

https://doi.org/10.26637/MJM0603/0026

Observations on $x^2 + y^2 + 2(x + y) + 2 = 10z^2$

Shreemathi Adiga^{1*}, N. Anusheela² and M.A. Gopalan³

Abstract

The quadratic equation with three unknowns given by $x^2 + y^2 + 2(x + y) + 2 = 10z^2$ is analysed for its non-zero distinct integer solutions. Given a solution, formula for generating sequence of solutions is obtained.

Keywords

Second degree equation, three unknowns, lattice points.

AMS Subject Classification

11D09.

¹*Department of Mathematics, Government First Grade College, Koteshwara, Kundapura Taluk, Udupi-576 222, Karnataka, India*

²*Department of Mathematics,Government Arts College, Udhagamandalam, The Nilgiris-643 002, India.*

³*Department of Mathematics, Shrimati Indira Gandhi College, Trichy-620 002, Tamil Nadu, India.*

***Corresponding author**: 1*adigashreemathi@gmail.com; ²anusheeln@gmail.com, ³mayilgopalan@gmail.com

Article History: Received **29** April **2018**; Accepted **07** August **2018** c 2018 MJM.

Contents

- **1 [Introduction](#page-0-0) . 632**
- **2 [Method of analysis](#page-0-1) . 632**
- **3 [Formula for generating sequence of solutions](#page-1-0) . . . 633 [References](#page-1-1) . 633**

1. Introduction

It is well-known that there are various choices of quadratic equations with three unknowns to obtain lattice points satisfying them [1,18]. Particularly in [2-17], different types of problems are presented. This paper deals with a different quadratic equation with three unknowns given by $x^2 + y^2 +$ $2(x+y) + 2 = 10z²$ to obtain a sequence of integral solutions. Further, a general formula for generating sequence of solutions based on the given solution is illustrated.

2. Method of analysis

The quadratic diophantine equation with three unknowns under consideration is

$$
x^{2} + y^{2} + 2(x + y) + 2 = 10z^{2}
$$
 (2.1)

Assuming

$$
x = u + v, y = u - v, u \neq v \neq 0
$$
\n
$$
(2.2)
$$

in (2.1) (2.1) (2.1) , it gives

$$
(u+1)^2 + v^2 = 5z^2 \tag{2.3}
$$

Solving ([2](#page-0-3).3) through various approaches and employing ([2](#page-0-4).2), different sets of integer solutions to ([2](#page-0-2).1) are obtained. The above process is illustrated below:

Method: 1

Write 5 as

$$
5 = (2+i)(2-i)
$$
 (2.4)

Let

$$
z = a^2 + b^2, \ a, b \neq 0 \tag{2.5}
$$

Using (2.4) (2.4) (2.4) and (2.5) in (2.3) and applying factorization, consider

$$
u + 1 + iv = (2 + i)(a + ib)^2
$$

Equating the real and imaginary parts, one gets

$$
u = 2(a2 – b2 – ab) – 1
$$

$$
v = a2 – b2 + 4ab
$$

In view of (2.2) (2.2) (2.2) , the values of x and y are given by

$$
\begin{cases}\nx = 3a^2 - 3b^2 + 2ab - 1 \\
y = a^2 - b^2 - 6ab - 1\n\end{cases}
$$
\n(2.6)

Thus, ([2](#page-0-6).5) and ([2](#page-0-7).6) represent the non-zero distinct integer solutions to (2.1) (2.1) (2.1) .

Note: 1

Observe that (2.5) (2.5) (2.5) is also written as

$$
5 = (1+2i)(1-2i)
$$
 (2.7)

Following the analysis as presented above, the corresponding values of x and y are given by

$$
x = 3a^{2} - 3b^{2} - 2ab - 1
$$

$$
y = -a^{2} + b^{2} - 6ab - 1
$$

The above values of x and y along with ([2](#page-0-6).5) represent the integer solutions to ([2](#page-0-2).1).

Method: 2

One may write ([2](#page-0-3).3) as

$$
(u+1)^2 + v^2 = 5z^2 * 1
$$
\n(2.8)

Write 1 as

$$
1 = \frac{(p^2 - q^2 + i2pq)(p^2 - q^2 - i2pq)}{(p^2 + q^2)^2}, p > q > 0
$$
 (2.9)

Substituting (2.4) (2.4) (2.4) , (2.5) and (2.9) in (2.8) and using factorization, define

$$
u + 1 + iv = \frac{(p^2 - q^2 + i2pq)(2+i)(a+ib)^2}{(p^2 + q^2)}
$$

from which, one obtains

$$
u+1 = \frac{1}{(p^2+q^2)}[2(p^2-q^2)(a^2-b^2-ab)-2pq(a^2-b^2+4ab)]
$$

$$
v = \frac{1}{(p^2+q^2)}[(p^2-q^2)(a^2-b^2+4ab)+4pq(a^2-b^2-ab)]
$$

Employing ([2](#page-0-4).2) , note that

$$
\begin{cases}\nx = \frac{1}{(p^2+q^2)}[(p^2-q^2)(3a^2-3b^2+2ab) \\
+2pq(a^2-b^2-6ab)]-1 \\
y = \frac{1}{(p^2+q^2)}[(p^2-q^2)(a^2-b^2-6ab) \\
-2pq(3a^2-3b^2+2ab)]-1\n\end{cases}
$$
\n(2.10)

Hence, (2.10) (2.10) (2.10) and (2.5) (2.5) (2.5) represent integer solutions to (2.1) for suitable choices of *a* and *b*.

Note: 2

In (2.8) (2.8) (2.8) , one may consider (2.7) for (2.5) and proceeding similarly, another choice for x and y is found.

3. Formula for generating sequence of solutions

Let (x_0, y_0, z_0) satisfy (2.1) (2.1) (2.1) . The solution may be in real integers or in Gausssian integers or in irrational numbers. Let (x_1, y_1, z_1) be the second solution of (2.1) (2.1) (2.1) , where

$$
x_1 = x_0 + 2h, y_1 = y_0 + 2h, z_1 = h - z_0 \tag{3.1}
$$

in which h is an unknown to be determined. Substitution of (3.1) (3.1) (3.1) in (2.1) (2.1) (2.1) gives

$$
h = 2x_0 + 2y_0 + 10z_0 + 4
$$
\n(3.2)

Using (3.2) (3.2) (3.2) (3.2) (3.2) in (3.1) , the second solution (x_1, y_1, z_1) of (2.1) is expressed in the matrix form as

$$
(x_1, y_1, z_1)^t = M(x_0, y_0, z_0)^t
$$

where t is the transpose and

$$
M = \begin{pmatrix} 5 & 4 & 20 & 8 \\ 4 & 5 & 20 & 8 \\ 2 & 2 & 9 & 4 \\ 0 & 0 & 0 & 1 \end{pmatrix}
$$

Following the above procedure, the general solution $(x_{n+1}, y_{n+1}, z_{n+1})$ of (2.1) (2.1) (2.1) is written in the matrix form as

$$
\begin{pmatrix} x_{n+1} \\ y_{n+1} \\ z_{n+1} \\ 1 \end{pmatrix} = \begin{pmatrix} \frac{Y_n + 1}{2} & \frac{Y_n - 1}{2} & 10X_n & Y_n - 1 \\ \frac{Y_n - 1}{2} & \frac{Y_n + 1}{2} & 10X_n & Y_n - 1 \\ X_n & X_n & Y_n & 2X_n \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ y_0 \\ z_0 \\ 1 \end{pmatrix}
$$

 $n = 0, 1, 2, 3, \dots$ where (X_n, Y_n) is the general solution of the Pellian equation $Y^2 = 20X^2 + 1$.

Acknowledgment

The authors are highly thankful to the anonymous referees for their kind comments and fruitful suggestions.

References

- [1] L.E.Dickson, History of Theory of Numbers, Vol.II, *Chelsea Publishing Company, New York*, 1952.
- ^[2] M.A. Gopalan and G. Srividhya, Observations on $y^2 =$ $2x^2 + z^2$, *Archimedes J.Math.*, 2(1)(2012), 7–15.
- ^[3] M.A. Gopalan and G. Sangeetha, Observations on $y^2 =$ 3*x* ² −2*z* 2 , *Antarctica J. Math.*, 9(4)(2012), 359–362.
- [4] M.A. Gopalan and R. Vijayalakshmi, On the ternary quadratic equation $x^2 = (\alpha^2 - 1)(y^2 - z^2)$, $\alpha > 1$, *Bessel J. Mat.h*, 2(2)(2012), 147–151.
- [5] Manju Somanath, G. Sangeetha and M.A. Gopalan, On the homogeneous ternary quadratic Diophantine equation $x^2 + (2k+1)y^2 = (k+1)^2 z^2$, *Bessel J. Math.*, 2(2)(2012), 107–110.

- [6] Manju Somanath, G. Sangeetha and M.A. Gopalan, Observations on the ternary quadratic equation $y^2 = 3x^2 + z^2$, *Bessel J. Math.,* 2(2)(2012), 101–105.
- [7] M.A. Gopalan, S. Vidhyalakshmi and C. Nithya, Integral points on the ternary quadratic Diophantine equation $3x^2 + 5y^2 = 128z^2$, Bulletin of Mathematics and Statistics *Research*, 2(1)(2014), 25–31.
- [8] K. Meena, S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, Integer solutions on the homogeneous cone $4x^2 + 3y^2 = 28z^2$, *Bulletin of Mathematics and Statistics Research*, 2(1)(2012), 47–53.
- [9] M.A. Gopalan, S. Vidhyalakshmi and J. Umarani, On the ternary quadratic diophantine equation $6(x^2 + y^2) - 8xy =$ 21*z* 2 , *Sch. J. Eng. Tech.,* 2(2A)(2014), 108–112.
- [10] K. Meena, S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, On homogeneous ternary quadratic diophantine equation $2(x^2 + y^2) - 3xy = 16z^2$, *International Journal of Engineering, Science and Mathematics*, 3(2)(2014), 93–99.
- [11] K. Meena, S. Vidhyalakshmi, S. Divya and M.A. Gopalan, Integral points on the cone $Z^2 = 41X^2 + Y^2$, *Sch. J. Eng. Tech.,* 2(2B)(2014), 301–304.
- [12] M.A. Gopalan, S. Vidhyalakshmi, S. Devibala and J. Umavathy, On the ternary quadratic diophantine equa- $\text{tion } 3(x^2 + y^2) - 5xy = 60z^2$, *International Journal of Applied Research*, 1(5)(2015), 234–238.
- [13] S. Vidhyalakshmi, T. Geetha and R. Sridevi, On ternary quadratic diophantine equation $2x^2 - 7y^2 = 25z^2$, *International Journal of Applied Research*, 1(4)(2015), 111–114.
- [14] M.A. Gopalan, S. Vidhyalakshmi, U.K. Rajalakshmi, On ternary quadratic diophantine equation $5(x^2 + y^2) - 6xy =$ 196*z* 2 , *IJRDO- Journal of Mathematics,* 3(5)(2017), 1– 10.
- [15] S. Vidhyalakshmi, M.A. Gopalan and S. Aarthy Thangam, Observation on the elliptic paraboloid $x^2 + y^2 = 19z$, *Asian Journal of Applied Science and Technology,* 1(9)(2017), 37–39.
- [16] S. Vidhyalakshmi and S. Thenmozhi, On the ternary quadratic diophantine equation $3(X^2 + Y^2) - 5XY =$ 75*Z* 2 , *Journal of Mathematics and Informatics,* 10(2017), 11–19.
- [17] S. Vidhyalakshmi and A. Priya, On the non-homogeneous ternary quadratic diophantine equation $2(x^2 + y^2) - 3xy +$ $(x+y)+1=z^2$, *Journal of Mathematics and Informatics*, 10(2017), 49–55.
- [18] L.J. Mordell, *Diophantine Equations*, Academic press, New York, 1969.

********* ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $* * * * * * * * * * *$

