
Malaya Journal of Matematik, Vol. 6, No. 4, 788-794, 2018

https://doi.org/10.26637/MJM0604/0013

Common fixed points of a pair of multivalued
non-self mappings in partial metric spaces
Santosh Kumar1* and Terentius Rugumisa2

Abstract
In this paper, we utilize the concept of the partial Hausdorff metric, first introduced by Aydi et al.[4] for partial
metric space, to consider a pair of multivalued mappings which are non-self almost contractions on metrically
convex partial metric spaces. We establish the existence of fixed point in such mappings.
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1. Introduction and Preliminaries.
In 1969, Nadler [11] introduced the study of fixed points

using the Hausdorff metric on multivalued mappings. Assad
and Kirk [2] proved the Banach fixed point theorem for non-
self multivalued mappings. These results were used by Imdad
and Kumar [8] to prove common fixed points for a pair of
non-self mappings.

Berinde [5] intorduced a class of self-mappings which
are known as almost contractions. He developed fixed point
theorems for such mappings which generalized several fixed
point theorems, including those of Kannan [9] and Chatterjea
[7].

Berinde and Berinde [6] also formulated fixed point theo-
rems for almost contractions in multivalued self mappings.

Multivalued non-self almost contractions were introduced
by Alghamdi et al. [1], who also proved the existence of fixed
points for such type of mappings for metrically convex metric
spaces.

Aydi et al. [4] introduced the concept of the partial Haus-
dorff metric and used it to prove Nadler’s theorem on partial
metric spaces.

This study formulates a fixed point theorem for pairs of
multivalued non-self almost constructions in complete partial
metric spaces.

We now introduce preliminaries which will be of use in
this paper.

Definition 1.1. [10] A partial metric on a non-empty set X is
a mapping p : X×X → [0,∞), such that for all x,y,z ∈ X .
P0: 0≤ p(x,x)≤ p(x,y),
P1: x = y if and only if p(x,x) = p(x,y) = p(y,y),
P2: p(x,y) = p(y,x) and
P3: p(x,y)≤ p(x,z)+ p(z,y)− p(z,z).
The pair (X , p) is said to be a partial metric space.

From Definition 1.1 we deduce the following:

p(x,y) = 0⇒ x = y. (1.1)

Proof. If p(x,y) = 0, then p(x,x) = 0 because 0≤ p(x,x)≤
p(x,y) from P0. Similarly, p(x,y) = 0 implies p(y,y) = 0
because 0 ≤ p(y,y) ≤ p(x,y). Hence, p(x,y) = 0 implies
p(x,x) = p(x,y) = p(y,y) = 0. From P1 this means that x =
y.
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From P3 we deduce that

p(x,y)≤ p(x,z)+ p(z,y). (1.2)

As an example, let X = R+ and let p(x,y) = max{x,y}
for all x,y ∈ X . Then (X , p) is a partial metric space .

Each partial metric p on X generates a T0 topology τp on
X with a base being the family of open balls {Bp(x,ε) : x ∈
X ,ε > 0} where Bp(x,ε) = {y∈ X : p(x,y)< p(x,x)+ε} for
all x ∈ X and ε > 0.

Definition 1.2. [10]

(i) A sequence {xn} in a partial metric space (X , p) con-
verges to x ∈ X if and only if p(x,x) = limn→∞ p(x,xn),

(ii) A sequence {xn} in a partial metric space (X , p) is
called a Cauchy sequence if and only if
limn,m→∞ p(xn,xm) exists and is finite.

(iii) A partial metric space (X , p) is said to be complete
if every Cauchy sequence {xn} in X converges, with
respect to τp, to a point x ∈ X such that

p(x,x) = lim
n,m→∞

p(xn,xm).

Lemma 1.3. [10] If p is a partial metric on X, then the
mapping ps : X×X → [0,+∞) given by

ps(x,y) = 2p(x,y)− p(x,x)− p(y,y) (1.3)

defines a metric on X.

In this paper we will denote ps as the metric derived from
the partial metric p.

We now describe a metrically convex metric space and
state some of its properties.

Definition 1.4. [2]

(i) A metric space (X ,d) is said to be metrically convex
if for all x,y in X with x 6= y, there exists a point z in
X ,(x 6= z 6= y) such that d(x,y) = d(x,z)+d(z,y).

(ii) Let (X ,d) be a metrically convex metric space with
x,y ∈ X ,x 6= y. Then we define

seg[x,y] := {z : d(x,y) = d(x,z)+d(z,y)}.

As an example, the partial metric space (R+, p) where
p(x,y) = max{x,y} for all x,y ∈ R+ is metrically convex be-
cause (X , ps) where ps(x,y) = |x− y| is the metric derived
from the partial metric p.

Lemma 1.5. [2] Let C be a closed subset of set X, where
(X ,d) is a metrically convex metric space. If x ∈C and y ∈
X\C then there exists z in ∂C, (the boundary of C), such that
d(x,y) = d(x,z)+d(z,y).

We now define a metrically convex partial metric space.

Definition 1.6. A partial metric space (X , p) is said to be a
metrically convex partial metric space if (X , ps) is a metrically
convex metric space, where ps is the metric derived from the
partial metric p as defined in (1.3).

We deduce the following lemma.

Lemma 1.7. Let C be a non-empty subset of a metrically
convex partial metric space (X , p) which is closed in (X , ps).
If x ∈ C and y ∈ X\C, then there exists a point z ∈ ∂C (the
boundary of C) such that

p(x,y)+ p(z,z) = p(x,z)+ p(z,y).

Proof. From Definition 1.6, the partial metric space (X , p)
is metrically convex if (X , ps) is a metrically convex metric
space. From Lemma 1.5, this means that if x ∈ C and y ∈
X\C then there exists z in ∂C, (the boundary of C), such that
ps(x,y) = ps(x,z)+ ps(z,y). Using (1.3), this means

ps(x,y) = ps(x,z)+ ps(z,y)

⇒ 2p(x,y)− p(x,x)− p(y,y) = 2p(x,z)− p(x,x)

− p(z,z)+2p(z,y)− p(z,z)− p(y,y)

⇒ 2p(x,y) = 2p(x,z)+2p(z,y)−2p(z,z)

⇒ p(x,y)+ p(z,z) = p(x,z)+ p(z,y)

⇒ p(x,z)+ p(z,y) = p(x,y)+ p(z,z).

Lemma 1.8. Given a metrically convex partial metric space
(X , p) and let x,y,z ∈ X, with z ∈ seg[x,y]. Then p(x,z) ≤
p(x,y).

Proof. According to Lemma 1.7, in a metrically convex par-
tial metric space (X , p), with x,y,z ∈ X and z ∈ seg[x,y] , we
have:

p(x,z)+ p(z,y) = p(x,y)+ p(z,z)

⇒ p(x,z)+ p(z,y)− p(z,z) = p(x,y).

From P0 of Definition 1.1, we have p(z,y)− p(z,z) ≥ 0.
Hence, p(x,z)≤ p(x,y).

2. The Partial Hausdorff Metric
We now describe the partial Hausdorff metric [4].
Let CBp(X) be a family of all non-empty, closed and

bounded subsets of a partial metric space (X , p), induced by
the partial metric p. The closedness of the sets is taken from
the topology (X ,τp). Furthermore, the set A is said to be a
bounded subset in (X , p) if there exists x0 ∈ X and M ≥ 0
such that for all a ∈ A, we have a ∈ Bp(x0,M).

Definition 2.1. [4]
For all A,B ∈CBp(X) and x ∈ X , we define
(i) p(x,A) = inf

{
p(x,a),a ∈ A

}
,

(ii) δp(A,B) = sup
{

p(a,B) : a ∈ A
}

,
(iii) δp(B,A) = sup

{
p(b,A) : b ∈ B

}
,

(iv) Hp(A,B) = max
{

δp(A,B),δp(B,A)
}

.
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The mapping Hp : CBp ×CBp → [0,+∞) is called the
partial Hausdorff metric.

Remark 2.1. Let (X , p) be a partial metric space and
A ∈ CBp(X), then A = Ā where Ā denotes the closure of A
with respect to the partial metric p. In this case, a ∈ A if and
only if p(a,A) = p(a,a).

We now state some properties of mappings δp and Hp.

Lemma 2.2. [4] Let (X , p) be a partial metric space. For any
A,B ∈CBp(X) we have
(i) δp(A,A) = sup{p(a,a) : a ∈ A},
(ii) δp(A,A)≤ δ (A,B),
(iii) δp(A,B) = 0 implies that A⊆ B,
(h1) Hp(A,A)≤ Hp(A,B),
(h2) Hp(A,B) = Hp(B,A),
(h3) Hp(A,B) = 0 implies A = B.

We will also utilize the following lemma in our proofs.

Lemma 2.3. [4] Let (X , p) be a partial metric space, A,B ∈
CBp(X) and K > 1. For any a ∈ A, there exists b = b(a) ∈ B
such that p(a,b)≤ KHp(A,B).

The following definitions will be useful in the course of
our proofs.

Let T : C→ CBp(X) be a multivalued mapping, where
C ⊆ X . We say that T is a self mapping if C = X , otherwise T
is called a non-self mapping. If there is an element x ∈C such
that x ∈ T x, we say that x is a fixed point of T in X .

Suppose we have two multivalued mappings S,T : C→
CBp(X), with C ⊆ X . If there is an element x ∈C such that
x ∈ (Sx∩T x) then we say that x a common fixed point of S
and T in X .

Aydi et al. proved the following theorem.

Theorem 2.4. [4] Let (X , p) be a complete partial metric
space. If T : X →CBp(X) is a multivalued mapping such that
for all x,y ∈ X we have

Hp(T x,Ty)≤ kp(x,y) (2.1)

where k ∈ (0,1), then T has a fixed point.

3. Common Fixed Point of Multivalued
Contraction

We start with proving a generalization of Theorem 2.4
which will then be used to develop Theorem 4.1.

Theorem 3.1. Let (X , p) be a complete partial metric space.
If S,T : X →CBp(X) are multivalued mappings such that for
all x,y ∈C we have

Hp(T x,Sy)≤ kp(x,y) (3.1)

where k ∈ (0,1), then there is a common fixed point of S and
T in X.

Proof. Let x0 ∈ X and x1 = T x0. From Lemma 2.3 with

K =
1√
k

there exists x2 ∈ Sx1 such that

p(x1,x2)≤
1√
k

Hp(T x0,Sx1).

As Hp(T x0,Sx1)≤ kp(x0,x1), it means
p(x1,x2) ≤

√
kp(x0,x1). For x2 ∈ Sx1 there exists x3 ∈ T x2

such that

p(x2,x3)≤
1√
k

Hp(Sx1,T x2)

=
1√
k

Hp(T x2,Sx1)

≤
√

kp(x1,x2).

Continuing this process we obtain a sequence {xn} in X such
that x2n+1 ∈ T x2n and p(x2n,x2n+1) ≤

√
kp(x2n−1,x2n) for

all n ≥ 1. Similarly x2n+2 ∈ Sx2n+1 and p(x2n+1,x2n+2) ≤√
kp(x2n,x2n+1) for all n. In general this means

p(xn,xn+1)≤
√

kp(xn−1,xn) for all n≥ 1. (3.2)

From equation (3.2), and using mathematical induction
we get

p(xn,xn+1)≤ (
√

k)n p(x0,x1) for all n ∈ N. (3.3)

Using (1.2) and (3.3), for any m ∈ N we have

p(xn,xn+m)≤ p(xn,xn+1)+ p(xn+1,xn+2)

+ · · ·+ p(xn+m−1,xn+m)

≤ (
√

k)n p(x0,x1)+(
√

k)n+1 p(x0,x1)

+ · · ·+(
√

k)n+m−1 p(x0,x1)

=
(
(
√

k)n +(
√

k)n+1 + · · ·+(
√

k)n+m−1
)

p(x0,x1)

≤
(
(
√

k)n +(
√

k)n+1 + · · ·
)

p(x0,x1)

=
(
√

k)n

1−
√

k
p(x0,x1).

As 0 < k < 1 we have 0 <
√

k < 1, hence,

lim
n,m→∞

p(xn,xn+m) = 0 <+∞. (3.4)

Hence, following Definition 1.2, {xn} is a Cauchy se-
quence and converges to x? ∈ X because (X , p) is complete.
Furthermore,

p(x?,x?) = lim
n→∞

p(xn,x?) = lim
n,m→∞

p(xn,xm) = 0. (3.5)

Since from the assumption, Hp(T x2n,Sx?)≤ kp(x2n,x?),
we therefore have

lim
n→∞

Hp(T x2n,Sx?) = 0. (3.6)

Because x2n+1 ∈ T x2n, we have

p(x2n+1,Sx?)≤ δp(T x2n,Sx?)≤ Hp(T x2n,Sx?). (3.7)
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Taking n→∞ in (3.7) and applying (3.5) and (3.6) we get

lim
n→∞

p(x2n+1,Sx?) = lim
n→∞

Hp(T x2n,Sx?) = 0

⇒ p(x?,Sx?) = 0 = p(x?,x?)

⇒ x? ∈ Sx?. (3.8)

This shows that x? is a fixed point of S. Using a similar
argument we conclude that x? is also a fixed point of T .

Alghamdi et al. introduced the notion of multivalued non-
self almost contractions for metric spaces as follows.

Definition 3.2. [1] Let (X ,d) be a metric space and K a
nonempty subset of X . A map T : K → CB(X) is called a
multivalued almost contraction if there exist a constant k ∈
(0,1) and some L > 0 such that

H(T x,Ty)≤ kd(x,y)+Ld(y,T x) for all x,y ∈ K.

Aydi et al. [3] proved the following theorem for almost
contractions in metric-like spaces.

Theorem 3.3. ([3]) Let (X ,σ) be a complete metric-like
space and C a nonempty closed subset of X such that if x ∈C
and y /∈C, then there exists a point z ∈ ∂C (the boundary of
C) such that

σ(x,y) = σ(x,z)+σ(z,y).

Suppose that T : C→CBσ (X) is a multivalued almost con-
traction, that is

Hσ (T x,Ty)≤ kσ(x,y)+Lσ(y,T x),

with k ∈ (0,1), and some L≥ 0 such that (1+L)(k+2L)< 1.
If also x ∈ ∂C implies T x⊂C, then there exists x? ∈C such
that x? ∈ T x?, that is T has a fixed point in C.

In this paper we modify the Theorem 3.3 so that it can
apply to a pair of multivalued mappings in a metrically convex
partial metric space.

4. Common Fixed Point of Multivalued
Almost Contractions

We intend to provide a proof for the following theorem.

Theorem 4.1. Let (X , p) be a complete metrically convex
partial metric space and C a nonempty closed subset of X
with ∂C 6= /0. Suppose that S,T : C→CBp(X) are multivalued
almost contractions, that is,

Hp(T x,Sy)≤ kp(x,y)+Lp(y,T x) and

Hp(T x,Sy)≤ kp(x,y)+Lp(x,Sy) for all x,y ∈C
(4.1)

with k ∈ (0,1) and some L≥ 0 such that 2
(√

k+
L√
k

)
< 1.

If x∈ ∂C (the boundary of C) implies Sx⊂C and T x⊂C, then
there exists a point x? ∈C such that x? ∈ Sx?∩T x?, that is x? is
a common fixed point of S and T . Furthermore p(x?,x?) = 0.

Proof. We construct a sequence xn ∈C in the following way:
Let x0 ∈C and y1 ∈ T x0. If y1 ∈C, let x1 = y1. If y1 /∈C, then
by Lemma 1.7, there exists x1 ∈ ∂C such that

p(x0,x1)+ p(x1,y1) = p(x0,y1)+ p(x1,x1).

Because C is closed, x1 ∈ ∂C⇒ x1 ∈C. Thus by Lemma 2.3,
there exists y2 ∈ Sx1 such that

p(y1,y2)≤ KHp(T x0,Sx1),K > 1

If y2 ∈C, let x2 = y2. However if y2 /∈C by Lemma 1.7 there
exists x2 ∈ ∂C such that

p(x1,x2)+ p(x2,y2) = p(x1,y2)+ p(x2,x2).

Therefore x2 ∈ C. From Lemma 2.3, there exists y3 ∈ T x2
such that p(y2,y3)≤ KHp(Sx1,T x2).

Continuing in this way, we construct two sequences {xn}
and {yn} such that
(i) y2n+1 ∈ T x2n,y2n+2 ∈ Sx2n+1;
(ii) p(y2n+1,y2n+2)≤ KHp(T x2n,Sx2n+1);
(iii) p(y2n,y2n+1)≤ KHp(Sx2n−1,T x2n),n≥ 1;
(iv) If yn ∈C, then xn = yn ;
(v) If yn /∈C, then xn 6= yn and xn ∈ ∂C such that

p(xn−1,xn)+ p(xn,yn) = p(xn−1,yn)+ p(xn,xn).

Let P = {xi ∈ xn : xi = yi, i = 1,2, . . .} and
Q = {xi ∈ xn : xi 6= yi, i = 1,2, . . .}. From the construction of
proof we note that if xn ∈ Q for some n, then xn−1,xn+1 ∈ P.

Now for n ≥ 2, three cases must be considered. Let us
relate the K > 1 in Theorem 3.1 to k ∈ (0,1) in Theorem 4.1

by K =
1√
k
> 1.

Case 1: (xn,xn+1) ∈ P×P. Then yn = xn,yn+1 = xn+1.
If n is even, that is, if n = 2m for some m ∈ N, we have

p(xn,xn+1) = p(x2m,x2m+1)

= p(y2m,y2m+1)

≤ KHp(Sx2m−1,T x2m)

=
1√
k

Hp(T x2m,Sx2m−1)

≤ 1√
k

[
kp(x2m,x2m−1)+Lp(x2m−1,T x2m)

]
=
√

kp(x2m,x2m−1)+
L√
k

p(x2m−1,T x2m)

≤
√

kp(x2m−1,x2m)+
L√
k

p(x2m−1,x2m−1)

≤
(√

k+
L√
k

)
p(x2m−1,x2m).

The last step emanates from P0 of Theorem 1.1, which implies
p(x2m−1,x2m)≥ p(x2m−1,x2m−1).

Hence, we have

p(xn,xn+1)≤ hp(xn−1,xn) (4.2)
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where h =
(√

k+
L√
k

)
.

We get the same result (4.2) if we assume n is odd.
Case 2: (xn,xn+1) ∈ P×Q. Then xn = yn, xn+1 6= yn+1.

From the construction of proof, we have xn+1 ∈ seg[xn,yn+1].
Using Lemma 1.8, this means:

p(xn,xn+1)≤ p(xn,yn+1)

= p(yn,yn+1)

≤ hp(xn−1,xn)

using the argument in Case 1.
Case 3: (xn,xn+1) ∈ Q×P. Then we have xn ∈ ∂C,

xn ∈ seg[xn−1,yn], xn+1 = yn+1 and xn−1 = yn−1. If n is even,
that is, if n = 2m for some m∈N, we have yn = y2m ∈ Sx2m−1.
Hence, using (1.2) and Case 1, we have

p(xn,xn+1) = p(x2m,x2m+1)

≤ p(x2m,y2m)+ p(y2m,x2m+1)

= p(x2m,y2m)+ p(y2m,y2m+1)

≤ p(x2m,y2m)+hp(x2m−1,x2m).

We now use the following facts:

(i) As 2h < 1, we have hp(x2m−1,x2m)< p(x2m−1,x2m);

(ii) Because x2m ∈ seg[x2m−1,y2m], using Lemma 1.8 we
get p(x2m,y2m)≤ p(x2m−1,y2m) and
p(x2m−1,x2m)≤ p(x2m−1,y2m).

Therefore

p(xn,xn+1) = p(x2m,x2m+1)

≤ p(x2m,y2m)+ p(x2m−1,x2m)

≤ p(x2m−1,y2m)+ p(x2m−1,y2m)

= 2p(x2m−1,y2m)

= 2p(y2m−1,y2m)

≤ 2hp(x2m−2,x2m−1).

We get the same result if we work with n is odd.
Thus, for the above three cases we deduce that, for n≥ 2,

we have

p(xn,xn+1)≤ 2hmax{p(xn−2,xn−1), p(xn−1,xn)} (4.3)

where h =
√

k+
L√
k

and 2h < 1. Let

α := (2h)−1/2 max{p(xn−2,xn−1), p(xn−1,xn)}

Following the method by Assad and Kirk [2], it can be shown
by induction that for n≥ 1

p(xn,xn+1)≤ α(2h)n/2. (4.4)

Let n > m. Then from (1.2) we have

p(xm,xn)≤
n−1

∑
i=m

p(xi,xi+1)

≤
∞

∑
i=m

p(xi,xi+1)

≤
∞

∑
i=m

α(2h)i/2

= α(2h)m/2 1
1− (2h)1/2 .

Taking the limit n,m→ ∞ we get

lim
n,m→∞

p(xm,xn) = 0. (4.5)

Hence, {xn} is a Cauchy sequence in C. Because C is a closed
subset of the complete partial metric space (X , p), there is
x? ∈C such that xn→ x?, that is

lim
n→∞

p(xn,x?) = p(x?,x?) = lim
n,m→∞

p(xn,xm) = 0. (4.6)

We now show that x? is a fixed point of T and S.
Consider the subsequence {xn j} of {xn} each of whose

terms is in P. This means xn j = yn j for j = 1,2, . . . . Consider
the case where n j is odd, that is n j = 2m j+1 for some m j ∈N.
Thus by (i) we have x2m j+1 = y2m j+1 ∈ T x2m j . Using (1.2),
have for all j = 1,2, . . .

p(x?,Sx?) = inf
z∈Sx?
{p(x?,z)}

≤ inf
z∈Sx?
{p(x?,x2m j+1)+ p(x2m j+1,z)}

= p(x?,x2m j+1)+ inf
z∈Sx?
{p(x2m j+1,z)}

= p(x?,x2m j+1)+ p(x2m j+1,Sx?)

≤ p(x?,x2m j+1)+Hp(T x2m j ,Sx?)

≤ p(x?,x2m j+1)+ kp(x2m j ,x
?)+Lp(x?,T x2m j). (4.7)

Note that as x2m j+1 ∈ T x2m j we have

lim
j→∞

p(x?,T x2m j)≤ lim
j→∞

p(x?,x2m j+1) = 0.

We take limits j→ ∞ of (4.7) and note that

lim
j→∞

p(x?,x2m j+1) = lim
j→∞

p(x2m j ,x
?)

= lim
j→∞

p(x?,T x2m j)

= 0.

Hence, using Remark 2.1 we have

p(x?,Sx?) = 0 = p(x?,x?)⇒ x∗ ∈ Sx∗, (4.8)

making x? a fixed point of S. Using a similar argument, we
can prove that x? is also a fixed point of T .
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Remark 4.1 Theorem 4.1 is valid when we have S = T .
When we set T = f , where f is a single valued mapping

we get the following corollary:

Corollary 4.2. Let (X , p) be a complete metrically convex
partial metric space and Ca nonempty subset of X with ∂C 6=
/0. Suppose that f : C→ X is a single-valued almost contrac-
tion and S : C→CBp(X) is a multivalued almost contraction,
that is,

Hp( f x,Sy)≤ kp(x,y)+Lp(y, f x) and

Hp( f x,Sy)≤ kp(x,y)+Lp(x,Sy) for all x,y ∈C
(4.9)

with k ∈ (0,1) and some L≥ 0 such that 2
(√

k+
L√
k

)
< 1.

If x ∈ ∂C (the boundary of C) implies Sx ⊂ C and f x ∈ C,
then there exists a point x? ∈C such that x? = f (x?) ⊂ Sx?,
that is x? is a common fixed point of f and S. Furthermore
p(x?,x?) = 0.

If we set T = f ,S = g , where both f and g are single
valued mappings we get the following corollary:

Corollary 4.3. Let (X , p) be a complete metrically convex
partial metric space and C a nonempty closed subset of X.
Suppose that f ,g : C→ X are single-valued almost contrac-
tions, that is,

Hp( f x,gy)≤ kp(x,y)+Lp(y, f x) and

Hp( f x,gy)≤ kp(x,y)+Lp(x,gy) for all x,y ∈C
(4.10)

with k ∈ (0,1) and some L≥ 0 such that 2
(√

k+
L√
k

)
< 1.

If x ∈ ∂C (the boundary of C) implies f x,gx ∈C, then there
exists a point x? ∈C which is a common fixed point of f and
g. Furthermore p(x?,x?) = 0.

5. Example

Let X = R+,C = [0,1]. Define S : T : C→ CBp(X) by

Sx = T x =
{

0,
1

3+ x

}
, for all x ∈C and p(x,y) = |x−y|. We

note that the condition x ∈ ∂C implies Sx∩T x ∈C holds. We
show that S and T are multivalued almost contractions. In fact
we have for all x,y ∈ [0,1],

Hp(T x,Sy) = Hp(T x,Ty) = max{∂p(T x,Ty),∂p(Ty,T x)}.
(5.1)

From Definition 2.1, we have

∂p(T x,Ty) = max{p(a,Ty),a ∈ T x}

= max
{

p(0,Ty) , p
(

1
3+ x

,Ty
)}

. (5.2)

But

p(0,Ty) = min
{

p(0,0), p
(

0,
1

3+ y

)}
= min

{
0,

1
3+ y

}
= 0.

Hence (5.2) becomes

∂p(T x,Ty) = p
(

1
3+ x

,Ty
)

= min
{

p
(

1
3+ x

,0
)
, p

(
1

3+ x
,

1
3+ y

)}
= min

{
1

3+ x
,

|x− y|
(3+ y)(3+ x)

}
. (5.3)

Because x,y ∈ [0,1], we have

|x− y|
(3+ y)(3+ x)

≤ 2
(3+ y)(3+ x)

≤ 2
3
× 1

3+ x
. (5.4)

Hence (5.3) becomes

∂p(T x,Ty) =
|x− y|

(3+ y)(3+ x)
. (5.5)

Similarly

∂p(Ty,T x) =
|x− y|

(3+ y)(3+ x)
. (5.6)

Therefore (5.1) becomes

Hp(T x,Sy) = max
{

∂p(T x,Ty),∂p(Ty,T x)
}

=
|x− y|

(3+ y)(3+ x)

≤ 1
9
|x− y|

=
1
9

p(x,y). (5.7)

Hence we have

Hp(T x,Sy)≤ 1
9

p(x,y)+Lp(y,T x)

and

Hp(T x,Sy)≤ 1
9

p(x,y)+Lp(x,S)

where L ∈
(

0,
1

18

)
.

We have shown that for the given data S,T : C→CBp(X) are

multivariate almost contractions for k =
1
9

and L ∈
(

0,
1

18

)
.

Note that the partial metric space (X , p) is metrically convex
and Lemma 1.7 is verified for z = 1 if y ≥ 1. Moreover the

additional condition 2
(√

k+
L√
k

)
≤ 1 is also satisfied. Then

S and T are multivalued almost contractions that satisfy all
assumptions of Theorem 4.1 and they have a common fixed
point z = 0 with p(z,z) = 0.
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6. Conclusion
We have shown that Theorem 2.4 by Aydi et al. [4] which

was developed for single multivalued mappings can be ex-
tended to pairs of multivalued mappings. We have also shown
that Theorem 3.3 by Aydi et al. [3] which was developed for
a non-self multivalued mapping in metric-like spaces can be
extended to apply for pairs of multivalued non-self mappings
in partial metric spaces.
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