Dsd(Cn,{2})) = 4.

Case(ii) For n = 6,8. The geodetic set S = {v1,v n
2
,v′1,v

′
n
2
},

but 〈S〉 is not connected, then S is not a doubly connected
geodetic set. Now consider S1 = S∪{v2, ...v n

2−1} forms a
gdc− set. Therefore gdc(Dsd(Cn,{2})) = |S1|= n

2 +2.

Case(iii) For n= 7,9. The geodetic set S= {v1,v n+1
2
,v′1,v

′
n+1

2
},

but 〈S〉 is not connected . Now consider S1 = S∪{v2, ...v n−1
2
}

forms a gdc−set. Therefore gdc(Dsd(Cn,{2}))= |S1|= n+1
2 +

2.

Case(iv) For n ≥ 10 and is even.
Consider the set S = {v1,v2, ...vi,v′1,v

′
i/1 ≤ i ≤ n

2 + 1} is a
gdc− set with minimum cardinality . Suppose for any ver-
tex v j ∈ S, F = S− v j is not a doubly connected geodetic
set in G, because 〈F〉 or 〈V −F〉 are not connected. If v j
is an end vertex then it is not a geodetic set. Therefore
gdc(Dsd(Cn,{2})) = |S|= n+6

2 .

Case(v) For n≥ 11 and is odd. Consider the set S= {v1,v n+1
2
,

v n+1
2 +1,v

′
1,v
′
n+1

2
,v′n+1

2 +1
} is a nonsplit geodetic set. But 〈S〉

is not connected. Consider a set S1 = {v2,v3, ...v n+1
2 −1} are

the vertices between v1 and v n+1
2 +1 . Then doubly connected

geodetic set A = S∪S1.Therefore gdc(Dsd(Cn,{2})) = |A|=
|S∪S1|= |S|+ |S1|= 6+ n−3

2 = n+9
2 .

Corollary 4.5. For n≥ 8 ,

gdc(Dsd(Cn,{3})) =


n+6

2 for n is even
n+9

2 for n is odd.

In the next section, we obtain the doubly connected geodetic
number on corona of two graphs.

5. Corona of two graphs

Definition 5.1. Let G and H be two graphs and let n be the
order of G. The corona product G◦H is defined as the graph
obtained from G and H by taking one copy of G and n copies
of H and then joining by an edge, all the vertices form the ith

copy of H with the ith vertex of G.

Theorem 5.2. For the cycle Cn of order n≥ 4, gdc(K1 ◦Cn) =
n−2.

Proof. Consider H = K1 and G =Cn, n > 3. Let u1 ∈V (K1)
and vi ∈ V (Cn), 1 ≤ i ≤ n. For each vi is the adjacent to
the vertex u1, then K1 ◦Cn form the wheel. By the Theorem
2.2, we have gdc(Wn) = n−2. It follows that gdc(K1 ◦Cn) =
n−2.

Theorem 5.3. Let G be a connected graph of order n, such
that4(G) = n−1. Then gdc(K1 ◦G) = g(G)+1, where g(G)
is the geodetic number of G.

Proof. Let H =K1 = {u} and V (G) = {v1,v2,v3, ...vn} be the
vertex set of H and G respectively, we have4(G) = n−1. Let
S = {v1,v2, ...vl/1≤ l < n} be the geodetic set of G. Consider
G1 = H ◦G be the corona graph. It is easy to verify that S
is the geodetic set of G1, but the induced subgraph < S > is
not connected. Consider S1 = S∪{u} be a doubly connected
geodetic set so that induced subgraphs < S > and <V −S >
are connected. Hence |S1| = |S∪{u}| = |S|+ 1. Therefore
gdc(G1) = g(G)+1.

Theorem 5.4. Let Pn1 and Pn2 be the paths of order n1 ≥ 2,
n2 ≥ 3 then gdc(Pn1 ◦Pn2) = n1 +n1n2−1.

Proof. Let Pn1 : v1,v2, ...vn1 and Pn2 : u1,u2, ...un2 are the ver-
tices of Pn1 and Pn2 with |V ((Pn1 ◦Pn2))|= n1 +n1n2.

Case(i) If n2 is odd, then S = {∪n1
i=1vi∪{u1,u3, ...un2}n1times}

is a connected geodetic set but it is not a doubly connected
geodetic set, because 〈V (Pn1 ◦ Pn2)− S〉 is not connected.
To make 〈V (Pn1 ◦Pn2)−S〉 connected, we consider A = S∪
{u2,u4, ...un2−1}n1times−{u} where u ∈V (Pn2) which forms
a doubly connected geodetic set of Pn1 ◦Pn2 with minimum
cardinality. Thus we have,
gdc(Pn1 ◦Pn2) = |A|
=|S∪{u2,u4, ...un2−1}−{u}|
= |S|+ |{u2,u4, ...un2−1}−{u}|
=|{∪n1

i=1vi∪{u1,u3, ...un2}n1times}|+|{u2,u4, ...un2−1}n1times−
{u}|
=n1 +

n1n2
2 + n1n2

2 −1
gdc(Pn1 ◦Pn2) = n1 +n1n2−1.

Case(ii) If n2 is even,
then S= {∪n1

i=1vi∪{u1,u3, ...,un2−1,un2}n1times} is a connected
geodetic set but it is not a doubly connected geodetic set, be-
cause 〈V (Pn1 ◦Pn2)−S〉 is not connected. To make 〈V (Pn1 ◦
Pn2)−S〉 connected we consider A= S∪{u2,u4, ...un2−2}n1times−
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{u} where u∈V (Pn2) which forms a doubly connected geode-
tic set of Pn1 ◦Pn2 with minimum cardinality. Thus we have,
gdc(Pn1 ◦Pn2) = |A|
=|S∪{u2,u4, ...un2−2}−{u}|
= |S|+ |{u2,u4, ...un2−1}−{u}|
=|{∪n1

i=1vi∪{u1,u3, ...,un2−1,un2}n1times}|
+|{u2,u4, ...un2−2}n1times−{u}|
=n1 +

n1n2+1
2 + n1n2−1

2 −1.
Therefore gdc(Pn1 ◦Pn2) = n1 +n1n2−1.

Corollary 5.5. Let Pn1 and Cn2 are the path and cycle of order
n1 ≥ 2, n2 ≥ 4, then gdc(Pn1 ◦Cn2) = n1 +n1n2−1.

Corollary 5.6. Let Cn1 and Cn2 are the cycles of order n1 ≥ 3,
n2 ≥ 4, then gdc(Cn1 ◦Cn2) = n1 +n1n2−1.

Corollary 5.7. Let Cn1 and Cn2 are the cycles of order n1 ≥ 3,
n2 ≥ 4, then gdc(Cn1 ◦Cn2) = n1 +n1n2−1.

6. Conclusion
In this paper, we discussed the doubly connected geodetic

number of a graph. Also we obtained how doubly connected
geodetic number is affected by adding a pendant vertex,corona
and shadow distance graph.
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