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Abstract
In this paper, a prey predator model for native population with SI infection in exotic population is developed and
analyzed. A model with prey predator interaction in native population and exotic predator having the risk of
infection is suggested to observe the transmission of disease from exotic predators to native population. Disease
free equilibrium points (in presence and absence of predator) and endemic equilibrium points are calculated.
Conditions for the existence and boundedness of equilibrium points have been derived. The local stability
analysis of the model system around the all biologically feasible equilibrium points is discussed. We perform
global dynamics of the model using Lyapunov theorem for endemic equilibrium point. We compare the growth of
population in terms of ecological sensitive parameters predation rate (η3) , carrying capacity of environment (K)
and transmission rate of disease (β ) with the help of suitable graphs.
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1. Introduction

In modern era, Prey predator interaction is one of the chal-
lenging issue among researchers. Its complication is raised in
presence of disease either in prey or in predator or in both. We
cannot ignore these natural phenomena of regulating popula-
tion structure [1]. The disease spread in prey population, gen-
erally through contact with infected prey, whereas in predator
population occurred either through consumption of infected
preys [3–5] or by contact with infected predator [3, 6].

Many researchers have suggested several models to anal-
ysis effect of disease in interacting species system. Haque
(2010) studied the SIS predator–prey model with infection
spreading through the predator species only. It was shown
that infection in the predator species may save the prey from
death even if the basic reproduction number was less than one,
for which the prey to be able to occupy the predator. Pal et al.
(2014) gave a predator–prey model with disease in predator
species only. They showed that for some values of the preda-
tion rate all species could be survived and the disease did not
transmit in the predator population. Han et al. (2001) studied
four predator prey models in which disease spreads in both
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the prey and predator. They showed that when the disease
exists in the prey population and also the predators feed suffi-
ciently to survive, then disease will also persist in the predator
population. Venturino (2002) gave two mathematical models
with disease in the predators. Disease transmission involved
both mass action and standard incidence rates, respectively.
In the two models, it was assumed that the disease spreads
among predators only and the infection in individuals do not
reproduce. Stability analysis of the solutions of the two mod-
els was done to see the effect of the disease in the predator
species and on the ecological system, also the sound prey can
affect the dynamics of the disease in the predator population.
Zhang and Sun (2005) suggested a predator–prey model with
disease in the predator. General functional response and suf-
ficient conditions were found out for the permanence of the
ecological system.

Keeping in the view above discussion, we have concen-
trate to frame and analysis a model to see the effect of disease
spread to native population from exotic infected predators.
This paper is arranged in following manner. Section 2 in-
cludes formulation of model with help basic assumptions and
non linear differential equations. Section 3 contains bounded
region for the solution of the model. Section 4 has conditions
for existence of biological feasible disease free and endemic
equilibrium points. Section 5 carries conditions for local and
global stability of model system around equilibrium points.
In section 6 numerical simulation for all equilibrium points
has been performed and also results have been depicted by
graphs. In section 7 conclusion for growth of all the species
with respect to sensitive parameters is discussed to support
the analysis.

2. Mathematical Model
In this section, we have taken Native prey population (P),
Native predator population (Q), Exotic susceptible predator
population (Qs) and Exotic infected predator population (Qi)
as interacting species.In our model, Prey predator type of
interaction is considered for native population. Native prey
population (P) grows logistically with term rP

(
1− P

K

)
and

this population is decreased by term η1PQ
1+k1P+k2Q + η2PQS

1+k1P+k2QS
+

η3PQi
1+k1P+k2Qi

. Native predator, Exotic susceptible predator and
Exotic infected predator consume native susceptible preys.
η1, η2 and η3 denotes predation rate of Q, Qs and Qi on
preys P, respectively. Since the infected predator Qi is weaker
than uninfected predators Q and Qs. so we have assumed
η3 < η1 and η3 < η2. Native predator population (Q) is in-
creased by predation of preys with αη1PQ

1+k1P+k2Q and decrease
by natural death rate dQ. Exotic predator population (Qs)

has recruitment rate ∆, which is increased by αη2PQS
1+k1P+k2QS

. It
is assumed that disease transmits only from exotic infected
predator to exotic susceptible predator. Suppose β is the trans-
mission rate of disease. In this model, cause of infection and
prevalence are ignored. Hence this population is decreased by
βQsQi and natural death rate dQS. Exotic infected predator

Table 1. Description of parameters
Parameters Description
P Native prey population.
Q Native predator population.
Qs Exotic susceptible predator population.
Qi Exotic infected predator population.
r Intrinsic growth rate of prey population.
K The carrying capacity of the environment
k1 Half saturation constant.
k2 Magnitude of interference among predators.
α Conversion efficiency. (0 < α < 1)
β Disease transmission rate
∆ Recruitment rate of exotic predator popula-

tion.
η1 Search rate of exotic prey by native preda-

tors.
η2 Search rate of exotic prey by exotic suscep-

tible predators.
η3 Search rate of exotic prey by exotic infected

predators. (η1 and η2 > η3)
d Natural death rate of predator.
σ Disease induced death rate of infected preda-

tor population.

population (Qi) is increased due to infection βQSQi and pre-
dation αη3PQi

1+k1P+k2Qi
. It is decreased by natural death rate dQi

and disease induced death rate σQi. Recovery and immunity
of infected predators are neglected.

On the basis of above discursion, we have developed a
mathematical model with the help of following system of
ordinary differential equations given below;

dP
dt

= rP
(

1− P
K

)
− η1PQ

1+ k1P+ k2Q
− η2PQS

1+ k1P+ k2QS

− η3PQi

1+ k1P+ k2Qi

Figure 1. Diagramic representation of the proposed
model
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dQ
dt

=
αη1PQ

1+ k1P+ k2Q
−dQ (2.1)

dQS

dt
= ∆−βQSQi +

αη2PQS

1+ k1P+ k2QS
−dQS

dQi

dt
= βQSQi +

αη3PQi

1+ k1P+ k2Qi
− (d +σ)Qi

Associated initial conditions for the above model are as fol-
lows:
P(0)> 0, Q(0)> 0, Qs(0)> 0 and Qi(0)> 0.

3. Bounded Region
To find out the bounded region for the solution of system (2.1)
let us assume,
V (P, Q, Qs, Qi) = P+ Q+ Qs + Qi
differentiating V with respect to t and using system (2.1). We
have,

dV
dt
≤ rP

(
1− P

K

)
+∆−d (Q+QS +Qi)−σQi

≤ P
(

r
(

1− P
K

)
+1
)
+∆−P−d (Q+QS +Qi)−σQi

≤ P(r+1)+∆−P−d (Q+QS +Qi)−σQi.

In particular, lim
t→∞

sup P(t)≥
∗
K, since dP

dt ≤ r
(
1− P

K

)
,

where
∗
K = max{P(0),K} Thus,

P(t) is bounded and defined on [0,∞)∀t ≥ 0.
dV
dt +mV ≤ (r+1)

∗
K+∆,

where m = min{1,d,d +σ} .
now applying tools of the theory of differential inequality we
get,

0 <V (P, Q, Qs, Qi)≤ ∆+
∗
K(r+1)

m + e−mtV (0)

which gives 0 <V (P, Q, Qs, Qi)≤ ∆+
∗
K(r+1)

m as t→ ∞

So all the solutions of system (2.1) with respect to initial val-
ues are confined i.e. uniformly bounded in the region.

Γε = {(P,Q,Qs,Qi) ∈ R4
+ :

P+Q+Qs +Qi ≤
∆+

∗
K(r+1)

m
+ ε}. (3.1)

4. Equilibrium points and their existence
The system possesses following feasible biological equilib-
rium points given below;

4.1 The trivial equilibrium point
The trivial equilibrium point of system (2.1) is B0(0,0,0,0).

4.2 Disease-free equilibrium point without Preda-
tor

Disease-free equilibrium point without Predator of system
(2.1) is B1 (K,0,0,0).

4.3 Disease-free equilibrium point with Predator
Disease-free equilibrium point with Predator of system (2.1)

is B2

(
∧
P,
∧
Q,
∧

Qs,0
)

where
∧
Q = (αη1−dk1)

∧
P−d

dk2
,

∧
P and

∧
Qs can be evaluated by the following set of two equa-

tions

c1
∧
P

2
+ c2

∧
P+c3

∧
Qs+c4 = 0

e1
∧

Qs

2
+ e2

∧
Qs
∧
P+e3

∧
Qs+e4

∧
P+e5 = 0

Where
c1 =−αr

K , c2 =
(

αr− (αη1−dk1)
k2

)
, c3 =−d, c4 =

(
∆+ d

k2

)
,

e1 =−dk2,e2 = (αη2−dk1) , e3 = (∆k2−d) , e4 = ∆k1 and
e5 = ∆.
using Descartes’ rule of signs, we can easily conclude that
∧
P and

∧
Qs have at least one positive value. Thus equilibrium

point B2 exists if
∧
P > d

(αη1−dk1)
and αη1 > dk1.

4.4 Endemic equilibrium point

Endemic equilibrium point of system (2.1) is B3

(
∗
P,
∗

Q,
∗

Qs,
∗

Qi

)
where
∗
Q= (αη1−dk1)

∗
P−d

dk2
and

∗
Qi =

1
k2

 αη3
∗
P(

(d+σ)−β
∗

Qs

) −(1+ k1
∗
P
),

∗
P and

∗
Qs can be calculated by the following set of two equa-

tions

f1
∗
P

2 ∗
Qs + f2

∗
P

2
+ f3

∗
Qs

2
+ f4

∗
P
∗

Qs + f5
∗
P+ f6

∗
Qs + f7 = 0

g1
∗

Qs

2 ∗
P

2
+g2

∗
Qs

3 ∗
P+g3

∗
Qs
∗
P

2
+g4

∗
P
∗

Qs

2
+g5

∗
Qs

3
+g6

∗
Qs
∗
P+g7

∗
QS

2
+

g8
∗

QS +g9
∗
P+g10 = 0

where
f1 =

rαβk2
K , f2 =− rα(d+σ)k2

K , f3 = dk2β ,
f4 =−β (k2rα− (αη1−dk1)+(d +σ)k1),
f5 =((k2rα− (αη1−dk1)+(d +σ)k1)(d +σ)− (d +σ)αη3),
f6 =−(d(d +σ)k2 +(k2∆+2d +σ)β ),
f7 = (k2∆+2d +σ)(d +σ),
g1 =−β 2k2

1,g2 =−β 2k1k2,g3 = ((d +σ)k1−αη3)βk1,
g4 =−((η2 +η3)αk2− k1k2d +2k1β − (d +σ)k1k2)β ,
g5 = {k2d−β}βk2,
g6 =(αη2− k1d)(d+σ)k2+2k1(d+σ)β−αβη3−∆βk1k2,
g7 =−

{
d(d +σ)k2

2 +(d +σ)βk2 +(k2∆−d)βk2 + k2β 2
}
,

g8 = {(k2∆−d)(d +σ)k2 +(d +σ)β −∆βk2},
g9 = k1∆(d +σ)k2,g10 = ∆(d +σ)k2.
using Descartes’ rule of signs, we reach to the conclusion that
∗
P and

∗
Qs have at least one positive value.
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Thus equilibrium point B3 exists if
∗
P > d

(αη1−dk1)
,αη1 > dk1,

(d+σ)
β

>
∗

Qs >
k1(d+σ)−αη3

k1β
.

5. Stability Analysis

5.1 Local stability analysis
To observe local stability of system (2.1) around all feasible
points, first we calculate variational matrix and using stability
theorem we determine the stability of model system.

5.1.1 Local stability behaviour of the system around B0
The variational matrix of the system (2.1) around B0(0,0,0,0)
is given by;

J0 =


r 0 0 0
0 −d 0 0
0 0 −d 0
0 0 0 −(d +σ)


Eigen values of matrix J0 are r,−d,−d and −(d +σ). since
r > 0 i.e. one eigen value is positive Hence system (2.1) is
always unstable around B0.

5.1.2 Local stability behaviour of the system around B1
The variational matrix of the system (2.1) around B1 (K,0,0,0)
is given by;

J1 =


−r − η1K

1+k1K − η2K
1+k1K − η3K

1+k1K
0 αη1K

1+k1K −d 0 0
0 0 αη2K

1+k1K −d 0
0 0 0 αη3K

1+k1K − (d +σ)


Eigen values of matrix J1 are −r, αη1K

1+k1K − d, αη2K
1+k1K − d and

αη3K
1+k1K − (d +σ).

Hence system (2.1) is locally stable if η1 < d(1+k1K)
αK , η2 <

d(1+k1K)
αK and η3 <

(d+σ)(1+k1K)
αK otherwise unstable.

5.1.3 Local stability behaviour of the system around B2
The variational matrix of the system (2.1) around

B2

(
∧
P,
∧
Q,
∧

Qs,0
)

is given by;

J2 =


V11 V12 V13 V14
V21 V22 V23 V24
V31 V32 V33 V34
V41 V42 V43 V44


where

V11 = r− 2r
∧
P

K −
η1
∧
Q

1+k1
∧
P+k2

∧
Q
+ η1k1

∧
P
∧
Q(

1+k1
∧
P+k2

∧
Q
)2

− η2
∧

Qs

1+ k1
∧
P+k2

∧
Qs

+
η2k1

∧
P
∧

Qs(
1+ k1

∧
P+k2

∧
Qs

)2 ,

V12 =− η1
∧
P

1+k1
∧
P+k2

∧
Q
+ η1k2

∧
P
∧
Q(

1+k1
∧
P+k2

∧
Q
)2 ,

V13 =− η2
∧
P

1+k1
∧
P+k2

∧
Qs

+ η2k2
∧
P
∧

Qs(
1+k1

∧
P+k2

∧
Qs

)2 ,V14 =− η3
∧
P

1+k1
∧
P
,

V21 =
αη1

∧
Q

1+k1
∧
P+k2

∧
Q
− αk1η1

∧
P
∧
Q(

1+k1
∧
P+k2

∧
Q
)2 ,V23 = 0,

V24 = 0,V22 =
αη1

∧
P

1+k1
∧
P+k2

∧
Q
− αk2η1

∧
P
∧
Q(

1+k1
∧
P+k2

∧
Q
)2 −d,

V31 =
αη2

∧
Qs

1+k1
∧
P+k2

∧
Qs

− αk1η2
∧
P
∧

Qs(
1+k1

∧
P+k2

∧
Qs

)2 ,V32 = 0,

V33 =
αη2

∧
P

1+k1
∧
P+k2

∧
Qs

− αη2k2
∧
P
∧

Qs(
1+k1

∧
P+k2

∧
Qs

)2 −d,V34 =−β
∧

Qs,

V41 = 0,V42 = 0,V43 = 0,V44 = β
∧

Qs+
αη3

∧
P

1+k1
∧
P
− (d +σ).

The Eigen equation for J2 is given by
λ 4 +A1λ 3 +A2λ 2 +A3λ +A4 = 0
where
A1 =−(V11 +V22 +V33 +V44),
A2 =V11V22 +V11V33 +V11V44 +V22V33 +V22V44 +V33V44
−V12V21−V13V31−V34V43,
A3 =V12V33V21 +V12V44V21 +V13V44V31−V11V22V33
−V11V33V44−V22V33V44−V11V22V44,
A4 =V11V22V33V44−V13V22V31V44−V12V21V33V44.
using Routh-Hurwitz criteria, system (2.1) is stable around
B2 if A1,A2,A3,A4 > 0 and (A1.A2−A3)A3−A2

1.A4 > 0 oth-
erwise unstable.

5.1.4 Local stability behaviour of the system around B3
The variational matrix of the system (2.1) around

B3

(
∗
P,
∗

Q,
∗

Qs,
∗

Qi

)
is given by;

J3 =


U11 U12 U13 U14
U21 U22 U23 U24
U31 U32 U33 U34
U41 U42 U43 U44


where

U11 = r− 2r
∗
P

K −
η1
∗
Q

1+k1
∗
P+k2

∗
Q
+ η1k1

∗
P
∗
Q(

1+k1
∗
P+k2

∗
Q
)2 − η2

∗
Qs

1+k1
∗
P+k2

∗
Qs

+ η2k1
∗
P
∗

Qs(
1+k1

∗
P+k2

∗
Qs

)2 − η3
∗

Qi

1+k1
∗
P+k2

∗
Qi

+ η3k1
∗
P
∗

Qi(
1+k1

∗
P+k2

∗
Qi

)2 ,

U12 =− η1
∗
P

1+k1
∗
P+k2

∗
Q
+ η1k2

∗
P
∗
Q(

1+k1
∗
P+k2

∗
Q
)2 ,

U13 =− η2
∗
P

1+k1
∗
P+k2

∗
Qs

+ η2k2
∗
P
∗

Qs(
1+k1

∗
P+k2

∗
Qs

)2 ,

U14 =− η3
∗
P

1+k1
∗
P+k2

∗
Qi

+ η3k2
∗
P
∗

Qi(
1+k1

∗
P+k2

∗
Qi

)2 ,
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U21 =
αη1

∗
Q

1+k1
∗
P+k2

∗
Q
− αk1η1

∗
P
∗
Q(

1+k1
∗
P+k2

∗
Q
)2 ,

U22 =
αη1P

1+k1P+k2Q −
αk2η1PQ

(1+k1P+k2Q)2 −d,U23 = 0,U24 = 0,

U31 =
αη2QS

1+k1P+k2QS
− αk1η2PQS

(1+k1P+k2QS)
2 ,U32 = 0,

U33 =−βQi+
αη2P

1+k1P+k2QS
− αη2k2PQS

(1+k1P+k2QS)
2 −d,U34 =−βQS,

U41 =
αη3Qi

1+k1P+k2Qi
− αη3k1PQi

(1+k1P+k2Qi)
2 ,U42 = 0,U43 = βQi,

U44 = βQS +
αη3P

1+k1P+k2Qi
− αη3k2PQi

(1+k1P+k2Qi)
2 − (d +σ).

The Eigen equation for J2 is given by;
λ 4 +D1λ 3 +D2λ 2 +D3λ +D4 = 0
where
D1 =−(U11 +U22 +U33 +U44),
D2 =U11U22 +U11U33 +U11U44 +U22U33 +U22U44
+U33U44−U12U21−U13U31−U14U41−U34U43,
D3 =U34U11U43 + c+U14U22U41 +U34U22U43
+U12U33U21 +U14U33U41 +U12U44U21 +U13U44U31
−U11U22U33−U11U33U44−U22U33U44
−U11U22U44−U13U34U41−U14U31U43,
D4 =U14U22U33U41 +U13U22U34U41 +U14U22U31U43
+U12U21U34U43 +U11U22U33U44−U11U22U34U43
−U13U22U31U44−U12U21U33U44.
using Routh-Hurwitz criteria, system (2.1) is stable at D3 if
D1,D2,D3,D4 > 0 and (D1.D2−D3)D3−D2

1.D4 > 0 other-
wise unstable.

5.2 Global stability behaviour of system around B3

To determine global stability of system (2.1) around

B3

(
∗
P,
∗
Q,
∗

Qs,
∗

Qi

)
,

we consider, positive definite function W (P, Q, Qs, Qi)isgivenby

W (P, Q, Qs, Qi) =

(
P−

∗
P−

∗
P log P

∗
P

)
+

(
Q−

∗
Q−

∗
Q log Q

∗
Q

)
+

(
Qs−

∗
Qs−

∗
Qs log Qs

∗
Qs

)
+

(
Qi−

∗
Qi−

∗
Qi log Qi

∗
Qi

)
.

differentiating W with respect to t and using system (2.1), we
get following expression given below;
•

W =
(

P−
∗
P
)(

r
(
1− P

K

)
− η1Q

1+k1P+k2Q −
η2QS

1+k1P+k2QS

− η3Qi
1+k1P+k2Qi

)
+

(
Q−

∗
Q
)(

αη1P
1+k1P+k2Q −d

)
+

(
Qs−

∗
Qs

)(
∆

Qs
−βQi +

αη2P
1+k1P+k2Qs

−d
)

+

(
Qi−

∗
Qi

)(
βQS +

αη3P
1+k1P+k2Qi

− (d +σ)
)

•
W =

(
P−

∗
P
)(
− r

K

(
P−

∗
P
)

−η1

(1+k1
∗
P
)(

Q−
∗
Q
)
−k1

∗
Q
(

P−
∗
P
)

(1+k1P+k2Q)

(
1+k1

∗
P+k2

∗
Q
)


−η2

(1+k1
∗
P
)(

Qs−
∗

Qs

)
−k1

∗
Qs

(
P−
∗
P
)

(1+k1P+k2Qs)

(
1+k1

∗
P+k2

∗
Qs

)


−η3

(1+k1
∗
P
)(

Qi−
∗

Qi

)
−k1

∗
Qi

(
P−
∗
P
)

(1+k1P+k2Qi)

(
1+k1

∗
P+k2

∗
Qi

)


+

(
Q−

∗
Q
)αη1

(
1+k2

∗
Q
)(

P−
∗
P
)
−k2

∗
P
(

Q−
∗
Q
)

(1+k1P+k2Q)

(
1+k1

∗
P+k2

∗
Q
)


+

(
Qs−

∗
Qs

)(
− ∆

Qs
∗

Qs

(
Qs−

∗
Qs

)
−β

(
Qi−

∗
Qi

)

+αη2

(1+k2
∗

Qs

)(
P−
∗
P
)
−k2

∗
P
(

Qs−
∗

Qs

)
(1+k1P+k2Qs)

(
1+k1

∗
P+k2

∗
Qs

)
)

+

(
Qi−

∗
Qi

)(
β

(
Qs−

∗
Qs

)

+αη3

(1+k2
∗

Qi

)(
P−
∗
P
)
−k2

∗
P
(

Qi−
∗

Qi

)
(1+k1P+k2Qi)

(
1+k1

∗
P+k2

∗
Qi

)
)

Consequently, we get following expression given below;
•

W =−
[(

r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

) (
P−

∗
P
)2

+

(
αη1k2

∗
P

A
∗
A

)(
Q−

∗
Q
)2

+

(
∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)(
Qs−

∗
Qs

)2

+

(
αη3k2

∗
P

B
∗
B

)(
Qi−

∗
Qi

)2

+

 η1

(
1+k1

∗
P
)
−αη1

(
1+k2

∗
Q
)

A
∗
A

(P−
∗
P
)(

Q−
∗
Q
)

+

η2

(
1+k1

∗
P
)
−αη2

(
1+k2

∗
Qs

)
B
∗
B

(P−
∗
P
)(

Qs−
∗

Qs

)

+

η3

(
1+k1

∗
P
)
−αη3

(
1+k2

∗
Qi

)
C
∗
C

(P−
∗
P
)(

Qi−
∗

Qi

)
The above expression can be written as L′T M′L′,

where L′ =
(

P−
∗
P,Q−

∗
Q,Qs−

∗
Qs,Qi−

∗
Qi

)
and

M
′
=


M
′
PP M

′
PQ M

′
PQs

M
′
PQi

M
′
PQ M

′
QQ M

′
QsQ M

′
QiQ

M
′
PQs

M
′
QQs

M
′
QsQs

M
′
QiQs

M
′
PQi

M
′
QQi

M
′
QsQi

M
′
QiQi



where,

M
′
PP =

(
r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

)
, M

′
QQ =

(
αη1k2

∗
P

A
∗
A

)
,

M
′
QsQs

=

(
∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)
, M

′
QiQi

=

(
αη3k2

∗
P

C
∗
C

)
,
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M
′
QQs

=M
′
QsQ = 0,M

′
PQ =M

′
QP =

1
2

 η1

(
1+k1

∗
P
)
−αη1

(
1+k2

∗
Q
)

A
∗
A

,

M
′
PQs

= M
′
QsP = 1

2

η2

(
1+k1

∗
P
)
−αη2

(
1+k2

∗
Qs

)
B
∗
B

,

M
′
PQi

= M
′
QiP = 1

2

η3

(
1+k1

∗
Pi

)
−αη3

(
1+k2

∗
Qi

)
C
∗
C

,

M
′
QsQi

= M
′
QiQs

= 0,M
′
QQi

= M
′
QiQ = 0.

Therefore,
•

W = dW
dt is negative definite if the symmetric ma-

trix M′ is positive definite. Which is possible when the entire
principal minors of M′ are positive.

P
′
1 = M

′
PP =

(
r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

)
,

P′2 = M′PP.M
′
QQ−M′PQ

2

=

(
r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

)(
αη1k2

∗
P

A
∗
A

)

− 1
4

 η1

(
1+k1

∗
P
)
−αη1

(
1+k2

∗
Q
)

A
∗
A

2

,

P
′
3 = M

′
PP.M

′
QQ.M

′
QsQs
−M

′
QQ.M

′
PQs

2−M
′
QsQs

.M
′
PQ

2

=

(
r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

)(
αη1k2

∗
P

A
∗
A

)
(

∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)

− 1
4

(
αη1k2

∗
P

A
∗
A

)η2

(
1+k1

∗
P
)
−αη2

(
1+k2

∗
Qs

)
B
∗
B

2

− 1
4

(
∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

) η1

(
1+k1

∗
P
)
−αη1

(
1+k2

∗
Q
)

A
∗
A

2

and
P
′
4 = M

′
PQ

2
.M
′
QsQs

.M
′
QiQi

+M
′
PQs

2
.M
′
QQ.M

′
QiQi

+M
′
PQi

2
.M
′
QQ.M

′
QsQs
−M

′
PP.M

′
QQ.M

′
QsQs

.M
′
QiQi

= 1
4

 η1

(
1+k1

∗
P
)
−αη1

(
1+k2

∗
Q
)

A
∗
A

2(
∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)(
αη3k2

∗
P

C
∗
C

)

+ 1
4

η2

(
1+k1

∗
P
)
−αη2

(
1+k2

∗
Qs

)
B
∗
B

2(
αη1k2

∗
P

A
∗
A

)(
αη3k2

∗
P

C
∗
C

)

+ 1
4

 η3

(
1+k1

∗
Pi

)
−αη3

(
1+k2

∗
Qi

)
C
∗
C

2(
αη1k2

∗
P

A
∗
A

)(
∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)
−
(

r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

)(
αη1k2

∗
P

A
∗
A

)
(

∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)(
αη3k2

∗
P

C
∗
C

)
.

P
′
1 > 0 if r

K > η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

,

Table 2. Values of Parameter
Parameters Description Parameter

value
P Native prey population -
Q Native predator population -
Qs Exotic susceptible predator population -
Qi Exotic infected predator population -
r Intrinsic growth rate of prey population 5
k The carrying capacity of the environ-

ment
800

k1 Half saturation constant 0.9
k2 Magnitude of interference among preda-

tors
2

α Conversion efficiency (0 < α < 1) 0.7
β Disease transmission rate 0.04
∆ Recruitment rate of exotic predator pop-

ulation
30

η1 Search rate of exotic prey by native
predators (η1andη2 > η3)

0.65

η2 Search rate of exotic prey by exotic sus-
ceptible predators

0.52

η3 Search rate of exotic prey by exotic in-
fected predators

0.29

d Natural death rate of predator 0.5
σ Disease induced death rate of infected

predator population
0.25

P
′
2 > 0 if

(
r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

)(
αη1k2

∗
P

A
∗
A

)

> 1
4

 η1

(
1+k1

∗
P
)
−αη1

(
1+k2

∗
Q
)

A
∗
A

2

,

P
′
3 > 0 if

(
r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

)(
αη1k2

∗
P

A
∗
A

)
(

∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)

> 1
4

(
αη1k2

∗
P

A
∗
A

)η2

(
1+k1

∗
P
)
−αη2

(
1+k2

∗
Qs

)
B
∗
B

2

+ 1
4

(
∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

) η1

(
1+k1

∗
P
)
−αη1

(
1+k2

∗
Q
)

A
∗
A

2

and

P
′
4 > 0 if

1
4
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(
1+k1

∗
P
)
−αη1

(
1+k2

∗
Q
)

A
∗
A

2(
∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)(
αη3k2

∗
P

C
∗
C

)

+ 1
4

η2

(
1+k1

∗
P
)
−αη2

(
1+k2

∗
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)
B
∗
B

2(
αη1k2

∗
P

A
∗
A
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αη3k2

∗
P

C
∗
C

)

+ 1
4
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(
1+k1

∗
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)
−αη3

(
1+k2

∗
Qi

)
C
∗
C

2(
αη1k2

∗
P

A
∗
A

)(
∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B
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>

(
r
K −

η1k1
∗
Q

A
∗
A
− η2k1

∗
Qs

B
∗
B
− η3k1

∗
Qi

C
∗
C

)(
αη1k2

∗
P

A
∗
A

)
(

∆

Qs
∗

Qs

+ αη2k2
∗
P

B
∗
B

)(
αη3k2

∗
P

C
∗
C

)
.
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Table 3. Equilibrium points for various values of β

Transmission rate of
disease(β )

Equilibrium points

0.04 B3 (795,3.47, 13.8, 51.4)
0.06 B3 (795.4, 3.47, 9.22, 52.4)
0.08 B3 (795.7, 3.48, 6.921, 52.08)

Table 4. Equilibrium points for various values of η3
Predation rate (η3) Equilibrium points
0.29 B3 (795,3, 13, 51)
0.2 B3 (795.5, 3.47, 15.3, 46)
0.1 B3 (796, 3.4, 17.0, 41.2)

Thus if previous conditions hold then (B4) is stable, otherwise
unstable.

6. Numerical Simulation
The main object of this section is to observe the dynami-
cal behaviour of the system for various values of parameters
and calculate equilibrium points. Here, we have performed
numerical simulations using MATLAB R2014a (32-bit) and
Wolfram Mathematica 8.0 softwares for system (2.1). Pre-
dation rate (η3), carrying capacity of environment (K) and
transmission rate of disease (β ) are significant parameters
from study point of view. For validity of the results of the sys-
tem (2.1), we choose a set of biologically feasible parameter
values, which are given in Table 2.
We have obtained a set of invariant equilibrium points for
various values of β under the fixed value of η3 = 0.29 and
K = 800 started in Table 3 given below;

We have found out a set of invariant equilibrium points for
various values of η3 under the fixed value of β = 0.04 and
K = 800 listed in Table 4 given below;

We have carried out a set of invariant equilibrium points for
various values of K under the fixed value of β = 0.04and
η3 = 0.29 putted in Table 5 given below;

Thus, on this section we have observed the dynamic behavior
of model system (2.1) for various values of η3,β and K.

7. Conclusion
Predation is an important factor that regulates prey popula-
tion. The fatal disease can harm population that decreases

Table 5. Equilibrium points for various values of K
Carrying capacity of en-
vironment (K)

Equilibrium points

600 B3 (595,2.47, 14.01, 50.60)
800 B3 (795, 3.47, 13.8, 51.4)
1000 B3 (994, 4.4, 13.7, 52.03)

Figure 2. Plot between Time (t) and exotic susceptible
predator (Qs) for various values of β

Figure 3. Plot between Time (t) and exotic infected predator
(Qi) for various values of β
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Figure 4. Plot between Time (t) and exotic susceptible
predator (Qs) for various values of η3

Figure 5. Plot between Time (t) and exotic infected predator
(Qi) for various values of η3

Figure 6. Plot between Time (t) and native preys (P) for
various values of K

Figure 7. Plot between Time (t) and native predator (Q) for
various values of K
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Figure 8. Plot between Time (t) and exotic susceptible
predator (Qs) for various values of K

Figure 9. Plot between Time (t) and exotic infected predator
(Qi) for various values of K

Figure 10. Plot between Time (t) and all population

the growth rate or increasing the death rate. In this paper, a
non linear mathematical model with native population and en-
demic exotic predators was formed to study the transmission
of disease. It is shown that three factors i.e. transmission rate
of disease(β ) ,predation rate (η3) and carrying capacity of
environment (K) which can be taken as sensitive parameters
affects the community size. Keeping η3 = 0.29 and K = 800
fixed, it was concluded that as β disease transmission rate
of disease decreases exotic susceptible predator population
increases (see Fig.2) and exotic infected predator population
decreases (see Fig.3). Keeping β = 0.04 and K = 800 fixed,
it was seen that as η3 the predation rate of exotic infected
predators, decreases exotic susceptible predator population
increases (see Fig.4) and exotic infected predator population
decreases (see Fig.5). Keeping η3 = 0.29 and β = 0.04 fixed,
it was observed that as K decreases native prey population, na-
tive predator population, exotic infected predator population
decreases (see Figs.6,7,9) and there is not effect of change in
K on exotic susceptible predators Qs (see Fig.8). Dynamic
of all the species is also depicted (see Fig.10). However, it
is also argued that consumption of prey by infected predator
may have positive or negative effect on community structure,
depends upon infection severity. Special care or prevention
should be given to species to save society from disease.
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