

https://doi.org/10.26637/MJM0603/0026

Observations on $x^2 + y^2 + 2(x + y) + 2 = 10z^2$

Shreemathi Adiga^{1*}, N. Anusheela² and M.A. Gopalan³

Abstract

The quadratic equation with three unknowns given by $x^2 + y^2 + 2(x+y) + 2 = 10z^2$ is analysed for its non-zero distinct integer solutions. Given a solution, formula for generating sequence of solutions is obtained.

Keywords

Second degree equation, three unknowns, lattice points.

AMS Subject Classification

11D09.

¹Department of Mathematics, Government First Grade College, Koteshwara, Kundapura Taluk, Udupi-576 222, Karnataka, India

² Department of Mathematics, Government Arts College, Udhagamandalam, The Nilgiris-643 002, India.

³Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.

*Corresponding author: 1*adigashreemathi@gmail.com; ²anusheeln@gmail.com, ³mayilgopalan@gmail.com

Article History: Received 29 April 2018; Accepted 07 August 2018

Contents

1. Introduction

It is well-known that there are various choices of quadratic equations with three unknowns to obtain lattice points satisfying them [1,18]. Particularly in [2-17], different types of problems are presented. This paper deals with a different quadratic equation with three unknowns given by $x^2 + y^2 + 2(x+y) + 2 = 10z^2$ to obtain a sequence of integral solutions. Further, a general formula for generating sequence of solutions based on the given solution is illustrated.

2. Method of analysis

The quadratic diophantine equation with three unknowns under consideration is

$$x^{2} + y^{2} + 2(x + y) + 2 = 10z^{2}$$
(2.1)

Assuming

$$x = u + v, y = u - v, u \neq v \neq 0$$
 (2.2)

in (2.1), it gives

$$(u+1)^2 + v^2 = 5z^2 \tag{2.3}$$

Solving (2.3) through various approaches and employing (2.2), different sets of integer solutions to (2.1) are obtained. The above process is illustrated below:

©2018 MJM.

Method: 1

Write 5 as

$$5 = (2+i)(2-i) \tag{2.4}$$

Let

$$z = a^2 + b^2, \ a, b \neq 0 \tag{2.5}$$

Using (2.4) and (2.5) in (2.3) and applying factorization, consider

$$u + 1 + iv = (2 + i)(a + ib)^2$$

Equating the real and imaginary parts, one gets

$$u = 2(a^2 - b^2 - ab) - 1$$

 $v = a^2 - b^2 + 4ab$

In view of (2.2), the values of x and y are given by

$$\begin{cases} x = 3a^2 - 3b^2 + 2ab - 1\\ y = a^2 - b^2 - 6ab - 1 \end{cases}$$
(2.6)

Thus, (2.5) and (2.6) represent the non-zero distinct integer solutions to (2.1).

Note: 1

Observe that (2.5) is also written as

$$5 = (1+2i)(1-2i) \tag{2.7}$$

Following the analysis as presented above, the corresponding values of x and y are given by

$$x = 3a^{2} - 3b^{2} - 2ab - 1$$
$$y = -a^{2} + b^{2} - 6ab - 1$$

The above values of x and y along with (2.5) represent the integer solutions to (2.1).

Method: 2

One may write (2.3) as

$$(u+1)^2 + v^2 = 5z^2 * 1 \tag{2.8}$$

Write 1 as

$$1 = \frac{(p^2 - q^2 + i2pq)(p^2 - q^2 - i2pq)}{(p^2 + q^2)^2} , \ p > q > 0 \ (2.9)$$

Substituting (2.4), (2.5) and (2.9) in (2.8) and using factorization, define

$$u + 1 + iv = \frac{(p^2 - q^2 + i2pq)(2 + i)(a + ib)^2}{(p^2 + q^2)}$$

from which, one obtains

$$u+1 = \frac{1}{(p^2+q^2)} [2(p^2-q^2)(a^2-b^2-ab) - 2pq(a^2-b^2+4ab)]$$

$$v = \frac{1}{(p^2 + q^2)} [(p^2 - q^2)(a^2 - b^2 + 4ab) + 4pq(a^2 - b^2 - ab)]$$

Employing (2.2), note that

$$\begin{cases} x = \frac{1}{(p^2 + q^2)} [(p^2 - q^2)(3a^2 - 3b^2 + 2ab) \\ +2pq(a^2 - b^2 - 6ab)] - 1 \\ y = \frac{1}{(p^2 + q^2)} [(p^2 - q^2)(a^2 - b^2 - 6ab) \\ -2pq(3a^2 - 3b^2 + 2ab)] - 1 \end{cases}$$
(2.10)

Hence, (2.10) and (2.5) represent integer solutions to (2.1) for suitable choices of *a* and *b*.

Note: 2

In (2.8), one may consider (2.7) for (2.5) and proceeding similarly, another choice for x and y is found.

3. Formula for generating sequence of solutions

Let (x_0, y_0, z_0) satisfy (2.1). The solution may be in real integers or in Gaussian integers or in irrational numbers. Let (x_1, y_1, z_1) be the second solution of (2.1), where

$$x_1 = x_0 + 2h, y_1 = y_0 + 2h, z_1 = h - z_0$$
(3.1)

in which h is an unknown to be determined. Substitution of (3.1) in (2.1) gives

$$h = 2x_0 + 2y_0 + 10z_0 + 4 \tag{3.2}$$

Using (3.2) in (3.1), the second solution (x_1, y_1, z_1) of (2.1) is expressed in the matrix form as

$$(x_1, y_1, z_1)^t = M(x_0, y_0, z_0)^t$$

where t is the transpose and

1

$$M = \begin{pmatrix} 5 & 4 & 20 & 8 \\ 4 & 5 & 20 & 8 \\ 2 & 2 & 9 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Following the above procedure, the general solution $(x_{n+1}, y_{n+1}, z_{n+1})$ of (2.1) is written in the matrix form as

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{Y_n + 1}{2} & \frac{Y_n - 1}{2} & 10X_n & Y_n - 1 \\ \frac{Y_n - 1}{2} & \frac{Y_n + 1}{2} & 10X_n & Y_n - 1 \\ X_n & X_n & Y_n & 2X_n \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{pmatrix}$$

n = 0, 1, 2, 3, ... where (X_n, Y_n) is the general solution of the Pellian equation $Y^2 = 20X^2 + 1$.

Acknowledgment

The authors are highly thankful to the anonymous referees for their kind comments and fruitful suggestions.

References

- ^[1] L.E.Dickson, History of Theory of Numbers, Vol.II, *Chelsea Publishing Company, New York*, 1952.
- ^[2] M.A. Gopalan and G. Srividhya, Observations on $y^2 = 2x^2 + z^2$, Archimedes J.Math., 2(1)(2012), 7–15.
- ^[3] M.A. Gopalan and G. Sangeetha, Observations on $y^2 = 3x^2 2z^2$, Antarctica J. Math., 9(4)(2012), 359–362.
- ^[4] M.A. Gopalan and R. Vijayalakshmi, On the ternary quadratic equation $x^2 = (\alpha^2 1)(y^2 z^2)$, $\alpha > 1$, *Bessel J. Mat.h*, 2(2)(2012), 147–151.
- ^[5] Manju Somanath, G. Sangeetha and M.A. Gopalan, On the homogeneous ternary quadratic Diophantine equation $x^2 + (2k+1)y^2 = (k+1)^2 z^2$, *Bessel J. Math.*, 2(2)(2012), 107–110.

- ^[6] Manju Somanath, G. Sangeetha and M.A. Gopalan, Observations on the ternary quadratic equation $y^2 = 3x^2 + z^2$, *Bessel J. Math.*, 2(2)(2012), 101–105.
- ^[7] M.A. Gopalan, S. Vidhyalakshmi and C. Nithya, Integral points on the ternary quadratic Diophantine equation $3x^2 + 5y^2 = 128z^2$, *Bulletin of Mathematics and Statistics Research*, 2(1)(2014), 25–31.
- ^[8] K. Meena, S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, Integer solutions on the homogeneous cone $4x^2 + 3y^2 = 28z^2$, *Bulletin of Mathematics and Statistics Research*, 2(1)(2012), 47–53.
- ^[9] M.A. Gopalan, S. Vidhyalakshmi and J. Umarani, On the ternary quadratic diophantine equation $6(x^2 + y^2) 8xy = 21z^2$, *Sch. J. Eng. Tech.*, 2(2A)(2014), 108–112.
- ^[10] K. Meena, S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, On homogeneous ternary quadratic diophantine equation $2(x^2 + y^2) 3xy = 16z^2$, *International Journal of Engineering, Science and Mathematics*, 3(2)(2014), 93-99.
- ^[11] K. Meena, S. Vidhyalakshmi, S. Divya and M.A. Gopalan, Integral points on the cone $Z^2 = 41X^2 + Y^2$, *Sch. J. Eng. Tech.*, 2(2B)(2014), 301–304.
- ^[12] M.A. Gopalan, S. Vidhyalakshmi, S. Devibala and J. Umavathy, On the ternary quadratic diophantine equation $3(x^2 + y^2) 5xy = 60z^2$, *International Journal of Applied Research*, 1(5)(2015), 234–238.
- ^[13] S. Vidhyalakshmi, T. Geetha and R. Sridevi, On ternary quadratic diophantine equation $2x^2 7y^2 = 25z^2$, *International Journal of Applied Research*, 1(4)(2015), 111–114.
- ^[14] M.A. Gopalan, S. Vidhyalakshmi, U.K. Rajalakshmi, On ternary quadratic diophantine equation $5(x^2 + y^2) 6xy = 196z^2$, *IJRDO- Journal of Mathematics*, 3(5)(2017), 1–10.
- ^[15] S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, Observation on the elliptic paraboloid $x^2 + y^2 = 19z$, *Asian Journal of Applied Science and Technology*, 1(9)(2017), 37–39.
- ^[16] S. Vidhyalakshmi and S. Thenmozhi, On the ternary quadratic diophantine equation $3(X^2 + Y^2) 5XY = 75Z^2$, *Journal of Mathematics and Informatics*, 10(2017), 11–19.
- ^[17] S. Vidhyalakshmi and A. Priya, On the non-homogeneous ternary quadratic diophantine equation $2(x^2 + y^2) 3xy + (x+y) + 1 = z^2$, *Journal of Mathematics and Informatics*, 10(2017), 49–55.
- [18] L.J. Mordell, *Diophantine Equations*, Academic press, New York, 1969.

