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Analysis of an M[X ]/G1(a,b),G2(a,b)/1 unreliable
G-queue with optional re-service, Bernoulli vacation,
delay time to two phase of repair
G. Ayyappan1 and R. Supraja2*

Abstract
In this paper, we consider the queueing system where the batch of customers arrive at the system according to
the compound Poisson process and two types of service, each of which has an optional reservice is provided to
the server under Bernoulli vacation. After completion of each type of service, the customer may go for reservice
of the same type of service without joining the tail of the queue or they may depart the system. An unpredictable
breakdown may occur at any moment during the functioning of the server with any type of service or re-service
and at that situation, the service channel will breakoff for a short period of time. A breakdown in a busy server is
represented by the arrival of a negative customer which consequently leads to the loss of the customer who
is in service. Delay time is referred to as the waiting time of the server for the two phase of repair to start. By
considering elapsed service time as the supplementary variable, the PGF of the number of customers in the
queue at a random epoch is derived and this PGF is further used to establish explicitly some of the following
performance measures namely various states of the system, the mean queue length, and the mean waiting time
in the queue. At last, some particular cases are discussed and the numerical illustrations are provided.
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1. Introduction

A considerable amount of work has been done on the
modelling and analysis for the queueing system using the sup-
plementary variable technique where the service is rendered
in bulk. Most of the queueing models assume that customers
are served singly which is a contradiction to some of the real-
life situations where the service is provided in bulk. Bulk
service queue was first dealt by Bailey [2]. The “General Bulk
Service Rule ” (GBSR) was proposed by Neuts [13] in which
service initiates only when a certain number of customers in
the queue are available. A detailed survey on bulk queueing
models can be seen in the studies of Chaudhury and Temple-
ton [3]. Lee et al. [11] discussed the decompositions of the
batch service queue with server vacations. Recently, Haridass
and Arumuganathan [8] studied a batch arrival general bulk
service queueing system by considering the supplementary
variable as the remaining service time.
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In many real-life situations, the concept of reservice may
be easily seen. For example, in bank counters, supermarket,
doctor clinics etc. Recently, Rajadurai et al. [14] analyzed
the queueing system with optional re-service under modi-
fied vacation policy. Most recently, Choudhury and Chandi
Ram Kalita [6] studied the queueing model with two types of
service and optional repeated service. For this model, they
derived the joint distribution of state of the server and queue
size by considering both elapsed and remaining service time.

In a vacation queueing system, the term vacation is re-
ferred to as the period of time during which the server is
unavailable due to many reasons like being checked for main-
tenance, scanning for new work or simply taking tea break.
Bernoulli schedule vacation means that, with probability θ ,
the server may go for a vacation after the completion of ser-
vice. Otherwise, with probability 1−θ , he may continue to
stay in the system and this vacation policy is considered in this
paper. A queueing model with a modified Bernoulli schedule
vacation was briefly investigated by Choudhury and Madan
[4] under N-policy. Queueing model with single working
vacation and working interruption was examined by Gao and
Liu [7] under Bernoulli schedule. Ayyappan and Shymala
[1] have discussed about the concept of Bernoulli schedule
vacation and random setup time.

G-queues are the queues with negative customers and this
type of negative customers will remove and destroy a positive
customer in service and consequently the positive customers
loss his service and leave the system. G-queue with server
breakdown, working vacation and vacation interruption has
been analyzed by Zhang and Liu [16]. A non-Markovian re-
trial queue with negative customers under Bernoulli schedule
vacation was considered by Wu and Lian [15].

G-queues with an unreliable server has also found appli-
cations in communication networks. In these models, if a
negative customer arrives at a queue, a customer or a batch
of customers in service may be removed which causes server
failure. Madan and Ebrahim Malalla [12] discussed the two-
phase repair with a delay in a bulk input single server queue.
A queueing system with an unreliable server, randomized va-
cation policy and delayed repair has been analyzed by Ke and
Huang [10] whereas the batch arrival unreliable server queue
under randomised vacation policy has been discussed Ke et al.
[9] and Choudhury and Deka [5].

The outline of the remaining sections is as follows. In
section 2, we give the description of the present model. In
section 3, we present the definitions, Kolmogorov forward
equations and the transient solution of our model. In section

4 and 5, we finding the probability generating function of the
stationary queue length at the random epoch and the system
stability condition respectively. Some performance measures
in the various states of the system, the mean queue size are
derived in section 6. Some important particular cases are given
in section 7. Computational results and graphs are presented
in section 8. At last, summary of the work is presented in
section 9.

2. Model Description
In this paper, the authors’ best of our knowledge, no inves-

tigation published in the queueing literature with combination
of batch arrival, bulk service and two types of service and re-
service under Bernoulli schedule, G-queue (negative arrival),
delay time to repair, two phase of repair. Customers arrive at
the system in batches of variable size in a compound Poisson
process. Let Λ+cidt ( i ≥ 1) be the first order probability
that a batch of i customers arrive at the system during a short

interval of time (t, t +dt], where 0≤ ci ≤ 1 and
∞

∑
i=1

ci = 1 and

Λ+ > 0 is the mean arrival rate of batches. The server serves
the customer under ‘GBSR’ rule. we consider a queueing
system with two types of service where each type consists of
an optional re-service. We presumed that the probability of
providing First Type of Service (FTS) is p1 and Second Type
of Service (STS) is p2 (p1 + p2 = 1). The server may repeat
type ith service to a batch of customers for whom the ith type
service is just completed, with probability πi (i=1,2). If not,
the batch of customers may leave the system with probability
(1−πi). In addition, we assume that either service may be
repeated only once. The server may opt to go for a vacation
with probability θ or proceed to serve the next batch, if exist,
with probability (1−θ) immediately after the completion of
both type of service and re-service. Otherwise, the server
remains idle in the system until a customer arrives. The neg-
ative customers arrive from outside the system according to
a Poisson arrival rate λ−. Negative customers cannot accu-
mulate in a queue and do not receive service, will remove
the positive customers being in service from the system. The
server breakdown may be caused by such type of negative
customers and for a short duration of time, the service channel
may fail. As soon as the server gets fail, it takes delay time
to start two phases of repair. The server will treat as good as
new just after the completion of two phase of repair.

The service time, re-service time, vacation time, delay
time to repair and two phase of repair time follow general
distribution and notations used for the Cumulative Distribution
Function(CDF), the probability density functions(pdf) are
given in Table 1.

665



Analysis of an M[X ]/G1(a,b),G2(a,b)/1 unreliable G-queue with optional re-service, Bernoulli vacation, delay time to
two phase of repair — 666/677

Table 1. Some notations for distribution function
Time CDF Hazard

rate
pdf

ith type of ser-
vice 1≤ i≤ 2

Ui(u) µi(u) ui(h)=

µi(h)e
−

h∫
0

µi(u)du

ith type of
re-service
1≤ i≤ 2

Ui(u) µi(u) ui(h)=

µi(h)e
−

h∫
0

µi(u)du

Bernoulli va-
cation

V (u) γ(u) v(r) =

γ(r)e
−

r∫
0

γ(u)du

Delay time to
repair

D(u) ξ (u) d(g) =

ξ (g)e
−

g∫
0

ξ (u)du

First phase of
repair

R1(u) β1(u) r1(w)=

β1(w)e
−

w∫
0

β1(u)du

Second phase
of repair

R2(u) β2(u) r2(w)=

β2(w)e
−

w∫
0

β2(u)du

3. Equations Governing the Systems

In this section, we have defined the system state equations
for its stationary queue size distribution, by treating elapsed
service time, elapsed re-service time, elapsed vacation time,
elapsed delay time and the elapsed two phase of repair time,
as the supplementary variables. Then these equations are
solved and the PGFs of the stationary queue size distribution
is derived.

Denote

N (t) - the queue size (including one batch of customers
being served, if any) at time t.
U0

1 (t) - the elapsed first type of service/re-service time at time
t.
U0

2 (t) - the elapsed second type of service/re-service time at
time t.
V 0(t) - the elapsed vacation time at time t.
D0(t) - the elapsed delay time to repair at time t.
R0

1(t) - the elapsed first phase of repair time at time t.
R0

2(t) - the elapsed second phase of repair time at time t.

Further, we introduce the following random variable:

Y (t) =



0, if the server is idle at time t.
1, if the server is busy at first type

service at time t.
2, if the server is busy at second type

service at time t.
3, if the server is busy at first type

re-service at time t.
4, if the server is busy at second type

re-service at time t.
5, if the server is on Bernoulli vacation

period at time t.
6, if the server is under delay time

to repair at time t.
7, if the server is under first phase

of repair at time t.
8, if the server is under second phase

of repair at time t.

Thus the supplementary variable U0
1 (t), U0

2 (t), V 0(t), D0(t),
R0

1(t) and R0
2(t) for i = 1,2 are introduced in order to obtain

a bivariate Markov process {N (t), Y (t)} and define the
following probabilities as:

Qr(t)dt = P{N (t) = r,Y (t) = 0}, for t ≥ 0,and
0≤ r ≤ a−1

H1,n(t,u)du = P{N (t) = n,Y (t) = 1;u≤U0
1 (t)≤ u+du},

for t ≥ 0,u≥ 0 and n≥ 0

H2,n(t,u)du = P{N (t) = n,Y (t) = 2;u≤U0
2 (t)≤ u+du},

for t ≥ 0,u≥ 0 and n≥ 0

A1,n(t,u)du = P{N (t) = n,Y (t) = 3;u≤U0
1 (t)≤ u+du},

for t ≥ 0,u≥ 0 and n≥ 0

A2,n(t,u)du = P{N (t) = n,Y (t) = 4;u≤U0
2 (t)≤ u+du},

for t ≥ 0,u≥ 0 and n≥ 0

Vn(t,u)du = P{N (t) = n,Y (t) = 5;u≤V 0(t)≤ u+du},
for t ≥ 0,u≥ 0 and n≥ 0

Dn(t,u)du = P{N (t) = n,Y (t) = 6;u≤ D0(t)≤ u+du},
for t ≥ 0,u≥ 0 and n≥ 0

R1,n(t,u)du = P{N (t) = n,Y (t) = 7;u≤ R0
1(t)≤ u+du},

for t ≥ 0,u≥ 0 and n≥ 0

R2,n(t,u)du = P{N (t) = n,Y (t) = 8;u≤ R0
2(t)≤ u+du},

for t ≥ 0,u≥ 0 and n≥ 0

The Kolmogorov forward equations to govern the model;
where sub index i = 1,2 denotes the FTS and STS respec-
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tively can be formulated as follows:(
∂

∂ t
+

∂

∂u
+(Λ++Λ

−+µi(u))
)

Hi,n(t,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckHi,n−k(t,u), n≥ 0 (3.1)(
∂

∂ t
+

∂

∂u
+(Λ++Λ

−+µ1(u))
)

A1,n(t,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckA1,n−k(t,u), n≥ 0 (3.2)(
∂

∂ t
+

∂

∂u
+(Λ++Λ

−+µ2(u))
)

A2,n(t,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckA2,n−k(t,u), n≥ 0 (3.3)(
∂

∂ t
+

∂

∂u
+(Λ++ γ(u))

)
Vn(t,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckVn−k(t,u), n≥ 0 (3.4)(
∂

∂ t
+

∂

∂u
+(Λ++ξ (u))

)
Dn(t,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckDn−k(t,u), n≥ 0 (3.5)(
∂

∂ t
+

∂

∂u
+(Λ++β1(u))

)
R1,n(t,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckR1,n−k(t,u), n≥ 0 (3.6)(
∂

∂ t
+

∂

∂u
+(Λ++β2(u))

)
R2,n(t,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckR2,n−k(t,u), n≥ 0 (3.7)

d
dt

Qr(t) =−Λ
+Qr(t)+Λ

+(1−δr,0)
r

∑
k=1

ckQr−k(t)

+(1−θ)

[
(1−π1)

∫
∞

0
H1,r(t,u)µ1(u)du

+(1−π2)
∫

∞

0
H2,r(t,u)µ2(u)du

+
∫

∞

0
A1,r(t,u)µ1(u)du

+
∫

∞

0
A2,r(t,u)µ2(u)du

]
+
∫

∞

0
Vr(t,u)γ(u)du

+
∫

∞

0
R2,r(t,u)β2(u)du,

0≤ r ≤ a−1. (3.8)

where δi, j denotes Kronecker’s delta.

These set of equations are to be solved under the following

boundary conditions at u = 0:

Hi,0(t,0) = pi

[
Λ
+

b

∑
r=a

a−1

∑
k=0

cr−kQk(t)

+(1−θ)

[
(1−π1)

b

∑
r=a

∫
∞

0
H1,r(t,u)µ1(u)du

+(1−π2)
b

∑
r=a

∫
∞

0
H2,r(t,u)µ2(u)du

+
b

∑
r=a

∫
∞

0
A1,r(t,u)µ1(u)du

+
b

∑
r=a

∫
∞

0
A2,r(t,u)µ2(u)du

]
+

b

∑
r=a

∫
∞

0
Vr(t,u)γ(u)du

+
b

∑
r=a

∫
∞

0
R2,r(t,u)β2(u)du

]
, i = 1,2 (3.9)

Hi,n(t,0) = pi

[
Λ
+

a−1

∑
k=0

cb+n−kQk(t)

+(1−θ)

[
(1−π1)

∫
∞

0
H1,n+b(t,u)µ1(u)du

+(1−π2)
∫

∞

0
H2,n+b(t,u)µ2(u)du

+
∫

∞

0
A1,n+b(t,u)µ1(u)du

+
∫

∞

0
A2,n+b(t,u)µ2(u)du

]
+
∫

∞

0
Vn+b(t,u)γ(u)du

+
∫

∞

0
R2,n+b(t,u)β2(u)du

]
, i = 1,2 (3.10)

A1,n(t,0) = π1

∫
∞

0
H1,n(t,u)µ1(u)du, n≥ 0 (3.11)

A2,n(t,0) = π2

∫
∞

0
H2,n(t,u)µ2(u)du, n≥ 0 (3.12)

Vn(t,0) = θ

[
(1−π1)

∫
∞

0
H1,n(t,u)µ1(u)du

+(1−π2)
∫

∞

0
H2,n(t,u)µ2(u)du

+
∫

∞

0
A1,n(t,u)µ1(u)du

+
∫

∞

0
A2,n(t,u)µ2(u)du

]
, n≥ 0 (3.13)

Dn(t,0) = Λ
−
∫

∞

0
H1,n(t,u)du+Λ

−
∫

∞

0
H2,n(t,u)du

+Λ
−
∫

∞

0
A1,n(t,u)du

+Λ
−
∫

∞

0
A2,n(t,u)du, n≥ 0 (3.14)
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R1,n(t,0) =
∫

∞

0
Dn(t,u)ξ (u)du, n≥ 0 (3.15)

R2,n(t,0) =
∫

∞

0
R1,n(t,u)β1(u)du, n≥ 0. (3.16)

Further, it is assume that initially there are no adequate number
of customers in the system and the server is idle. So the initial
conditions are

Q0(0) = 1,Qr(0) = 0 for 1≤ r ≤ a−1,
Hi,n(0) = Ai,n(0) = R1,n(0) = R2,n(0)
= Dn(0) = Vn(0) = 0 for n≥ 0, i = 1,2.

(3.17)

Here, we use the probability generating functions to simplify
equations (3.1) to (3.16)

Bi(t,u,w) =
∞

∑
n=0

Bi,n(t,u)wn

Bi(t,w) =
∞

∑
n=0

Bi,n(t)wn;C (w) =
∞

∑
n=1

cnwn;

G (t,u,w) =
∞

∑
n=0

G (t,u)wn

G (t,w) =
∞

∑
n=0

G (t)wn;Q(w) =
a−1

∑
r=0

Qrwr; |w|= 1

(3.18)

where B = H ,A ,R ; G =D ,V : i=1,2.
Taking the Laplace transform of equations (3.1) to (3.16) and
using (3.18), we get(

∂

∂u
+(s+Λ

++Λ
−+µi(u))

)
H̄i,n(s,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckH̄i,n−k(s,u), n≥ 0, i = 1,2 (3.19)(
∂

∂u
+(s+Λ

++Λ
−+µ1(u))

)
¯A1,n(s,u) =

Λ
+(1−δn,0)

n

∑
k=1

ck ¯A1,n−k(s,u), n≥ 0 (3.20)(
∂

∂u
+(s+Λ

++Λ
−+µ2(u))

)
¯A2,n(s,u) =

Λ
+(1−δn,0)

n

∑
k=1

ck ¯A2,n−k(s,u), n≥ 0 (3.21)(
∂

∂u
+(s+Λ

++ γ(u))
)

V̄n(s,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckV̄n−k(s,u), n≥ 0 (3.22)(
∂

∂u
+(s+Λ

++ξ (u))
)

D̄n(s,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckD̄n−k(s,u), n≥ 0 (3.23)

(
∂

∂u
+(s+Λ

++β1(u))
)

R̄1,n(s,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckR̄1,n−k(s,u), n≥ 0 (3.24)(
∂

∂u
+(s+Λ

++β2(u))
)

R̄2,n(s,u) =

Λ
+(1−δn,0)

n

∑
k=1

ckR̄2,n−k(s,u), n≥ 0 (3.25)

(s+Λ
+)Q̄0(s) = 1+(1−θ)[

(1−π1)
∫

∞

0
H̄1,0(s,u)µ1(u)du

+(1−π2)
∫

∞

0
H̄2,0(s,u)µ2(u)du

+
∫

∞

0
¯A1,0(s,u)µ1(u)du

+
∫

∞

0
¯A2,0(s,u)µ2(u)du

]
+
∫

∞

0
V̄0(s,u)γ(u)du

+
∫

∞

0
R̄2,0(s,u)β2(u)du (3.26)

(s+Λ
+)Q̄r(s) = Λ

+
r

∑
k=1

ckQ̄r−k(s)+(1−θ)[
(1−π1)

∫
∞

0
H̄1,r(s,u)µ1(u)du

+(1−π2)
∫

∞

0
H̄2,r(s,u)µ2(u)du

+
∫

∞

0
¯A1,r(s,u)µ1(u)du

+
∫

∞

0
¯A2,r(s,u)µ2(u)du

]
+
∫

∞

0
V̄r(s,u)γ(u)du

+
∫

∞

0
R̄2,r(s,u)β2(u)du,

1≤ r ≤ a−1 (3.27)

H̄i,0(s,0) = pi

[
Λ
+

b

∑
r=a

a−1

∑
k=0

cr−kQ̄k(s)+(1−θ)[
(1−π1)

b

∑
r=a

∫
∞

0
H̄1,r(s,u)µ1(u)du

+(1−π2)
b

∑
r=a

∫
∞

0
H̄2,r(s,u)µ2(u)du

+
b

∑
r=a

∫
∞

0
¯A1,r(s,u)µ1(u)du

+
b

∑
r=a

∫
∞

0
¯A2,r(s,u)µ2(u)du

]
+

b

∑
r=a

∫
∞

0
V̄r(s,u)γ(u)du
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+
b

∑
r=a

∫
∞

0
R̄2,r(s,u)β2(u)du

]
, i = 1,2 (3.28)

H̄i,n(s,0) = pi

[
Λ
+

a−1

∑
k=0

cb+n−kQ̄k(s)+(1−θ)[
(1−π1)

∫
∞

0
H̄1,n+b(s,u)µ1(u)du

+(1−π2)
∫

∞

0
H̄2,n+b(s,u)µ2(u)du

+
∫

∞

0
¯A1,n+b(s,u)µ1(u)du

+
∫

∞

0
¯A2,n+b(s,u)µ2(u)du

]
+
∫

∞

0
V̄n+b(s,u)γ(u)du

+
∫

∞

0
R̄2,n+b(s,u)β2(u)du

]
,

i = 1,2 n≥ 0 (3.29)

¯A1,n(s,0) = π1

∫
∞

0
H̄1,n(s,u)µ1(u)du, n≥ 0 (3.30)

¯A2,n(s,0) = π2

∫
∞

0
H̄2,n(s,u)µ2(u)du, n≥ 0 (3.31)

V̄n(s,0) = θ

[
(1−π1)

∫
∞

0
H̄1,n(s,u)µ1(u)du

+(1−π2)
∫

∞

0
H̄2,n(s,u)µ2(u)du

+
∫

∞

0
¯A1,n(s,u)µ1(u)du

+
∫

∞

0
¯A2,n(s,u)µ2(u)du

]
,

n≥ 0 (3.32)

R̄1,n(s,0) =
∫

∞

0
D̄n(s,u)ξ (u)du, n≥ 0 (3.33)

D̄n(s,0) = Λ
−
∫

∞

0
H̄1,n(s,u)du

+Λ
−
∫

∞

0
H̄2,n(s,u)du

+Λ
−
∫

∞

0
¯A1,n(s,u)du

+Λ
−
∫

∞

0
¯A2,n(s,u)du, n≥ 0 (3.34)

R̄2,n(s,0) =
∫

∞

0
R̄1,n(s,u)β1(u)du, n≥ 0. (3.35)

By multiplying equations (3.19) to (3.25) by the appropriate
power of wn and sum accordingly, and use the equation (3.18),
we get

(
∂

∂u
+(s+Λ

+(1−C (w))+Λ
−+µi(u))

)
H̄i(s,u,w)

= 0, i = 1,2
(3.36)

(
∂

∂u
+(s+Λ

+(1−C (w))+Λ
−+µ1(u))

)
¯A1(s,u,w)

= 0 (3.37)(
∂

∂u
+(s+Λ

+(1−C (w))+Λ
−+µ2(u))

)
¯A2(s,u,w)

= 0 (3.38)(
∂

∂u
+(s+Λ

+(1−C (w))+ γ(u))
)

V̄ (s,u,w)

= 0 (3.39)(
∂

∂u
+(s+Λ

+(1−C (w))+ξ (u))
)

D̄(s,u,w)

= 0 (3.40)(
∂

∂u
+(s+Λ

+(1−C (w))+β1(u))
)

R̄1(s,u,w)

= 0 (3.41)(
∂

∂u
+(s+Λ

+(1−C (w))+β2(u))
)

R̄2(s,u,w)

= 0 (3.42)

Multiplying two sides of equation (3.29) by the appropriate
power of wn and sum accordingly, and use the equation (3.28),
we get

wbH̄i(s,0,w) = pi

[
Λ
+

a−1

∑
r=0

b−r−1

∑
n=1

cnQ̄r(s)(wb−wn+r)

−wb
a−1

∑
r=0

(s+Λ
+)Q̄r(s)+wb

+Λ
+

a−1

∑
r=0

C (w)Q̄r(s)wr +(1−θ)[
(1−π1)

∫
∞

0
H̄1(s,u,w)µ1(u)du

+(1−π2)
∫

∞

0
H̄2(s,u,w)µ2(u)du

+
∫

∞

0
¯A1(s,u,w)µ1(u)du

+
∫

∞

0
¯A2(s,u,w)µ2(u)du

]
+
∫

∞

0
V̄ (s,u,w)γ(u)du

+
∫

∞

0
R̄2(s,u,w)β2(u)du

+(1−θ)
b−1

∑
r=0

(wb−wr)[
(1−π1)

∫
∞

0
H̄1,r(s,u)µ1(u)du

+(1−π2)
∫

∞

0
H̄2,r(s,u)µ2(u)du

+
∫

∞

0
¯A1,r(s,u)µ1(u)du
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+
∫

∞

0
¯A2,r(s,u)µ2(u)du

]
+

b−1

∑
r=0

(wb−wr)

[∫
∞

0
V̄r(s,u)γ(u)du

+
∫

∞

0
¯R2,r(s,u)β2(u)du

]]
,

i = 1,2.

(3.43)

Similarly from equations (3.30) to (3.35), we get

¯A1(s,0,w) = π1H̄1(s,0,w)Ū1(Ψ(s,w)), (3.44)
¯A2(s,0,w) = π2H̄2(s,0,w)Ū2(Ψ(s,w)), (3.45)

V̄ (s,0,w) = θ

[
(1−π1)H̄1(s,0,w)Ū1(Ψ(s,w))

+(1−π2)H̄2(s,0,w)Ū2(Ψ(s,w))

+π1H̄1(s,0,w)(Ū1(Ψ(s,w)))2

+π2H̄2(s,0,w)(Ū2(Ψ(s,w)))2
]

(3.46)

D̄(s,0,w) = Λ
−H̄1(s,0,w)

[
1−Ū1(Ψ(s,w))

Ψ(s,w)

]
[1+π1Ū1(Ψ(s,w))]

+Λ
−H̄2(s,0,w)[

1−Ū2(Ψ(s,w))
Ψ(s,w)

]
[1+π2Ū2(Ψ(s,w))] (3.47)

R̄1(s,0,w) = Λ
−H̄1(s,0,w)D̄(Φ(s,w))[
1−Ū1(Ψ(s,w))

Ψ(w,s)

]
[1+π1Ū1(Ψ(w,s))]

[+Λ
−H̄2(0,w,s)D̄(Φ(w,s))[

1−Ū2(Ψ(w,s))
Ψ(w,s)

]
[1+π2Ū2(Ψ(w,s))] (3.48)

R̄2(s,0,w) = Λ
−H̄1(s,0,w)D̄(Φ(s,w))

R̄1(Φ(s,w))
[

1−Ū1(Ψ(s,w))
Ψ(s,w)

]
[1+π1Ū1(Ψ(s,w))]+Λ

−H̄2(s,0,w)
D̄(Φ(s,w))R̄1(Φ(s,w))

[1+π2Ū2(Ψ(s,w))][
1−Ū2(Ψ(s,w))

Ψ(s,w)

]
. (3.49)

Solving the partial differential equations (3.36) to (3.42), it
follows that

H̄i(s,u,w) = H̄i(s,0,w)e
−Ψ(s,w)u−

u∫
0

µi(t)dt
(3.50)

¯A1(s,u,w) = ¯A1(s,0,w)e
−Ψ(s,w)u−

u∫
0

µ1(t)dt
(3.51)

¯A2(s,u,w) = ¯A2(s,0,w)e
−Ψ(s,w)u−

u∫
0

µ2(t)dt
(3.52)

V̄ (s,u,w) = V̄ (s,0,w)e
−Φ(s,w)u−

u∫
0

γ(t)dt
(3.53)

D̄(s,u,w) = D̄(s,0,w)e
−Φ(s,w)u−

u∫
0

ξ (t)dt
(3.54)

R̄1(s,u,w) = R̄1(s,0,w)e
−Φ(s,w)u−

u∫
0

β1(t)dt
(3.55)

R̄2(s,u,w) = R̄2(s,0,w)e
−Φ(s,w)u−

u∫
0

β2(t)dt
. (3.56)

Now multiplying both sides of equations (3.50) to (3.56) by
µi(u), µ1(u), µ2(u), γ(u), ξ (u), β1(u) and β2(u) respectively,
and integrating, we obtain for i=1,2

∞∫
0

H̄i(s,u,w)µi(u)du = H̄i(s,0,w)Ūi(Ψ(s,w)),

i = 1,2 (3.57)
∞∫

0

¯A1(s,u,w)µ1(u)du = ¯A1(s,0,w)Ū1(Ψ(s,w))

(3.58)
∞∫

0

¯A2(s,u,w)µ2(u)du = ¯A2(s,0,w)Ū2(Ψ(s,w))

(3.59)
∞∫

0

V̄ (s,u,w)γ(u)du = V̄ (s,0,w)V̄ (Φ(s,w)) (3.60)

∞∫
0

D̄(s,u,w)ξ (u)du = D̄(s,0,w)D̄(Φ(s,w)) (3.61)

∞∫
0

R̄1(s,u,w)β1(u)du = R̄1(s,0,w)R̄1(Φ(s,w))

(3.62)
∞∫

0

R̄2(s,u,w)β2(u)du = R̄2(s,0,w)R̄2(Φ(s,w))

(3.63)

Again integrating equations (3.50) to (3.56) by parts with
respect to u and using the equation (3.44) to (3.49), we get

H̄1(s,w) = H̄1(s,0,w)
[

1−Ū1(Ψ(s,w))
Ψ(s,w)

]
, (3.64)

H̄2(s,w) = H̄2(s,0,w)
[

1−Ū2(Ψ(s,w))
Ψ(s,w)

]
, (3.65)

¯A1(s,w) = π1H̄1(s,0,w)Ū1(Ψ(s,w))[
1−Ū1(Ψ(s,w))

Ψ(s,w)

]
, (3.66)
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¯A2(s,w) = π2H̄2(s,0,w)Ū2(Ψ(s,w))[
1−Ū2(Ψ(s,w))

Ψ(w,s)

]
, (3.67)

V̄ (s,w) = θ
[
(1−π1)H̄1(s,0,w)Ū1(Ψ(s,w))

+(1−π2)H̄2(s,0,w)Ū2(Ψ(s,w))

+π1H̄1(s,0,w)(Ū1(Ψ(s,w)))2

+π2H̄2(s,0,w)(Ū2(Ψ(s,w)))2][
1−V̄ (Φ(s,w))

Φ(s,w)

]
, (3.68)

D̄(s,w) = Λ
−
[
H̄1(s,0,w)

[
1−Ū1(Ψ(s,w))

Ψ(s,w)

]
[1+π1Ū1(Ψ1(s,w))]+H̄2(s,0,w)[

1−Ū2(Ψ(s,w))
Ψ(s,w)

]
[1+π2Ū2(Ψ(s,w))]

]
[

1− D̄(Φ(s,w))
Φ(s,w)

]
(3.69)

R̄1(s,w) = Λ
−
[
H̄1(s,0,w)D̄(Φ(s,w))[
1−Ū1(Ψ(s,w))

Ψ(s,w)

]
[1+π1Ū1(Ψ(s,w))]

+H̄2(s,0,w)D̄(Φ(s,w))[
1−Ū2(Ψ(s,w))

Ψ(s,w)

]
[1+π2Ū2(Ψ(s,w))]

]
[

1− R̄1(Φ(s,w))
Φ(s,w)

]
(3.70)

R̄2(s,w) = Λ
−
[
H̄1(s,0,w)D̄(Φ(s,w))

R̄1(Φ(s,w))
[

1−Ū1(Ψ(s,w))
Ψ(s,w)

]
[1+π1Ū1(Ψ(s,w))]+H̄2(s,0,w)
D̄(Φ(s,w))R̄1(Φ(s,w))[

1−Ū2(Ψ(s,w))
Ψ(s,w)

]
[1+π2Ū2(Ψ(s,w))]

]
[

1− R̄2(Φ(s,w))
Φ(s,w)

]
. (3.71)

Inserting the equations (3.57), (3.58), (3.59) and (3.63) into
the equation (3.43), we get for i = 1,2

H̄i(s,0,w) =

pi



Λ
+

a−1

∑
r=0

b−r−1

∑
n=1

cnQ̄r(s)(wb−wn+r)

+Λ
+

a−1

∑
r=0

C (w)Q̄r(s)wr−wb(s+Λ
+)

a−1

∑
r=0

Q̄r(s)+wb +
b−1

∑
r=0

(wb−wr)(1−θ)

[
(1−π1)

∫
∞

0
H̄1,r(s,u)µ1(u)du

+(1−π2)
∫

∞

0
H̄2,r(s,u)µ2(u)du

+
∫

∞

0
¯A1,r(s,u)µ1(u)du

+
∫

∞

0
¯A2,r(s,u)µ2(u)du

]
+

b−1

∑
r=0

(wb−wr)
[∫ ∞

0
V̄r(s,u)γ(u)du

+
∫

∞

0
R̄2,r(s,u)β2(u)du

]


Dr(s,w)

(3.72)

where

Dr(s,w) = Ψ(s,w)wb−
[
Ψ(s,w)[(1−θ)+θV̄ (Φ(s,w))][

p1(1−π1)Ū1(Ψ(s,w))+ p1π1(Ū1(Ψ(s,w)))2

+ p2(1−π2)Ū2(Ψ(s,w))+ p2π2(Ū2(Ψ(s,w)))2]
+Λ

−D̄(Φ(s,w))R̄1(Φ(s,w))R̄2(Φ(s,w))[
p1[1−Ū1(Ψ(s,w))][1+π1Ū1(Ψ(s,w))]

+ p2[1−Ū2(Ψ(s,w))][1+π2Ū2(Ψ(s,w))]
]]

Ψ(s,w) = s+Λ
−+Λ

+(1−C (w))

Φ(s,w) = s+Λ
+(1−C(w))

substituting the equation (3.72) into the equations (3.64) to
(3.71) and taking the inverse Laplace transform of these equa-
tions, we get the probability generating fuctions of various
states of the system under transient state.

4. The steady state results

The steady state results can be obtained by applying the well-
known Tauberian theorem, that is,

lim
s→0

s f̄ (s) = lim
t→∞

f (t). (4.1)
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The PGF of the server’s state queue size distribution under the
steady state condition are given by

H1(w) = H1(0,w)
[

1−Ū1(Ψ(w))
Ψ(w)

]
, (4.2)

H2(w) = H2(0,w)
[

1−Ū2(Ψ(w))
Ψ(w)

]
, (4.3)

A1(w) = π1H1(0,w)Ū1(Ψ(w))[
1−Ū1(Ψ(w))

Ψ(w)

]
, (4.4)

A2(w) = π2H2(0,w)Ū2(Ψ(w))[
1−Ū2(Ψ(w))

Ψ(w)

]
, (4.5)

V (w) = θ

[
(1−π1)H1(0,w)Ū1(Ψ(w))

+(1−π2)H2(0,w)Ū2(Ψ(w))

+π1H1(0,w)(Ū1(Ψ(w)))2

+π2H2(0,w)(Ū2(Ψ(w)))2
]

[
1−V̄ (Φ(w))

Φ(w)

]
, (4.6)

D(w) = Λ
−
[
H1(0,w)

[
1−Ū1(Ψ(w))

Ψ(w)

]
[1+π1Ū1(Ψ(w))]+H2(0,w)[

1−Ū2(Ψ(w))
Ψ(w)

]
,

[1+π2Ū2(Ψ(w))]
]

[
1− D̄(Φ(w))

Φ(w)

]
(4.7)

R1(w) = Λ
−
[
H1(0,w)D̄(Φ(w))[

1−Ū1(Ψ(w))
Ψ(w)

]
[1+π1Ū1(Ψ(w))]+H̄2(0,w)D̄(Φ(w))[

1−Ū2(Ψ(w))
Ψ(w)

]
[1+π2Ū2(Ψ(w))]

]
[

1− R̄1(Φ(w))
Φ(w)

]
, (4.8)

R2(w) = Λ
−
[
H1(0,w)D̄(Φ(w))R̄1(Φ(w))[

1−Ū1(Ψ(w))
Ψ1(w)

]
[1+π1Ū1(Ψ(w))]

+H2(0,w)D̄(Φ(w))R̄1(Φ(w))[
1−Ū2(Ψ(w))

Ψ(w)

]
[1+π2Ū2(Ψ(w))]

]
[

1− R̄2(Φ(w))
Φ(w)

]
, (4.9)

where

Hi(0,w) =

pi



Λ
+

a−1

∑
r=0

cnQr

b−r−1

∑
n=1

(wb−wn+r)

+Λ
+

a−1

∑
r=0

(C (w)wr−wb)

+
b−1

∑
r=0

(wb−wr)(1−θ)[
(1−π1)

∫
∞

0
H1,r(u)µ1(u)du

+(1−π2)
∫

∞

0
H2,r(u)µ2(u)du

+
∫

∞

0
A1,r(u)µ1(u)du

+
∫

∞

0
A2,r(u)µ2(u)du

]
+

b−1

∑
r=0

(wb−wr)

[∫
∞

0
Vr(u)γ(u)du

+
∫

∞

0
R2,r(u)β2(u)du

]


Dr(w)

, i = 1,2

(4.10)

Dr(w) =Ψ(w)wb−
[

Ψ(w)[(1−θ)+θV̄ (Φ(w))][
p1(1−π1)Ū1(Ψ(w))+ p1π1(Ū1(Ψ(w)))2

+ p2(1−π2)Ū2(Ψ(w))+ p2π2(Ū2(Ψ(w)))2]
+Λ

−D̄(Φ(w))R̄1(Φ(w))R̄2(Φ(w))[
p1[1−Ū1(Ψ(w))][1+π1Ū1(Ψ(w))]

+ p2[1−Ū2(Ψ(w))][1+π2Ū2(Ψ(w))]
]]

Ψ(w) = Λ
−+Λ

+(1−C (w))

Φ(w) = Λ
+(1−C (w)).

4.1 Queue size distribution at a random epoch

By adding (4.2) to (4.9) with idle term, we get the PGF of the
queue size distribution at a random epoch.

P(w) = H1(w)+H2(w)+A1(w)+A2(w)+V (w)

D(w)+R1(w)+R2(w)+Q(w)
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P(w) =



[
Λ
+

a−1

∑
r=0

b−r−1

∑
n=1

cnQr(wb−wn+r)

+
b−1

∑
r=0

(wb−wr)Wr +Λ
+

a−1

∑
r=0

Qr

(C (w)wr−wb)
]
×
[
p1Φ(w)(1−Ū1(Ψ(w)))

+ p2Φ(w)(1−Ū2(Ψ(w)))+π1 p1Φ(w)

Ū1(Ψ(w))(1−Ū1(Ψ1(w)))

+π2 p2Φ(w)Ū2(Ψ(w))(1−Ū2(Ψ(w)))

+θ(1−π1)p1Ψ(w)Ū1(Ψ(w))[1−V̄ (Φ(w))]

+θ(1−π2)p2Ψ(w)Ū2(Ψ(w))[1−V̄ (Φ(w))]

+θπ1 p1Ψ(w)(Ū1(Ψ(w)))2[1−V̄ (Φ(w))]

+θπ2 p2Ψ(w)(Ū2(Ψ(w)))2[1−V̄ (Φ(w))]

+Λ
−p1(1+π1Ū1(Ψ(w)))(1−Ū1(Ψ(w)))

(1− D̄(Φ(w)))+Λ
−p2(1+π2Ū2(Ψ(w)))

(1−Ū2(Ψ(w)))(1− D̄(Φ(w)))+Λ
−p1

D̄(Φ(w))(1+π1Ū1(Ψ(w)))(1−Ū1(Ψ(w)))

(1− R̄1(Φ(w)))+Λ
−p2D̄(Φ(w))

(1+π2Ū2(Ψ(w)))(1−Ū2(Ψ(w)))

(1− R̄1(Φ(w)))+Λ
−p1D̄(Φ(w))R̄1(Φ(w))

(1+π1Ū1(Ψ(w)))(1−Ū1(Ψ(w)))

(1− R̄2(Φ(w)))+Λ
−p2D̄(Φ(w))R̄1(Φ(w))

(1+π2Ū2(Ψ(w)))(1−Ū2(Ψ(w)))

+(1− R̄2(Φ(w)))]Dr(w)Q(w)


[Dr(w)Φ(w)]

.

(4.11)

where

Ψ(w) = Λ
−+Λ

+(1−C (w));Φ(w) = Λ
+(1−C (w))

Hr = (1−π1)
∫

∞

0
H1,r(u)µ1(u)du+(1−π2)∫

∞

0
H2,r(u)µ2(u)du

Ar =
∫

∞

0
A1,r(u)µ1(u)du+

∫
∞

0
A2,r(u)µ2(u)du

Wr = (1−θ)Hr +(1−θ)Ar +
∫

∞

0
Vr(u)γ(u)du

+
∫

∞

0
R2,r(u)β2(u)du

5. Stability condition

The condition P(1)=1 should be satisfied by the probability
generating function. To satisfy this condition, apply L’Hospital’s

rule and equating the expression to 1, we get

X1×
[

p1(1−Ū1(Λ
−))(1+π1Ū1(Λ

−))+ p2(1−Ū2(Λ
−))

(1+π2Ū2(Λ
−))+Λ

−
θE(V )M1 +(Λ−E(D)

+Λ
−E(R1)+Λ

−E(R2))M4

]
+C1×

a−1

∑
r=0

Qr =C1

(5.1)

Next, the unknown probabilities, Br, r = 0,1,2, ...,b−1 are
calculated and related to the idle-server probabilities, Qr, r =
0,1,2, ...,a− 1. The LHS of the above expression must be
positive. Thus, the required condition P(1) = 1 is satisfied if[

Ψ(w)wb−
[
Ψ(w)[(1−θ)+θV̄ (Φ(w))]

[
p1(1−π1)

Ū1(Ψ(w))+ p1π1(Ū1(Ψ(w)))2 + p2(1−π2)Ū2(Ψ(w))
+ p2π2(Ū2(Ψ(w)))2

]
+Λ−D̄(Φ(w))R̄1(Φ(w))R̄2(Φ(w))[

p1[1−Ū1(Ψ(w))][1+π1Ū1(Ψ(w))]

+ p2[1−Ū2(Ψ(w))][1+π2Ū2(Ψ(w))]
]]]

> 0.

If ρ =

[
Λ
+E(X)(θE(V )M1−M2 + p1Ū

′
1(Λ

−)

(1−π1 +2π1Ū1(Λ
−))

+ p2Ū
′
2(Λ

−)(1−π2 +2π2Ū2(Λ
−))

+(E(D)+E(R1)+E(R2))M4)
]

b
(5.2)

then the condition to be satisfied by the model under con-
sideration for the existence of steady state is ρ < 1. There
are b+a unknowns in equation (4.11). Using the following
result, we can express Br in terms of Qr in such a way that
numerator have only ‘b’ constants. Now, equation(4.11) gives
the PGF of the number of customers involving ‘b’ unknowns.
By Rouche’s theorem, the expression Dr(w) has b−1 zeros
inside and one on the unit circle |w| = 1. The numerator of
equation (4.11) must vanish at these points, since P(w) is an-
alytic within and on the unit circle and as a result we get ‘b’
equations in ‘b’ unknowns . These equations can be solved
by any appropriate numerical technique.

5.1 Result: Let Wr can be expressed in terms of Qr as

a−1

∑
r=0

Wr = Λ
+

a−1

∑
r=0

Qr−Λ
+

a−1

∑
r=0

Qr

a−r−1

∑
k=1

ck

where, Wr is the probabilities of the ‘r’ customers in the queue
during idle period and X1, M1, M2, M4 C1, E(X) are given in
Section 6.

6. Performance measures
In this section, we derive system state probabilities and the
mean number of customers in the queue (Lq) and the mean
waiting time in the queue (Wq).
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6.1 System state probabilities
Differentiating (4.2) to (4.9) and applying L’Hospital’s rule
whenever necessary, we get the following results

Let Hq(1), Vq(1), Dq(1), Rq(1) be the probabilities that the
server is in a busy, Bernoulli vacation, delay time to repair
and repair state respectively. We can give that

Hq(1) = H1(1)+H2(1)+A1(1)+A2(1) =
X1M4

C1

Vq(1) =
X1Λ−θE(V )M1

C1

Dq(1) =
X1Λ−E(D)M4

C1

Rq(1) = R1(1)+R2(1) =
X1Λ−(E(R1)+E(R2))M4

C1

6.2 Mean queue size
1. Differentiating (4.11) and using L’Hospital’s rule, we

can obtain the mean number of customers in the queue
(Lq) as follows:

Lq = lim
w→1

d
dw

P(w) =
N
′′′
(1)D

′′
(1)−D

′′′
(1)N

′′
(1)

3(D′′)2

where

D
′′
=−2Λ

+E(X)C1

D
′′′
= 3
[
(−Λ

+E(X))
(
−Λ

+E(X(X−1))

−2Λ
+E(X)b+Λ

−b(b−1)

−
[
(−Λ

+E(X(X−1))

−2(Λ+E(X))2
θE(V )+Λ

−
θS1)M1

+[2(Λ+E(X))2−Λ
−(Λ+E(X))2

θE(V )

−Λ
−

Λ
+E(X(X−1))]M2

+Λ
−(Λ+E(X))2M3 +Λ

−
Λ
+E(X(X−1))

[p1Ū
′
1(Λ

−)+ p2Ū
′
2(Λ

−)+M4(E(D)

+E(R1)+E(R2))]+Λ
−(Λ+E(X))2

[−p1Ū
′′
1 (Λ

−)[1−π1 +2π1Ū1(Λ
−)]

− p2Ū
′′
2 (Λ

−)[1−π2 +2π2Ū2(Λ
−)]

−2p1π1(Ū
′
1(Λ

−))2−2p2π2(Ū
′
2(Λ

−))2

+2(E(D)+E(R1)+E(R2))[p1Ū
′
1(Λ

−)

[1−π1 +2π1Ū1(Λ
−)]

+ p2Ū
′
2(Λ

−)[1−π2 +2π2Ū2(Λ
−)]]

+M4M5]
])
−Λ

+E(X(X−1))C1
]

N
′′
=−2Λ

+E(X)
(
X1[p1(1−Ū1(Λ

−))(1+π1Ū1(Λ
−))

+ p2(1−Ū2(Λ
−))(1+π2Ū2(Λ

−))

+Λ
−

θE(V )M1 +(Λ−E(D)+Λ
−E(R1)

+Λ
−E(R2))M4]+C1

a−1

∑
r=0

Qr
)

N
′′′
= 3
[
−X2Λ

+E(X)[M4 +Λ
−

θE(V )M1

+(Λ−E(D)+Λ
−E(R1)+Λ

−E(R2))M4]

+X1
(
2(Λ+E(X))2[−p1Ū

′
1(Λ

−)

− p2Ū
′
2(Λ

−)+π1 p1[−Ū1(Λ
−)Ū

′
1(Λ

−)

+(1−Ū1(Λ
−))Ū

′
1(Λ

−)+2θΛ
−E(V )

Ū
′
1(Λ

−)Ū1(Λ
−)+θ(Ū1(Λ

−))2E(V )

+Λ
−Ū

′
1(Λ

−)(1−Ū1(Λ
−))E(D)

+Λ
−E(R1)Ū

′
1(Λ

−)(1−Ū1(Λ
−))

+Λ
−E(R2)Ū

′
1(Λ

−)(1−Ū1(Λ
−))]

+π2 p2[−Ū2(Λ
−)Ū

′
2(Λ

−)+(1−Ū2(Λ
−))

Ū
′
2(Λ

−)+2θΛ
−E(V )Ū

′
2(Λ

−)Ū2(Λ
−)

+θ(Ū2(Λ
−))2E(V )+Λ

−Ū
′
2(Λ

−)

(1−Ū2(Λ
−))E(D)+Λ

−E(R1)Ū
′
2(Λ

−)

(1−Ū2(Λ
−))+Λ

−E(R2)Ū
′
2(Λ

−)

(1−Ū2(Λ
−))]+θ(1−π1)p1E(V )A1

+θ(1−π2)p2E(V )A2−Λ
−p1

(1+π1Ū
′
1(Λ

−))Ū
′
1(Λ

−)E(D)

−Λ
−p2(1+π2Ū

′
2(Λ

−))Ū
′
2(Λ

−)E(D)

−Λ
−p1(1+π1Ū1(Λ

−))E(R1)A3

−Λ
−p2(1+π2Ū2(Λ

−))E(R1)A4

−Λ
−p1(1+π1Ū1(Λ

−))E(R2)A5

−Λ
−p2(1+π2Ū2(Λ

−))E(R2)A6]

−Λ
−E(X(X−1))[p1(1−Ū1(Λ

−))

+ p2(1−Ū2(Λ
−))+π1 p1Ū1(Λ

−)

(1−Ū1(Λ
−))+π2 p2Ū2(Λ

−)

(1−Ū2(Λ
−))]−Λ

−S1[θ(1−π1)p1

Ū1(Λ
−)+θ(1−π2)p2Ū2(Λ

−)

+θπ1 p1(Ū1(Λ
−))2 +θπ2 p2(Ū2(Λ

−))2]

−Λ
−M4(S2 +S3 +S4)

)
−Λ

+E(X)
a−1

∑
r=0

Qr(
−Λ

+E(X(X−1))−2Λ
+E(X)b

+Λ
−b(b−1)−

[
(−Λ

+E(X(X−1))

−2(Λ+E(X))2
θE(V )+Λ

−
θS1)M1

+[2(Λ+E(X))2−Λ
−(Λ+E(X))2

θE(V )

−Λ
−

Λ
+E(X(X−1))]M2

+Λ
−(Λ+E(X))2M3

+Λ
−

Λ
+E(X(X−1))[p1Ū

′
1(Λ

−)

+ p2Ū
′
2(Λ

−)+M4(E(D)+E(R1)

+E(R2))]+Λ
−(Λ+E(X))2
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[−p1Ū
′′
1 (Λ

−)[1−π1 +2π1Ū
′
1(Λ

−)]

− p2Ū
′′
2 (Λ

−)[1−π2 +2π2Ū
′
2(Λ

−)]

−2p1π1(Ū
′
1(Λ

−))2−2p2π2(Ū
′
2(Λ

−))2

+2(E(D)+E(R1)+E(R2))[p1Ū
′
1(Λ

−)

[1−π1 +2π1Ū1(Λ
−)]

+ p2Ū
′
2(Λ

−)[1−π2 +2π2Ū2(Λ
−)]]

+M4M5]
])
− [Λ+E(X(X−1))

a−1

∑
r=0

Qr

+2Λ
+E(X)

a−1

∑
r=0

rQr]C1
]

X1 = Λ
+

a−1

∑
r=0

b−r−1

∑
n=1

cnQr(b−n− r)

+Λ
+

a−1

∑
r=0

Qr(E(X)+ r−b)+
b−1

∑
r=0

(b− r)Wr

X2 = Λ
+

a−1

∑
r=0

b−r−1

∑
n=1

cnQr(b(b−1)

− (n+ r)(n+ r−1))+Λ
+

a−1

∑
r=0

Qr

(E(X(X−1))+2E(X)r+ r(r−1)

−b(b−1))+
b−1

∑
r=0

(b(b−1)− r(r−1))Wr

C1 =−Λ
+E(X)+Λ

−b− [Λ−Λ
+E(X)[θE(V )M1

−M2 + p1Ū
′
1(Λ

−)[1−π1 +2π1Ū1(Λ
−)]

+ p2Ū
′
2(Λ

−)[1−π2 +2π2Ū2(Λ
−)]

+(E(D)+E(R1)+E(R2))M4]

−Λ
+E(X)M1]

M1 = p1(1−π1)Ū1(Λ
−)+ p1π1(Ū1(Λ

−))2

+ p2(1−π2)Ū2(Λ
−)+ p2π2(Ū2(Λ

−))2

M2 = p1(1−π1)Ū
′
1(Λ

−)+ p2(1−π2)Ū
′
2(Λ

−)

+2p1π1Ū
′
1(Λ

−)Ū1(Λ
−)

+2p2π2Ū
′
2(Λ

−)Ū2(Λ
−)

M3 = p1(1−π1)Ū
′′
1 (Λ

−)+ p2(1−π2)Ū
′′
2 (Λ

−)

+2p1π1Ū
′′
1 (Λ

−)Ū1(Λ
−)

+2p2π2Ū
′′
2 (Λ

−)Ū2(Λ
−)

+2p1π1(Ū
′
1(Λ

−))2

+2p2π2(Ū
′
2(Λ

−))2

M4 = p1(1+π1Ū1(Λ
−))(1−Ū1(Λ

−))

+ p2(1+π2Ū2(Λ
−))(1−Ū2(Λ

−))

M5 = 2E(D)E(R1)+2E(D)E(R2)

+2E(R2)E(R1)+E(D2)+E(R2
1)+E(R2

2)

A1 = Ū1(Λ
−)+Λ

−Ū
′
1(Λ

−)

A2 = Ū2(Λ
−)+Λ

−Ū
′
2(Λ

−)

A3 = Ū
′
1(Λ

−)+(1−Ū1(Λ
−))E(D)

A4 = Ū
′
2(Λ

−)+(1−Ū2(Λ
−))E(D)

A5 = Ū
′
1(Λ

−)+(1−Ū
′
1(Λ

−))(E(D)+E(R1))

E(X) =C′(1)

A6 = Ū
′
2(Λ

−)+(1−Ū
′
2(Λ

−))(E(D)+E(R1))

E(X(X−1)) =C′′(1)

S1 = Λ
+E(X(X−1))E(V )+(Λ+E(X))2E(V 2)

S2 = Λ
+E(X(X−1))E(D)+(Λ+E(X))2E(D2)

S3 = Λ
+E(X(X−1))E(R1)+(Λ+E(X))2E(R2

1)

S4 = Λ
+E(X(X−1))E(R2)+(Λ+E(X))2E(R2

2)

2. Mean waiting time in the queue is obtained by using
Little’s formula

Wq =
Lq

Λ+E(X)

7. Particular cases
Case 1: If batch arrival, single service (a= b= 1), no Bernoulli
vacation (θ = 0) and no negative arrival is considered then
(4.11) reduces to

P(w) =

[
p1[1−Ū1(Ψ(w))][1+π1Ū1(Ψ(w))]

+ p2[1−Ū2(Ψ(w))][1+π2Ū2(Ψ(w))]
]
Q[

p1(1−π1)Ū1(Ψ(w))+ p1π1(Ū1(Ψ(w)))2

+ p2(1−π2)Ū2(Ψ(w))+ p2π2(Ū2(Ψ(w)))2]−w

where Ψ(w) = Λ
+(1−C (w))

Q = 1−ρ, ρ = Λ
+E(X)(p1E(U1)(1+π1)

+ p2E(U2)(1+π2))

These expressions are exactly matched with the results by
Madan et. al (2004).

Case 2: If batch arrival, single service (a = b = 1), no re-
service for two types of service, no Bernoulli vacation (θ = 0)
and no negative arrival is considered then (4.11) reduces to

P(w) =

[
p1[1−Ū1(ψ(w))]+ p2[1−Ū2(Ψ(w))]

]
Q

[p1Ū1(Ψ(w))+ p2Ū2(Ψ(w))]−w

where Ψ(w) = Λ
+(1−C (w)); Q = 1−ρ

ρ = Λ
+E(X)(p1E(U1)+ p2E(U2))

These expressions agree with the results by Baruah et.al
(2014).
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8. Numerical results
In this section, we present some numerical results and graphs
using MATLAB that provide insight into the system behavior.

1. The distribution of arriving batches is assumed to be
geometric with mean 2.

2. Service times, Reservice times, vacation times, delay
times and two phase of repair times are exponentially
and Erlangianly distributed.

3. The arbitrary values to the parameters are so chosen
such that they satisfy the stability condition.

Table 2 and 3 shows that when Type 1 service rate (µ1) in-
creases, then the utilization factor (ρ) decreases, the mean
queue size (Lq) decreases and the mean waiting time in the
queue (Wq) are also decreases for the values of a = 2, b = 5,
θ = 0.3, Λ+ = 1, Λ− = 1.1, µ2 = 14, γ = 7, β1 = 3, β2 = 2.5,
ξ = 1.20, π1 = 0.3, π2 = 0.2, p1 = 0.2, p2 = 0.8. ξ = 1.20,
π1 = 0.3, π2 = 0.2, p1 = 0.2, p2 = 0.8.
Table 4 and 5 shows that when vacation rate (γ) increases, then
the utilization factor (ρ) decreases, the mean queue size (Lq)
decreases and the mean waiting time in the queue (Wq) are
also decreases for the values of a = 2, b = 5, θ = 0.3, Λ+ = 1,
Λ− = 1.1, µ1 = 17, µ2 = 14, β1 = 3, β2 = 2.5, ξ = 1.20,
π1 = 0.3, π2 = 0.2, p1 = 0.2, p2 = 0.8.

Table 2. The impact of service rate (µ1) on ρ , Lq, Wq

Exponential
µ1 ρ Lq Wq
8 0.0195 10.1755 5.0877
9 0.0191 9.9879 4.9940

10 0.0188 9.8355 4.9177
11 0.0185 9.7091 4.8545
12 0.0183 9.6026 4.8013
13 0.0182 9.5116 4.7558
14 0.0181 9.4331 4.7165
15 0.0180 9.3645 4.6823
16 0.0179 9.3041 4.6521
17 0.0178 9.2506 4.6253

Table 3. The impact of service rate (µ1) on ρ , Lq, Wq

Erlang-2 stage
µ1 ρ Lq Wq
8 0.0182 10.6451 5.3226
9 0.0179 10.4415 5.2207

10 0.0176 10.2764 5.1382
11 0.0174 10.1398 5.0699
12 0.0173 10.0250 5.0125
13 0.0172 9.9270 4.9635
14 0.0171 9.8426 4.9213
15 0.0170 9.7689 4.8844
16 0.0169 9.7041 4.8521
17 0.0168 9.6467 4.8234

Table 4. The impact of vacation rate (γ) on ρ , Lq, Wq

Exponential
γ ρ Lq Wq
5 0.0185 8.9519 4.4759
6 0.0149 8.7697 4.3849
7 0.0122 8.6442 4.3221
8 0.0103 8.5526 4.2763
9 0.0088 8.4829 4.2415

10 0.0075 8.4281 4.2140
11 0.0065 8.3838 4.1919
12 0.0057 8.3474 4.1737
13 0.0050 8.3169 4.1585
14 0.0044 8.2910 4.1455

Table 5. The impact of vacation rate (γ) on ρ , Lq, Wq

Erlang-2 stage
γ ρ Lq Wq
5 0.0174 9.6865 4.8433
6 0.0138 9.4978 4.7489
7 0.0112 9.3687 4.6844
8 0.0092 9.2750 4.6375
9 0.0077 9.2040 4.6020
10 0.0065 9.1484 4.5742
11 0.0055 9.1036 4.5518
12 0.0047 9.0669 4.5334
13 0.0040 9.0361 4.5181
14 0.0033 9.0100 4.5050

For the effect of the parameters, µ1, γ on the system per-
formance measures, two dimensional graphs are drawn in
Figures 1 and 2. Fig.1 and Fig.2 shows respectively that as
the values of first type service rate (µ1) and vacation rate (γ)
increases individually, then the utilization factor (ρ), the mean
queue size (Lq) and the mean waiting time in the queue (Wq)
decreases.
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Figure 1. Lq versus µ1
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Figure 2. Lq versus γ

9. Conclusion and further work
In this paper, we have studied an M[X ]/G1(a,b),G2(a,b)/1
unreliable G-queue with optional re-service, Bernoulli vaca-
tion, delay time to two phase of repair. Where the server
provides two types of service and each type consist of an
optional re-service. We derive the probability generating func-
tion of the number of customers in the queue at a random
epoch in transient and steady state conditions. The perfor-
mance measures of the system state probabilities, the mean
queue size and the mean waiting time in the queue are deter-
mined under steady state conditions. Some particular cases
are discussed. The results are validated with the support of
numerical illustrations. To this end, we can extend this model
to optional re-service G-queue with working vacations and
vacation interruption under Bernoulli schedule.
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