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The quadratic equation with three unknowns given by x> +y* +2(x+y) +2 = 10z* is analysed for its non-zero
distinct integer solutions. Given a solution, formula for generating sequence of solutions is obtained.
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1. Introduction

It is well-known that there are various choices of quadratic
equations with three unknowns to obtain lattice points satis-
fying them [1,18]. Particularly in [2-17], different types of
problems are presented. This paper deals with a different
quadratic equation with three unknowns given by x> +y* +
2(x+y) +2 = 10z%to obtain a sequence of integral solutions.
Further, a general formula for generating sequence of solu-
tions based on the given solution is illustrated.

2. Method of analysis

The quadratic diophantine equation with three unknowns
under consideration is

Xy +2(x+y)+2 =102 2.1
Assuming

x=u+v,y=u—v,u#v#0 2.2)
in (2.1), it gives

(u+1)2+1? =57 (2.3)

Solving (2.3) through various approaches and employing
(2.2), different sets of integer solutions to (2.1) are obtained.
The above process is illustrated below:

Method: 1
Write 5 as

5=02+i)(2-1i) 2.4)
Let

z=a*+b*,a,b#0 (2.5)

Using (2.4) and (2.5) in (2.3) and applying factorization,
consider

ut1+iv=(2+i)(a+ib)*
Equating the real and imaginary parts, one gets

u=2(a®>—b*—ab)—1
v=a®>—b*+4ab

In view of (2.2), the values of x and y are given by

= 3a*> —3b* +2ab — 1
{x 302 — 352 +2ab 26

y=a*—b*>—6ab—1

Thus, (2.5) and (2.6) represent the non-zero distinct integer
solutions to (2.1).



Note: 1

Observe that (2.5) is also written as
5= (1+2i)(1—2i) 2.7)

Following the analysis as presented above, the correspond-
ing values of x and y are given by

x=3a>—3b*—2ab—1
y=—a*+b*—6ab—1

The above values of x and y along with (2.5) represent the
integer solutions to (2.1).

Method: 2

One may write (2.3) as

(u+1)2+v* =521 (2.8)
Write 1 as
2 2 . 2 2 .
— 2 —P -2
= P —a+i2pg)(p”—q lpq)7p>q>0(2.9)

P+
Substituting (2.4), (2.5) and (2.9) in (2.8) and using factor-
ization, define
(P? — ¢* +i2pq)(2+i)(a+ib)?
(P*+4°)

u+1-+iv=

from which, one obtains

ut1= W[Z(Pz —q¢*)(@® —b* —ab)
—2pq(a® — b* +4ab))
v= ﬁ [(p* —¢?)(a®> — b +4ab) +4pg(a* — b — ab)]

Employing (2.2) , note that

= il (P* —4*)(3a® =36 + 2ab)

+2pq(a® — b* — 6ab)] — 1

(2.10)
y= ﬁ[(l’z —¢*)(a* —b* —6ab)

—2pq(3a® —3b* +2ab)] — 1

Hence, (2.10) and (2.5) represent integer solutions to (2.1)
for suitable choices of a and b.

Note: 2

In (2.8), one may consider (2.7) for (2.5) and proceeding
similarly, another choice for x and y is found.
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3. Formula for generating sequence of
solutions
Let (x0,y0,20) satisfy (2.1). The solution may be in real

integers or in Gausssian integers or in irrational numbers. Let
(x1,¥1,21) be the second solution of (2.1), where

x1 =xo+2h,y1 =yo+2h,z1 =h—2z0 3.1
in which h is an unknown to be determined.
Substitution of (3.1) in (2.1) gives

h=2x0+2yo+10z0 +4 (3.2)

Using (3.2) in (3.1) , the second solution (x1,y1,z1) of (2.1)
is expressed in the matrix form as

(x1,y1,21)" = M(x0,¥0,20)"

where t is the transpose and

5 4 20 8
45 20 8
M=12 2 9 4
00 0 1

Following the above procedure, the general solution
(Xn415Yn+1,2n+1) Of (2.1) is written in the matrix form as

Ll Lloq0x, ¥,—1
Xn+1 Yo—1 Y+l X0
n Ll 10x, v,—1
Yot | _ | 2 2 moo Yo
2”1* ! X, X, Y, 2X, Zlo

0 0 0 1

n=0,1,2,3,.... where (X,,Y,) is the general solution of the
Pellian equation Y2 = 20X2 + 1.
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