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Abstract
In this paper, we investigate the different edge geodetic parameters of triangular snake graph, double triangular
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1. Introduction
An edge geodetic set of G is a set S ⊆ V (G) such that

every edge of G is contained in a geodesic joining some pair
of vertices in S. The edge geodetic number g1(G) of G is
the minimum order of its edge geodetic sets. This concept
was introduced in [5]. The concept of split edge geodetic
number (g1s) was introduced in [7]. A. P. Santhakumaran
et al. [6] introduced the concept of restrained edge geodetic
number (egr). In [8] Venkanagouda M Goudar and Shobha
introduced total edge geodetic number (g1t). The concept
of strong split geodetic number (gss) was introduced in [1].
Further the concept of nonsplit geodetic number (gns) was
introduced in [10]. Let Pn : v1,v2, ...,vn be the path of length
n−1.

In this paper, we investigated the edge geodetic number,
split edge geodetic number, strong split geodetic number of
different snake graphs in terms of blocks, regions, vertex
covering number. For more details on this theory, we suggest
the reader to refer [2,3,4,9].

2. Edge geodetic parameters of Snake
graphs

Definition 2.1. The triangular snake Tn is obtained from a
path Pn by joining vi and vi+1 to a new vertex ui.

Theorem 2.2. Let G= Tn be the triangular snake with (n> 3)
then g1(G) = n+1 .

Proof. Let G = Tn. Let | V (G) |= 2n− 1 and | E(G) |=
3(n− 1). Let S = {v1,vn} ∪Q where {v1,vn} are the end
vertices of path Pn and Q = ∪ui are the new vertices joined to
vi and vi+1. Since each edge of G lies on a geodesic joining
any two vertices of S then S is an edge geodetic set of G.
Hence

g1(G) = | S |
= n+1.

Corollary 2.3. For the triangular snake G = Tn (n > 4),
egr(G) = n+1 .

Corollary 2.4. Let Tn (n > 3) be the triangular snake then
gns(Tn) = n+1 .

Corollary 2.5. Let G = Tn be the triangular snake with (n >
3), g1t(G) = n+1 .
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Theorem 2.6. The strong split geodetic number for a trian-
gular snake graph Tn is

gss(G) =

{
3n
2 if n is even ,

3n−1
2 if n is odd .

Proof. Let V (Tn) = {v1,v2, ...vn,u1,u2, ...un−1}
where {v1,v2, ...,vn} ∈V (Pn) and {u1,u2, ...un−1} are the new
vertices joined to vi and vi+1 for 1≤ i≤ n−1 so that a trian-
gle C3 = {vi,wi,vi+1} is obtained. We consider the following
cases:
Case 1 For n is even. Let S = {v1,vn,u1,u2, ...un−1} be the
minimum geodetic set of Tn. But induced subgraph 〈V −S〉
is connected. Consider S

′
= S ∪ {v3,v5, ...vn−1}. Clearly

〈V −S
′〉 is totally disconnected. Therefore

gss(G) = | S′ |,
= | S |+n+1,

=
3n
2
.

Case 2 For n is odd. Consider the geodetic set
S = {v1,vn,u1,u2, ...un−1} and I[S] = V (G). Let S

′
= S∪

{v3,v5, ...vn−2}. Now induced subgraph 〈V −S
′〉 has isolated

vertices. Thus S is the strong split geodetic set. Hence

gss(G) = | S′ |,
= | S |+n+1,

=
3n−1

2
.

Theorem 2.7. For the triangular snake G = Tn with (n > 6),
g1s(G) = r+2 where r is the number of regions in G.

Proof. Let V (G) = {v1,v2, ...vn,u1,u2, ...un−1} where vi ∈
V (Pn) and {u j/1 ≤ j ≤ n− 1} are the new vertices joined
to vi and vi+1. Then |V (G) |= 2n−1 and | E(G) |= 3(n−1).
Let R = {r1,r2,r3, ...rn} be the region set of G where each
region consists of C3 = {vi,ui,vi+1} and | R |= r. Let S =
{v1,vn} ∪Q where {v1,vn} are the end vertices of Pn and
Q = ∪u j. Clearly S is an edge geodetic set of G and V − S
is connected. Let S

′
= S∪{vk} where {vk},3≤ k ≤ n−2 is

any one internal vertex of Pn. Then V − S
′

is disconnected.
Therefore

g1s(G) = | S′ |
= | S∪ vk |
= n+2
= | R |+2
= r+2.

Figure 1. G

Example: For a triangular snake graph T6 given in Figure
1. The empty color vertices is its split edge geodetic set.

S = {v1,u1,u2,u3,u4,u5,v6} is the edge geodetic set so that
g1(T6) = 7 and S

′
= {v1,v3,u1,u2,u3,u4,u5,v6} is the split

edge geodetic set so that g1s(T6) = 8 = 6+2 = r+2.

Definition 2.8. The double triangular snake DTn is obtained
by path Pn by joining vi and vi+1 to a new vertex ui for i =
1,2, ...n− 1 and to a new vertex wi for i = 1,2, ...n− 1. Let
V (G) = {v1,v2, ...vn,u1,u2, ...un−1,w1,w2, ...wn−1} where ui
adjacent to vi and vi+1 in upward direction and wi adjacent
to vi and vi+1 in downward direction.

Theorem 2.9. For the double triangular snake G = DTn (n >
2), g1(G) = b+ r− k where b be the number of blocks , r
be the number of regions and k be the number of internal
vertices.

Proof. Let G = DTn. By Definition 2.8, | V (G) |= 2n− 1
and | E(G) |= 5(n− 1). Let B = {B1,B2, ...Bn−1} be the
blocks such that Bi = {vi,ui,wi,vi+1} for 1 ≤ i ≤ n−1. Let
{R1,R2, ...,R2n−1} be the number of regions and
| {R1,R2, ...,R2n−1} |= r. The set
S= {u1,u2, ...un−1,w1,w2, ...wn−1} forms the minimum geode-
tic set of G. But each edge of G does not lie on geodesic
joining any two vertices of S. Let S

′
= S∪{v1,vn}. Clearly

S
′

is edge geodetic set of G. Hence g1(G) = b+ r− k.

Corollary 2.10. Let G = DTn (n > 4) be the double triangu-
lar snake, then egr(G) = b+ r− k where b be the number of
blocks , r be the number of regions and k be the number of
internal vertices.

Corollary 2.11. For the double triangular snake DTn (n > 2),
gns(DTn) = b+ r− k where b be the number of blocks , r be
the number of regions and k be the number of internal vertices.

Corollary 2.12. Let G = DTn (n > 2) be the double triangu-
lar snake, then g1t(G) = b+ r− k where b be the number of
blocks , r be the number of regions and k be the number of
internal vertices.
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Theorem 2.13. For the double triangular snake DTn (n > 3),

gss(DTn) =

{
5n−4

2 if n≡ 0(mod2),
5(n−1)

2 otherwise .

.

Proof. Let G = DTn. By Definition 2.8, let {ui,wi/1 ≤ i ≤
n−1} be the new vertices added to vi and vi+1 in upward and
downward direction. Let {B1,B2, ...Bn−1} be the blocks of
DTn. Now, the geodetic set of G must have vertices of degree
2 from each block and hence S = {ui,wi} is the geodetic set.
Hence, to attain the minimum strong split geodetic set of DTn,
we construct a vertex set X ⊂V (DTn) as follows:

X =

{
{v1,v3, ...,vn−1,ui,wi} if n≡ 0(mod2),
{v2,v4, ...,vn−1,ui,wi} otherwise

where 1≤ i≤ n−1.
Then

| X |=

{
5n−4

2 if n≡ 0(mod2),
5(n−1)

2 otherwise .

Since each vertex in V (DTn) is either in X or is adjacent to
a vertex in X , it follows that X is the minimum strong split
geodetic set as <V −X > is totally disconnected. Thus,

gss(DTn) =

{
5n−4

2 if n≡ 0(mod2),
5(n−1)

2 otherwise .

Theorem 2.14. For the double triangular snake G = DTn
(n > 6), g1s(G) = 2n+1.

Proof. By Definition 2.8,
let V (G) = {v1,v2, ...vn,u1,u2, ...un−1,w1,w2, ...wn−1} such
that | V (G) |= 2n− 1 and | E(G) |= 5(n− 1) . Let S =
S1∪S2∪S3 where

S1 = {v1,vn}
S2 = ∪{wi}
S3 = ∪{ui}

and 1 ≤ i ≤ n− 1. Then S is an edge geodetic set. But
< V − S > is connected , consider S

′
= S∪ {v j},3 ≤ j ≤

n−2 is any one internal vertex of Pn. Clearly <V −S
′
> is

disconnected. Therefore

g1s(G) = | S′ |
= 2n+1.

Definition 2.15. An alternate triangular snake ATn is ob-
tained from a path Pn by joining vi and vi+1 alternatively to
a new vertex ui where 1≤ i≤ n for n even and 1≤ i≤ n−1
for n odd .

Theorem 2.16. Let G = ATn (n > 3) be the alternate trian-
gular snake, then g1(G) = b n

2c+2.

Proof. Let G = ATn. By Definition 2.15

V (G) =

{
3n
2 if n≡ 0(mod2),
3(n−1)

2 +1 if n≡ 1(mod2) .

In order to obtain the geodetic set of G, the set must contain
vertices of degree two in each cycle for n even while for n
odd, it must contain the vertices of degree two and a pendent
vertex. Hence, in order to attain the minimum cardinality of a
vertex set of G, we can construct the vertex set of G as follows:

S =

{
{v1,vn,u1,u2, ...,u n

2
} if n is even,

{v1,vn,u1,u2, ...,u n−1
2
} if n is odd .

Clearly S is also an edge geodetic set of G. Then g1(G) =|
S |= b n

2c+2

Corollary 2.17. Let G = ATn (n > 4) be the alternate trian-
gular snake, then egr(G) = b n

2c+2.

Corollary 2.18. Let G = ATn (n > 3) be the alternate trian-
gular snake, then gns(G) = b n

2c+2.

Theorem 2.19. For the alternate triangular snake ATn (n >
5),

gss(ATn) =

{
n+1 if n is even,
n otherwise .

.

Proof. Let ATn be the alternate triangular snake graph ob-
tained by replacing every alternate edges of Pn by a triangle
C3. Let U = {v1,v2, ...,vn} be the vertices of path Pn and
W = {u1,u2, ...,ub n

2 c} be the new vertices which are joined
alternatively to vi and vi+1 such that V (ATn) = U ∪W . We
discuss the following cases:
Case 1 Let n be even. Let S= S1∪S2 where S1 = {v1,vn}⊆U
and S2 = {u1,u2, ...,u n

2
} ⊆W having n

2 vertices. Let S be the
minimum set of vertices, such that I[S] =V (ATn) and the set
of vertices of the induced subgarph < V (ATn)− S > is con-
nected. Let S

′
= S∪{v2,v4, ...vn−2}. Clearly <V (ATn)−S >

has isolated vertices. Therefore gss(ATn) =| S
′ |= n+1.

Case 2 Let n be odd. Consider S = {v1,vn,u1,u2, ...,ub n
2 c} be

the geodetic set of ATn. But < S > has one component. Let
S
′
= S∪{v3,v5, ...vn−2}. Clearly < V (ATn)− S

′
> is totally

disconnected. Hence gss(ATn) =| S
′ |= n.

Theorem 2.20. Let G = ATn (n > 6) be the alternate trian-
gular snake, then g1s(G) = b n

2c+1.

Proof. Let G = ATn. We have the following cases:
Case 1 Suppose n is even. Let V (G)=

{
v1,v2, ...vn,u1,u2, ...u n

2

}
.

Let S = S1∪S2 where

S1 = {u1,u3, ...,un−1}
S2 = {vn}
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Here S is the edge geodetic set with minimum cardinality
containing n+2

2 vertices. Then < V − S > is disconnected.
Therefore

g1s(G) = | S |

=
n
2
+1

Case 2 Suppose n is odd. Let
V (G)=

{
v1,v2, ...vn,u1,u2, ...u n−1

2

}
. Let S= {u1,u3, ...,un−2,

vn}. Clearly S is the edge geodetic set with minimum cardinal-
ity containing b n

2c+1 vertices. But <V−S> is disconnected.
Therefore S is split edge geodetic set. Hence

g1s(G) = | S |

= bn
2
c+1

Definition 2.21. The double alternate triangular snake DATn
consists of two alternate triangular snake which have a com-
mon path.

Theorem 2.22. Let G=DATn (n> 4) be the double alternate
triangular snake, then

g1(G) =

{
b+3 if n≡ 0(mod2),
b+2 if n≡ 1(mod2).

where b is the number of blocks.

Proof. Let V (G) =
{

vi,u j,w j
}

for 1 ≤ i ≤ n,1 ≤ j ≤ b n
2c

where vi are the vertices of Pn and u j,w j are the vertices
obtained from a path Pn : v1,v2, ...vn by joining vi and vi+1
alternatively. Then

V (G) =

{
2n if n is even ,
2n−1 if n is odd .

Let B= {B1,B2} be the blocks of G, where B1 = {b1,b2, ...,b n
2
}

and B2 = {b′1,b
′
2, ...,b

′
n−1

2
} such that bi = {vi,ui,wi,vi+1},

b
′
i = {vi+1,vi+2} and | B |= b.

Let us consider the following cases:
Case 1 when n is even. Let S = {u1,u2, ...,u n

2
,w1,w2, ...,w n

2
}

be the geodetic set of G. But S is not edge geodetic set. Let
S
′
= S∪{v1,vn} . Clearly S

′
is an edge geodetic set. Hence

g1(G) = b+3.
Case 2 when n is odd. Let S = {u1,u2, ...,u n

2
,w1,w2, ...,w n

2
}

be the geodetic set of G . Let S
′
= S∪{v1,vn} . Clearly S

′
is

an edge geodetic set. Hence g1(G) = b+2.

Corollary 2.23. For the double alternate triangular snake
G = DATn (n > 4),

egr(G) =

{
b+3 i f n≡ 0(mod2) ,
b+2 i f n≡ 1(mod2).

where b is the number of blocks.

Corollary 2.24. For the double alternate triangular snake
G = DATn (n > 5) ,

g1t(G) =

{
3n
2 if n is even ,
3n−1

2 if n is odd.

where b is the number of blocks.

Theorem 2.25. The strong split geodetic number of double
alternate triangular snake G = DATn (n > 5) is,

gss(G) =

{
3n
2 if n is even ,
3n−1

2 if n is odd.

Proof. Let G = DATn. Let
V (G) = {v1,v2, ...,vn,u1,u2, ...,u n

2
,w1,w2, ...,w n

2
} be the ver-

tex set of G. We discuss the following cases:
Case 1 Suppose n is even. Consider S = {S1,S2,S3} where
S1 = ∪ui/1 ≤ i ≤ n

2 and S2 = ∪wi/1 ≤ i ≤ n
2 . Now, < V −

S > contains the set of vertices {vi} for 1 ≤ i ≤ n such that
deg(vi) 6= 0. Then S is not strong split geodetic set. Let
S
′
= {vk/1 ≤ k ≤ n− 1} which are all non adjacent ver-

tices. Clearly <V −S
′
> is totally disconnected. Therefore,

gss(G) =| S′ |= 3n
2 .

Case 2 Suppose n is odd. Let S= {u1,u2, ...,u n
2
,w1,w2, ...,w n

2
,vn}

be the minimum geodetic set of G. Let S
′
= S∪ {vk} for

1 ≤ k ≤ n− 1. Clearly induced subgraph < V − S
′
> has

isolated vertices. Therefore gss(G) =| S′ |= 3n−1
2 .

Theorem 2.26. Let G=DATn (n> 6) be the double alternate
triangular snake, then

g1s(G) =

{
n+3 if n is even ,
n+2 if n is odd .

Proof. Let G be the double alternate triangular snake with
V (G)= {v1,v2, ..., vn,u1,u2, ...,ub n

2 c,w1,w2, ...,wb n
2 c}We dis-

cuss the following cases:
Case 1 For n is even, |V (G) |= 2n. Let S = {v1,vn}∪S1∪S2
where S1 = ∪u j and S2 = ∪w j /1 ≤ j ≤ b n

2c. Thus I[S] =
V (G). Clearly S is an edge geodetic set. But < V − S > is
connected. Consider S

′
= S∪{vk}, 3 ≤ k ≤ n− 2 where vk

is any one internal vertex so that <V −S
′
> is disconnected.

Thus S
′

is the split edge geodetic set. Therefore

g1s(G) = | S′ |
= S+1
= 2+

n
2
+

n
2
+1

= n+3.

Case 2 For n is odd, | V (G) |= 2n− 1. Let S = {v1,vn}∪
{u j}∪{w j}. Thus I[S] =V (G). Clearly S is an edge geodetic
set. But <V −S > is connected. Consider S

′
= S∪{vk} for
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3 ≤ k ≤ n− 2 where {vk} is the only internal vertex so that
<V −S

′
> is disconnected. Therefore

g1s(G) = | S′ |
= S+1
= n+2.

Example: For the Double alternate triangular snake graph
DAT7 given in Figure 2. The empty color vertices is its split
edge geodetic set.

Figure 2. G

S = {v1,u1,u2,u3,w1,w2,w3,v7} is the edge geodetic set so
that g1(DAT7) = 8 and S

′
= {v1,u1,u2,u3,v3,w1,w2,w3,v7}

is the split edge geodetic set. Therefore g1s(DAT7) = 9.

Definition 2.27. A quadrilateral snake Qn is obtained from
a path Pn by joining vi and vi+1 to new vertices ui and wi
respectively and then joining ui and wi for 1≤ i≤ n−1 that
is every edge of a path is replaced by a cycle C4.

Theorem 2.28. For the quadrilateral snake G = Qn,(n > 2),
g1(G) = d−2 where d is the diameter of G.

Proof. In order to obtain Qn replace every edge of Pn by
a cycle C4. Let | V (G) |= 3n− 2 and | E(G) |= 4(n− 1).
Let B = {B1,B2, ...,Bn−1} be the blocks of G. Let {ui,wi}
be the vertices of the block Bi for 1 ≤ i ≤ n− 1. Let S =
{u1,u2, ...,un−2,wn−1} be the geodetic set of G. Clearly all
the edges lie on any geodesic joining a pair of vertices of S and
hence S is also an edge geodetic set of G. Since d(ui,wn−1) =
diam(G) = n+1 we have g1(G) =| S |= d−2.

Corollary 2.29. For the quadrilateral snake G = Qn (n > 3),
egr(G) = d−2 where d is the diameter of G.

Corollary 2.30. For the quadrilateral snake G = Qn (n > 2),
gns(G) = d−2 where d is the diameter of G.

Theorem 2.31. Let G=Qn (n> 3) be the quadrilateral snake
then gss(G) = b+n−2 where b is the number of blocks.

Proof. Let G = Qn. By Definition 2.27,
V (G) = {v1,v2, ...,vn,u1,u2, ...,un−1, w1,w2, ...,wn−1}. Let
B = {B1,B2, ...Bn−1} be the blocks of G where each block
contains 4 vertices such that 3 vertices are of degree 2 and one
vertex is of maximum degree 4 which is a common vertex for
adjacent blocks and | B |= b. Let S = {u1,u2, ...,un−2,wn−1}
be the geodetic set. But induced subgraph <V −S > is con-
nected. Let S

′
= S∪{vk/2 ≤ k ≤ n− 1} where 4(vk) = 4.

Clearly induced subgraph <V −S
′
> is an independent set.

Hence gss(G) =| S′ |= b+n−2.

Theorem 2.32. For the quadrilateral snake G = Qn (n > 4),
g1s(G) = n.

Proof. Let G = Qn. Let V (G) = V1 ∪V2 ∪V3 where V1 =
{vi/1≤ i≤ n},V2 = {u j/1≤ j ≤ n−1},V3 = {w j/1≤ j ≤
n− 1}. Then | V (G) |= 3n− 2 and | E(G) |= 4(n− 1). Let
S = {u1,u2, ...u j,vn} be the edge geodetic set of G. Clearly,
< V − S > has two components. Therefore g1s(G) =| S |=
n−1+1 = n.

Definition 2.33. The double quadrilateral snake DQn is ob-
tained by path Pn by joining vi and vi+1 to new vertices ui,wi
for i = 1,2, ...n− 1 in upward direction and u

′
i,w

′
i for i =

1,2, ...n − 1 in downward direction. Let
V (G) = {v1,v2, ...vn,u1,u2, ...un−1,w1,w2, ...wn−1,

u
′
1,u

′
2, ...u

′
n−1,w

′
1,w

′
2, ...w

′
n−1}.

Theorem 2.34. For the double quadrilateral snake DQn (n >
3), g1(DQn) =

m
7 +n−1 where m is the number of edges in

DQn.

Proof. Let G = DQn. By Definition 2.33, |V (DQn) |= 5n−
4 and | E(DQn) |= 7(n− 1). Let {B1,B2, ...,Bn−1} be the
blocks of DQn. Now, consider S = {u j,w

′
j} such that in each

block d(u j,w
′
j) = 3 be the geodetic set of G. Since every edge

of G lies on a geodesic joining u j and v
′
j, then S is also an

edge geodetic set of G. Therefore, g1(G) = m
7 +n−1.

Corollary 2.35. For the double quadrilateral snake DQn (n>
3), egr(DQn) =

m
7 +n−1 where m is the number of edges in

DQn.

Corollary 2.36. Let G = DQn,(n > 3) be the double quadri-
lateral snake , then gns(G) = m

7 +n−1 where m is the number
of edges in DQn.

Theorem 2.37. Let G = DQn be the double quadrilateral
snake (n > 4), gss(DQn) = 3n−3.

Proof. Let G be a double quadrilateral snake. Let V (G) =
{v1,v2, ...,vn,u1,u2, ...,un−1,w1,w2, ...,wn−1}. Consider
S= {u1,u2, ...,un−2,wn−1,u

′
1,u

′
2, ...,u

′
n−2, w

′
n−1} be the geode-

tic set of G. Let S
′
= S∪{v2,v3, ...,vn−1} such that I[S

′
] =

V (G). Since < V − S
′
> contains isolated vertices, then

gss(G) =| S′ |= 3n−4.
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Theorem 2.38. For the double quadrilateral snake G = DQn
(n > 4), g1s(G) = 2n−1.

Proof. Let V (G)=V1∪V2∪V3∪V4∪V5 where V1 = {v1,v2, ...vn},
V2 = {u1,u2, ...un−1}, V3 = {w1,w2, ...wn−1},
V4 = {u

′
1,u

′
2, ...u

′
n−1}, V5 = {w

′
1,w

′
2, ...w

′
n−1}.

Let S = {u1,u2, ...un−1,w
′
1,w

′
2, ...w

′
n−1} be the edge geodetic

set. Choose any two vertices of S such that d(ui,w
′
i) = 3. Then

< V − S > is connected so that S is not split edge geodetic
set. Let S

′
= S∪{vk} where {vk/2≤ k ≤ n−1} is only one

internal vertex of path Pn. But < V − S > is disconnected,
therefore g1s(G) =| S′ |= 2n−2+1 = 2n−1.

Example: For a double quadrilateral snake graph DQ5
given in Figure 3. The empty color vertices is its split edge
geodetic set.

Figure 3. G

S = {u1,u2,u3,u4,w
′
1,w

′
2,w

′
3,w

′
4} is the edge geodetic set

so that g1(DQ5)= 8 and S
′
= {v2,u1,u2,u3,u4,w

′
1,w

′
2,w

′
3,w

′
4}

is the split edge geodetic set. Therefore g1s(DQ5) = 9.

Definition 2.39. The alternate quadrilateral snake AQn is
obtained from a path by joining vi and vi+1(alternatively) to
new vertices ui and wi respectively and then joining ui and wi.

Theorem 2.40. Let G = AQn(n > 4) be an alternate quadri-
lateral snake, then

g1(G) =

{
d b

2e if n≡ 0(mod2) ,
b+2

2 if n≡ 1(mod2) .

where b is the number of blocks.

Proof. Let G = AQn. Let {B1,B2} be the number of blocks in
G such that | {B1,B2} |= b. We observe that
B1 = {b1,b2, ...,bd n

2 e} where each block {bi/1≤ i≤ d n
2e} is

C4 such that b1 = {v1,u1,w1,v2},b2 = {v3,u2,w2,v4}, ...,bd n
2 e=

{vn−1,ud n
2 e,wd n

2 e,vn} and B2 = {b
′
1,b

′
2, ...,b

′
d n

2 e
} where each

block b
′
i/1≤ i≤d n

2e is K2 such that b
′
1 = {v

′
1,u

′
1,w

′
1,v

′
2},b

′
2 =

{v′3,u
′
2,w

′
2,v

′
4}, ...,b

′
d n

2 e
= {v′n−1, u

′
d n

2 e
,w
′
d n

2 e
,v
′
n}. We have the

following cases:
Case 1 Let n≡ 0(mod2).
Let S = {u1,u2, ...,u n−2

2
,w n

2
} be the geodetic set where

{u1,u2, ...,u n−2
2
} and {w n

2
} are the vertices choosen from

block B1. Since every edge of G lies on a geodesic join-
ing any two vertices in S, then g1(G) =| S |= d b

2e.
Case 2 Let n≡ 1(mod2).
Let S = {u1,u2, ...,u n−3

2
,w n−1

2
,vn} be the minimum geode-

tic set where {u1,u2, .., u n−3
2
} and {w n−1

2
} are the vertices

choosen from block B1. Clearly S is an edge geodetic set of
G. Therefore, g1(G) =| S |= b+2

2 .

Corollary 2.41. Let G = AQn(n > 4) be an alternate quadri-
lateral snake , then

egr(G) =

{
d b

2e if n≡ 0(mod2) ,
b+2

2 if n≡ 1(mod2) .

where b is the number of blocks.

Corollary 2.42. For an alternate quadrilateral snake G =
AQn(n > 4) ,

gns(G) =

{
d b

2e if n≡ 0(mod2) ,
b+2

2 if n≡ 1(mod2) .

where b is the number of blocks.

Theorem 2.43. For an alternate quadrilateral snake AQn(n>
4) , then

gss(AQn) =

{
α0 if n is even ,
α0−1 if n is odd .

Proof. Let V (AQn)= {v1,v2, ...vn,u1,u2, ...u n
2
,w1,w2, ...w n

2
}

and α0 is the vertex covering number of AQn.
We have the following cases:
Case 1 For n is even.
Let S = {u1,u2, ...u n−2

2
,w n

2
} be the geodetic set of G. But <

V −S > is connected . Let S
′
= S∪{v2,v4, ...,vn−2}∪{vn−1}.

Clearly <V −S
′
> has isolated vertices. Hence,

gss(G) = | S′ |
= n

= α0

Case 2 For n is odd.
Let S = {u1,u2, ...u n−3

2
,w n−1

2
,vn} be the minimum geodetic

set of G. Let S
′
= S∪{v2,v4, ...,vn−2}. Clearly <V −S

′
> is

totally disconnected. Hence,

gss(G) = | S′ |
= n−1
= α0−1
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Theorem 2.44. Let G = AQn(n > 4) be an alternate quadri-
lateral snake , then

g1s(G) =

{
n+2

2 if n≡ 0(mod2) ,
n+3

2 if n≡ 1(mod2) .

Proof. Let G = AQn and by Definition 2.39

V (G) =

{
2n if n≡ 0(mod2)
2n−1 if n≡ 1(mod2)

Let V (G) = {V1,V2,V3} where V1 = {v1,v2, ...vn},
V2 = {u1,u2, ...u n

2
}, V3 = {w1,w2, ...w n

2
}. We have the fol-

lowing cases:
Case 1 Let n be even. Let S = {u1,u2, ...u n−2

2
,w n

2
}. Then S

is an edge geodetic set. But < V − S > is connected. Let
S
′
= S∪{v j} where {v j} for 2≤ j≤ n−1 is any one internal

vertex of Pn. But <V −S
′
> has two components. Therefore,

g1s(G) = | S′ |
= S+{v j}

=
n+2

2

Case 2 Let n be odd. Let S = {u1,u2, ...u n−3
2
,w n

2
,vn}. Clearly

S is the minimum edge geodetic set. But < V − S > is con-
nected. Let S

′
= S∪{v j} where {v j,2 ≤ j ≤ n− 1} is any

one internal vertex of Pn. Clearly, <V −S
′
> is disconnected,

therefore

g1s(G) = | S′ |
= S+{v j}

=
n+3

2

Example: For an alternate quadrilateral snake graph AQ7
given in Figure 4. The empty color vertices is its split edge
geodetic set.

Figure 4. G

S= {u1,u2,u3,v7} is the edge geodetic set so that g1(AQ7)=

4 and S
′
= {v2,u1,u2,u3,v7} is the split edge geodetic set.

Therefore g1s(AQ7) = 5.

Definition 2.45. The double alternate quadrilateral snake
DAQn consists of two alternate quadrilateral snakes that have
a common path.

Theorem 2.46. Let G = DAQn(n > 4) be double alternate
quadrilateral snake , then g1(G) = n.

Proof. Let G = DAQn be the graph obtained from joining vi
and vi+1 alternatively to new vertices ui,u

′
i and wi,w

′
i respec-

tively. Then

V (G) =

{
3n if n≡ 0(mod2)
3n−2 if n≡ 1(mod2)

We have the following cases:
Case 1 Let n be even. Let V (G) =V1∪V2∪V3∪V4∪V5 where
V1 = {v1,v2, ...vn}, V2 = {u1,u2, ...u n

2
}, V3 = {w1,w2, ...w n

2
},

V4 = {u
′
1,u

′
2, ...u

′
n
2
}, V5 = {w

′
1,w

′
2, ...w

′
n
2
} such that ui,u

′
i and

wi,w
′
i are the new vertices added in upward and downward di-

rection to vi and vi+1 for 1 ≤ i ≤ n − 1.
Let S = {u1,u2, ...u n

2
,w
′
1,w

′
2, ...w

′
n
2
}. Choose the vertices of

S such that d(ui,w
′
i) = 3. Clearly S is the minimum edge

geodetic set of G. Therefore,

g1(G) = | S′ |

=
n
2
+

n
2

= n

Case 2 Let n be odd. Let V (G) =V1∪V2∪V3∪V4∪V5 where
V1 = {v1,v2, ...vn}, V2 = {u1,u2, ...u n−1

2
}, V3 = {w1,w2, ...w n−1

2
},

V4 = {u′1,u
′
2, ...u

′
n−1

2
}, V5 = {w′1,w

′
2, ...w

′
n−1

2
}.

Let S = {u1,u2, ...u n−1
2
,w
′
1,w

′
2, ...w

′
n−1

2
,vn}. Choose the ver-

tices of S such that d(ui,w
′
i) = 3. Therefore S is an edge

geodetic set of G. Hence,

g1(G) = | S′ |

=
n−1

2
+

n−1
2

+1
= n

Corollary 2.47. Let G = DAQn(n > 4) be double alternate
quadrilateral snake , then egr(G) = n.

Corollary 2.48. For double alternate quadrilateral snake
DAQn(n > 4), gns(DAQn) = n.

Theorem 2.49. For double alternate quadrilateral snake
DAQn(n > 4),

gss(DAQn) =

{
3n
2 if n is even ,
3n−1

2 if n is odd .
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Proof. Let G = DAQn. Let V (G) = {v1,v2, ...,vn,u1,u2,u n
2

w1,w2, ...,w n
2
,u
′
1, u

′
2, ...,u

′
n
2
,w
′
1,w

′
2, ...,w

′
n
2
} .

We discuss the following cases:
Case 1 Let n be even.
Consider S = {u1,u2, ...u n−2

2
,w n

2
,u
′
1,u

′
2, ...u

′
n−2

2
,w
′
n
2
}. Clearly

S is a geodetic set of G. But <V −S > is connected. Let S
′
=

S∪{v2,v4, ...,vn−1}. Clearly < V − S
′
> is an independent

set and hence

gss(G) = | S′ |

=
3n
2
.

Case 2 Let n be odd.
Let S = {u1,u2, ...u n−1

2
,u
′
1,u

′
2, ...u

′
n−1

2
,vn} be the minimum

geodetic set of G. But <V −S > is connected. Consider S
′
=

S∪{v2,v4, ...,vn−1}. Clearly < V − S
′
> is an independent

set and therefore,

gss(G) = | S′ |

=
3n−1

2
.

Theorem 2.50. For double alternate quadrilateral snake
DAQn(n > 4), g1s(G) = n+1.

Proof. Let G = DAQn . Let V (G) = {v1,v2, ...,vn,u1,u2,u n
2
,

w1,w2, ...,w n
2
,u
′
1,u

′
2, ...,u

′
n
2
,w
′
1,w

′
2, ...,w

′
n
2
}.

We have the following cases:
Case 1 Let n be even.
Let S = {u1,u2, ...u n

2
,w
′
1,w

′
2, ...w

′
n
2
}. Choose the vertices such

that d(ui,w
′
i) = 3. Then S is an edge geodetic set. Let S

′
=

S∪{vk} where {vk} for 2 ≤ k ≤ n− 1 is only one internal
vertex of Pn. Then V −S

′
is disconnected. Therefore,

g1s(G) = | S′ |

=
n
2
+

n
2
+1

= n+1

Case 2 Let n be odd.
Let S= {u1,u2, ...u n−1

2
,w
′
1,w

′
2, ...w

′
n−1

2
,vn} such that d(ui,w

′
i)=

3. Clearly S is an edge geodetic set. But V −S is connected.
Hence S is not split edge geodetic set. Let S

′
= S∪{vk} where

{vk} for 2≤ k≤ n−1 is only one internal vertex of Pn. Since
<V −S

′
> is disconnected, then

g1s(G) = | S′ |

=
n−1

2
+

n−1
2

+2

= n+1

3. Conclusion
In this paper, edge geodetic parameters for some snake

graphs like triangular snake graph, double triangular snake
graph, alternate triangular snake graph, double alternate trian-
gular snake graph, quadrilateral snake graph, double quadrilat-
eral snake graph, alternate quadrilateral snake graph, double
alternate quadrilateral snake graph are determined.
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