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Vk-Super vertex magic labeling of graphs
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Abstract
Let G be a simple graph with p vertices and q edges. A V -super vertex magic labeling is a bijection f : V (G)∪
E(G)→ {1,2, . . . , p+ q} such that f (V (G)) = {1,2, . . . , p} and for each vertex v ∈ V (G), f (v)+ ∑

u∈N(v)
f (uv) = M

for some positive integer M. A Vk-super vertex magic labeling (Vk-SVML) is a bijection f : V (G)∪E(G)→
{1,2, . . . , p+q} with the property that f (V (G)) = {1,2, . . . , p} and for each v ∈ V (G), f (v)+wk(v) = M for some
positive integer M. A graph that admits a Vk-SVML is called Vk-super vertex magic. This paper contains several
properties of Vk-SVML in graphs. A necessary and sufficient condition for the existence of Vk-SVML in graphs
has been obtained. Also, the magic constant for Ek-regular graphs has been obtained. Further, we study some
classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs which
admit V2-SVML.
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1. Introduction
Throughout this paper, we consider only finite, simple

and undirected graphs. The set of vertices and edges of a
graph G(p,q) will be denoted by V (G) and E(G) respectively,
p = |V (G)| and q = |E(G)|. For graph theoretic terminology,
we follow [2].

A graph labeling is a mapping or a function that carries
a set of graph elements (usually vertices and/or edges) into a
set of numbers (usually integers). Lot of labelings have been
defined and studied by many authors and an excellent survey
of graph labeling can be found in [1].

In 2002, MacDougall et al. [3] introduced the notion of
vertex magic total labeling (VMTL) in graphs. A VMTL of
the graph G is a bijection f : V (G)∪E(G)→{1,2, . . . , p+q}

such that for each vertex v ∈V (G), f (v)+ ∑
u∈N(v)

f (uv) = M

for some positive integer M [3]. This constant is called as
the magic constant of VMTL of G. They studied some basic
properties of vertex magic graphs and showed some families
of graphs having a VMTL.

In 2004, MacDougall et al. [4] defined the super vertex-
magic total labeling (SVMTL) in graphs. They call a VMTL is
super if f (V (G)) = {1,2, . . . , p}. In this labeling, the smallest
labels are assigned to the vertices.

This paper generalizes the definition of SVMTL and de-
fine a new labeling called Vk-super vertex magic labeling. Let
G(V,E) be a graph and k be an integer such that 1 ≤ k ≤
diam(G). For e ∈ E(G), we define Ek(e) as the set of all
vertices which are at a distance at most k from e. Also
Ek(v) denotes the set of all edges which are at a distance
at most k from v. Note that if uv is an edge, then the ver-
tices u and v are at distance 1 from the edge uv. The graph
G is said to be Ek-regular with regularity r if and only if
|Ek(e)| = r for some integer r ≥ 1 and for all e ∈ E(G).
Note that all nontrivial graphs are E1-regular. For a vertex
v ∈ V (G), we denote wk(v) = ∑

e∈Ek(v)
f (e). Consider the fol-

lowing graph G(V,E), where V (G) = {v1, v2, v3, v4, v5, v6}
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and E(G) = {e1,e2,e3,e4,e5,e6}.
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Fig 1: G

Table 1 gives Ek(v) and Ek(e) for k = 2.

E2(v) E2(e)

E2(v1) = {e1,e2,e3,e4} E2(e1) = {v1,v2,v3,v4}

E2(v2) = {e1,e2,e3,e4,e5} E2(e2) = {v1,v2,v3,v4,v5}

E2(v3) = {e1,e2,e3,e4,e5} E2(e3) = {v1,v2,v3,v4}

E2(v4) = {e1,e2,e3,e4,e5,e6} E2(e4) = {v1,v2,v3,v4,v5}

E2(v5) = {e2,e4,e5,e6} E2(e5) = {v2,v3,v4,v5,v6}

E2(v6) = {e5,e6} E2(e6) = {v4,v5,v6}

Table 1

A Vk-super vertex magic labeling (Vk-SVML) is a bi-
jection f : V (G)∪E(G)→ {1,2, . . . , p+ q} with the prop-
erty that f (V (G)) = {1,2, . . . , p} and for every v ∈ V (G),
f (v)+wk(v) = M for some positive integer M. This constant
is called as the magic constant of Vk-SVML of G. A graph that
admits a Vk-SVML is called Vk-super vertex magic (Vk-SVM).

This paper contains several properties of Vk-SVML in
graphs. A necessary and sufficient condition for the existence
of Vk-SVML in graphs has been obtained. Also, the magic
constant for Ek-regular graphs has been obtained. Further, we
study some classes of graphs such as cycles, complement of
cycles, prism graphs and a family of circulant graphs which
admit V2-SVML.

2. Main Results
In this section, we obtain some basic properties of Vk-

SVML.
Let G be a connected graph of order p(≥ 2). Suppose

Ek(u) = Ek(v) for two different vertices u and v of G. Then
f (u)+wk(u) 6= f (v)+wk(v) for any Vk-SVML f of G (since
f is one to one). In this case, G does not admit Vk-SVML and
hence the next result follows.

Lemma 2.1. Let G be a connected graph of order p(≥ 2). If
Ek(u) = Ek(v) for some u,v ∈ V (G) (u 6= v), then the graph
G does not admit Vk-SVML.

Corollary 2.2. The star graph Sn does not admit Vk-SVML
for k ≥ 2.

If a graph G admits Vk-SVML, then 1 ≤ k ≤ diam(G)
(otherwise, Ek(u) = Ek(v) for any two different vertices u,v ∈
V (G)).

Definition 2.3. In a graph G, a vertex of degree |V (G)|−1
is called a full vertex of G.

Corollary 2.4. Let G be a connected graph of order p(≥ 2)
and u be a full vertex of G. Then G does not admit Vk-SVML
for k ≥ 3.

Lemma 2.5. If a graph G(p,q) is Vk-SVM and G is Ek-
regular with regularity r, then the magic constant is given
by M = p+1

2 + rq+ rq(q+1)
2p .

Proof. Let f be a Vk-SVML of G with the magic constant
M. Then f (V (G)) = {1,2, . . . , p}, f (E(G)) = {p + 1, p +
2, . . . , p + q} and M = f (v) + wk(v) for all v ∈ V (G). By
summing over all v∈V (G), pM = ∑

v∈V (G)
f (v)+ ∑

v∈V (G)
wk(v).

The first sum is p(p+1)
2 and the second sum is ∑

v∈V (G)
wk(v) =

∑
v∈V (G)

∑
e∈Ek(v)

f (e)= r ∑
e∈E(G)

f (e)= r(pq)+ rq(q+1)
2 , where the

second equality uses from Ek-regular that each edge is in ex-
actly r of the sets Ek(v). Thus pM = p(p+1)

2 + r(pq)+ rq(q+1)
2

and hence M = p+1
2 + rq+ rq(q+1)

2p .

In Lemma 2.5, we give the magic constant only for Ek-
regular graphs which admit Vk-SVML for k ≥ 1. MacDougall
et. al obtained the following result which gives the magic
constant of V -SVML for any graph.

Lemma 2.6. [4] If G has a super-vertex magic total labeling,
then M = 2q+ (p+1)

2 + q(q+1)
p .

When k = 1, we have r = |E1(e)| = 2 for all e ∈ E(G).
Thus if we put k = 1 in Lemma 2.5, then it gives the proof of
Lemma 2.6.

Lemma 2.7. For k ≥ 2, there dose not exist a tree, which is
Ek-regular and Vk-SVM.

Proof. Let T be a tree and diam(T ) = d(≥ 3). Let P =
u0u1 . . .ud−1ud be a path of length d. Then u0u1 and ud−1ud
must be pendent edges. When k = d, we have Ek(u0) =
Ek(ud) and hence T is not Vk-SVM. Also, k ≤ d−1, we have
Ek(u1u2) > Ek(u0u1) and hence T is not Ek-regular. Thus
diam(T ) ≤ 2 and hence T is a star graph. By Corollary2.2,
the star graph Sn does not admit Vk-SVML for k ≥ 2.

Theorem 2.8. If G(p,q) is a connected Ek-regular graph with
regularity r, then
M ≥ 7p−5

2 if k = 1 and M ≥ (p+1)(r+1)
2 + rp if k ≥ 2.

Proof. For k = 1, we have r = 2. Since G is connected, q≥
p− 1. Thus by Lemma 2.5, M ≥ p+1

2 + 2(p− 1)+ (p− 1)
= 7p−5

2 (This is already proved in [4]).
Let k ≥ 2. If q = p−1, then G must be a tree and hence by
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Lemma 2.7, there dose not exist a tree T , which is Ek-regular
and Vk-SVM. Hence assume that q ≥ p. By Lemma 2.5,
M ≥ p+1

2 + rp+ r(p+1)
2 = (p+1)(r+1)

2 + rp.

Remark 2.9. For k ≥ 2, the lower bound for the magic con-
stant M obtained in Theorem 2.8 is sharp. For example,
consider the following V2-SVML of C5 (see Figure 2).

b b
b b

b

9 7

8

10 6

3

4

51

2

Fig 2: V2-SVML of C5

Note that the cycle C5 is E2-regular with regularity 4. Here
the magic constant M = 35. In Theorem 2.8, we proved that
M ≥ 35.

Theorem 2.10. Let G be a (p,q) graph and g be a bijection
from E(G) onto {p + 1, p + 2, . . . , p + q}. Then g can be
extended to a Vk-SVML of G if and only if {wk(u)/u ∈V (G)}
consists of p sequential integers.

Proof. Assume that {wk(u)/u ∈V (G)} consists of p sequen-
tial integers. Let t = min {wk(u)/u ∈ V (G)}. Define f :
V (G)∪E(G)→ {1,2, . . . , p+ q} as f (xy) = g(xy) for xy ∈
E(G) and f (x) = t + p−wk(x). Then f (E(G)) = {p+1, p+
2, . . . , p+q} and f (V (G)) = {1,2, . . . , p} (since {wk(x)− t :
x ∈ V (G)} is a set of consecutive integers). Hence f is Vk-
SVML with M = t + p.
Conversely, suppose g can be extended to a Vk-SVML f of
G with a magic constant M. Since f (u)+wk(u) = M for ev-
ery u ∈V (G), we have wk(u) = M− f (u). Thus {wk(u)/u ∈
V (G)}= {M− p,M− p+1, . . . ,M−1}, which is a set of p
consecutive integer.

3. V2-SVML of cycles and prisms
In this section, we identified some classes of graphs such

as cycles, complement of cycles, prism graphs and a family
of circulant graphs, which admit V2-SVML.

Lemma 3.1. [5] For any integers a and b, we have
gcd(a,b) = gcd(b,a) = gcd(±a,±b) = gcd(a,b−a) =
gcd(a,b+a).

By Lemma 2.1, the cycles C3 and C4 are not V2-SVM.

Theorem 3.2. For an integer n(≥ 5), the cycle Cn is V2-SVM
if and only if n is odd.

Proof. Suppose there exists a V2-SVML f of Cn. Since
|E2(e)|= r = 4 for all e ∈ E(Cn), by taking k = 2, p = q = n

and r = 4 in Lemma 2.5, we get M = 13n+5
2 . Since M is an

integer, n must be odd.
Conversely, assume that n is odd and n ≥ 5. Let V (Cn) =
{ai : 1≤ i≤ n} and E(Cn) = {aiai⊕n1 : 1≤ i≤ n}, where the
operation ⊕n stands for addition modulo n.
Case A: Suppose n = 4`+1 for some integer `≥ 1.
Define a function f : V (Cn)∪E(Cn)→ {1,2, . . . ,2n} as fol-
lows: f (ai) = i− 3 when 4 ≤ i ≤ n and f (ai) = (n− 3)+ i
when 1 ≤ i ≤ 3; f (aiai⊕n1) = [(i−1)`⊕n 1]+n, where (i−
1)`⊕n 1 is the positive residue when (i−1)`+1 divides n.
Now we prove that f (E(Cn)) = {n+ 1,n+ 2, . . . ,2n}. By
taking b = n and a = ` in Lemma 3.1, we get gcd(`,n) =
gcd(`,4`+1) = gcd(`,3`+1) = gcd(`,2`+1) = gcd(`,`+
1) = gcd(`,1) = 1. Thus ` is a generator for the finite cyclic
group (Zn,⊕n) and hence f (E(Cn)) = {n+1,n+2, . . . ,2n}.
Claim 1: w2(ai) = 26`+12− i for 4≤ i≤ n.
Case i: Suppose i = 4x for some 1 ≤ x ≤ `. Now w2(ai) =
f (ai−2ai−1)+ f (ai−1ai)+ f (aiai+1)+ f (ai+1ai+2).
Since f (ai−2ai−1) = [(i− 3) n−1

4 ⊕n 1] + n = [nx− x− 3n
4 +

3
4 ⊕n 1]+n = [−x− 3n

4 + 3
4 ⊕n 1]+n = [−x−3`⊕n 1]+n, by

the definition of f , we have w2(ai) = [−x−3`⊕n 1]+ [−x−
2`⊕n 1]+ [−x− `⊕n 1]+ [−x⊕n 1]+4n.
Since 1 ≤ x ≤ `, in the above four terms(brackets), all the
residues are not positive, we have
w2(ai) = 4n+ [n− x− 3`+ 1] + [n− x− 2`+ 1] + [n− x−
`+ 1] + [n− x+ 1]. By taking n = 4`+ 1, we get w2(ai) =
26`+12− i.
Case ii: Suppose i = 4x + 1 for some 1 ≤ x ≤ `. In this
case, w2(ai) = [−x− n

2 +
1
2 ⊕n 1] + n+ [−x− n

4 +
1
4 ⊕n 1] +

n + [−x⊕n 1] + n + [−x + n
4 −

1
4 ⊕n 1] + n. = 4n + [−x−

2`⊕n 1] + [−x− `⊕n 1] + [−x⊕n 1] + [−x+ `⊕n 1]. Since
1 ≤ x ≤ `, the first three terms are not positive, we have
w2(ai) = 4n+[n− x−2`⊕n 1]+ [n− x− `⊕n 1]+ [n− x⊕n
1]+ [−x+ `⊕n 1] = 26`+12− i. Similarly, we can show that
w2(ai) = 26`+12− i when i = 4x+2 and i = 4x+3.
Claim 2: w2(ai) = (2`+1)11− i for 1≤ i≤ 3.
Consider the vertex a1. w2(a1) = f (an−1an) + f (ana1) +

f (a1a2)+ f (a2a3). Since f (an−1an) = [(n−2) (n−1)
4 ⊕n 1)]+

n= [(4`−1) (n−1)
4 ⊕n 1]+n= [−2`⊕n 1]+n, we have w2(a1)

= [−2`⊕n 1]+ [−`⊕n 1]+ [`⊕n 1]+ 4n+ 1. Here, the first
two terms are not positive. Thus w2(a1) = [n−2`+1]+ [n−
`+1]+ [`⊕n 1]+4n+1 = (2`+1)11−1. Similarly, we can
prove w2(a2) = (2`+1)11−2 and w2(a3) = (2`+1)11−3.
Note that ` = n−1

4 . Thus by Claim 1, f (ai)+w2(ai) = i−
3+26`+12− i = 13n+5

2 = M for 4 ≤ i ≤ n. Also by Claim
2, f (ai)+w2(ai) = (n−3)+ i+11(2`+1)− i = 13n+5

2 = M
for i = 1,2,3.
Case B: Suppose n = 4`+3 for some integer `≥ 1.
Define f : V (Cn)∪E(Cn)→{1,2, . . . ,2n} as follows: f (ai)=
n− i when 1 ≤ i ≤ n− 1 and f (an) = n; f (aiai⊕n1) = [(i−
1)(`+1)⊕n 1]+n, where [(i−1)(`+1)⊕n 1]+n is the pos-
itive residue (i− 1)(`+ 1) + 1 divides n. By Lemma 3.1,
gcd(`+1,n) = gcd(`+1,4`+3) = gcd(`+1,3`+2) =
gcd(`+1,2`+1)= gcd(`+1, `)= gcd(`,`+1)= gcd(`,1)=
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1. Hence `+ 1 is a generator for the finite cyclic group
(Zn,⊕n) and hence f (E(Cn)) = {n + 1,n + 2, . . . ,2n}. As
proved in Case A, we can prove that the above labeling is a
V2-SVML with magic constant M = 13n+5

2 .

Theorem 3.3. Let G =Cn be the complement of the cycle Cn,
where n(≥ 5) is an integer. Then G is V2-SVM with the magic
constant n4−2n3−n2−14n

8 .

Proof. Define f : V (Cn)∪ E(Cn)→ {1,2, . . . , n2−n
2 } as fol-

lows: First we label the n edges {a1a3,a2a4, . . . ,ana2} by
f (ai⊕n−1,ai⊕1) = n + i for 1 ≤ i ≤ n. And the remaining
n2−3n

2 − n edges are randomly labeled with the labels {2n+

1,2n+ 2, . . . , n2−n
2 }. The vertices are labeled as f (ai) = i.

Note that for each vertex ai, the only edge with label n+ i, is
not in E2(ai). Thus for each ai with 1≤ i≤ n, we have f (ai)+

w2(ai) = i+[ n4−2n3−n2−6n
8 − (n+ i)] = n4−2n3−n2−14n

8 .

Definition 3.4. Let Dn be a prism graph of order n with
|V (Dn)|= 2n and |E(Dn)|= 3n. We take V (Dn)= {ai,bi/1≤
i≤ n} and E(Dn) = {aibi/1≤ i≤ n}∪{aiai⊕n1,bibi⊕n1/1≤
i≤ n}.

Theorem 3.5. For an integer n(≥ 3), the prism Dn is V2-SVM
if and only if n is even.

Proof. Suppose there exists a V2-SVML f of Dn with the
magic constant M. Since |E2(e)| = r = 6 for all e ∈ E(Dn),
by taking k = 2, p = 2n, q = 3n and r = 6 in Lemma 2.5, we
get M = 65n+10

2 . Since M is an integer, n must be even.
Conversely, assume that n is even. Let V (Dn) = {ai,bi/1≤
i≤ n} and E(Dn) = {aibi/1≤ i≤ n}∪{aiai⊕n1,bibi⊕n1/1≤
i≤ n}. Define f : V (Dn)∪E(Dn)→{1,2, . . . ,5n} as follows:
f (ai) = n+ n

2 −
i−1

2 if i is odd; The range is given by {n+
1,n+2, . . . ,n+ n

2},
f (ai) = 2n− ( i

2 −2) if i≥ 4 and i is even; {n+ n
2 +2,n+ n

2 +
3, . . . ,2n},
f (a2) = n+ n

2 +1; {n+ n
2 +1},

f (bi) =
i+1

2 if i is odd; {1,2, . . . , n
2},

f (bi) =
n
2 +

i
2 −1 if i≥ 4 and i is even; { n

2 +1, . . . ,n−1},
f (b2) = n; {n},
f (aibi) = 2n+ i+1

2 if i is odd; {2n+1,2n+2, . . . ,2n+ n
2},

f (aibi) = 2n+ n
2 +

i
2 if i is even; {2n+ n

2 +1, . . . ,3n},
f (aiai⊕n1) = 3n+ n

2 −
i−1

2 if i is odd; {3n+1, . . . ,3n+ n
2},

f (bibi⊕n1) = 4n− ( i
2 − 1) if i is even; {3n+ n

2 + 1,3n+ n
2 +

2, . . . ,4n},
f (aiai⊕n1) = 4n+ i

2 if i is even; {4n+1,4n+2, . . . ,4n+ n
2},

f (bibi⊕n1) = 5n− i−1
2 if i is odd; {4n+ n

2 +1, . . . ,5n}.
It is easily seen that f is a V2-SVML with the magic constant
M = 65n+10

2 .

Let Γ be a finite group with e as the identity. A generating
set of Γ is a subset A such that every element of Γ can be ex-
pressed as a product of finitely many elements of A. Assume
that e /∈ A and a∈ A implies a−1 ∈ A (A is called as symmetric
generating set). A Cayley graph is a graph G = (V,E), where

V (G) = Γ and E(G) = {(x,a)/x ∈V (G),a ∈ A}, denoted by
Cay(Γ,A). Since A is a generating set for Γ, G is a connected
regular graph of degree |A|. When Γ = Zn, the correspond-
ing Cayley graph is called as a circulant graph, denoted by
Cir(n,A).

In Lemma 2.5, we find the magic constant of Ek-regular
graphs which admit Vk-SVML. When A = {1,2,n−1,n−2},
the circulant graph Cir(n,A) is not E2-regular. In the next
result, we find the magic constant of this family of circulant
graphs.

Theorem 3.6. For an integer n≥ 7, the graph G =Cir(n,{1,
2, n− 1, n− 2}) is V2-SVM with the magic constant M =
27n+7.

Proof. Let V (G) = {a1,a2, . . . ,an} and E(G) ={aiai⊕n1,
aiai⊕n2 : 1≤ i≤ n}. Define f : V (G)∪E(G)→{1,2, . . . ,3n}
as follows:
f (ai) = i−4 for 5≤ i≤ n;
f (ai) = n+ i−4 for 1≤ i≤ 4;
f (aiai⊕n1) = n+ i for 1≤ i≤ n and
f (aiai⊕n2) = 3n+1− i for 1≤ i≤ n.
Let v∈V (G). Suppose v= ai for some integer i with 5≤ i≤ n.
Then f (ai) +w2(ai) = f (ai) + f (ai−3ai−2) + f (ai−2ai−1) +
f (ai−1ai)+ f (aiai⊕n1)+ f (ai⊕n1ai⊕n2)+ f (ai⊕n2ai⊕n3)+
f (ai−4ai−2)+ f (ai−3ai−1)+ f (ai−2ai)+
f (ai−1ai⊕n1)+ f (aiai⊕n2)+ f (ai⊕n1ai⊕n3)+ f (ai⊕n2ai⊕n4)
= [i−4]+ [n+ i−3]+ [n+ i−2]+ [n+ i−1]+ [n+ i]+ [n+
i+ 1] + [n+ i+ 2] + [3n+ 1− (i− 4)] + [3n+ 1− (i− 3)] +
[3n+1−(i−2)]+[3n+1−(i−1)]+[3n+1− i]+[3n+1−
(i+1)]+[3n+1− (i+2)] = 27n+7 = M. Similarly, we can
prove that f (ai)+w2(ai) = 27n+7 for i = 1,2,3,4.

4. Some Results on V -SVML
In this section, we obtained some results on V -SVML.

Lemma 4.1. Any connected graph on four vertices is not
V -SVM.

Proof. Suppose there exists a V -SVML with magic constant
M. All the non-isomorphic connected graphs on four vertices
are given below.

rr
rr

v3v4

v2v1

A

r r
r r

v4 v3

v1 v2

B

r r
r r

v4 v3

v2v1

C

rr
rr

v3v4

v2v1

D

r r
r r

v4 v3

v1 v2

E

r r
r r

v4 v3

v2v1

F
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By Lemma 2.6, M = 2q+ p+1
2 + q(q+1)

p . For the graphs
A,B,C and D, the magic constant is not an integer and hence
they are not V -SVM.
Suppose the graph E admits a V -SVML, say f . Then M = 20,
f (V (E)) = {1,2,3,4} and f (E(E)) = {5,6,7,8,9}.
Note that the vertices v1 and v3 are of degree two and f (v1),
f (v3) ∈ {1,2,3,4}. Since M = 20, both w(v1) and w(v3)
must be greater than or equal to 16, which is not possible
since f (E(E))= {5, 6, 7, 8, 9}. Thus E is not E-SVM.
Next, we consider the graph F . Suppose the graph F admits
V -SVML, say f . Then M = 25, f (V (F)) = {1,2,3,4} and
f (E(F)) = {5,6,7,8,9,10}. With out loss of generality, we
take f (v1) = 1, f (v2) = 2, f (v3) = 3 and f (v4) = 4. Consider

f (v) incident edges of v possible edge labelings w(v)

f (v1) = 1 v1v2,v1v3,v1v4 {(10,9,5),(10,8,6),(9,8,7)} w(v1) = 24

f (v2) = 2 v2v1,v2v3,v2v4 {(10,8,5),(10,7,6),(9,8,6)} w(v2) = 23

f (v3) = 3 v3v1,v3v2,v3v4 {(10,7,5),(9,8,5),(9,7,6)} w(v3) = 22

f (v4) = 4 v4v1,v4v2,v4v3 {(10,6,5),(9,7,5),(8,7,6)} w(v1) = 21

Table 2

the vertex v4. Suppose the edges incident with v4 receive
the labels {10,6,5}. In this case the edges incident with
v1 cannot be labeled with {(10,9,5),(10,8,6)}. Since v1 is
adjacent with v4, one of the edge incident with v1 must be
labeled with 10 or 6 or 5. Thus the the edges incident with
v1 cannot be labeled with {(9,8,7)}. Hence f is not SVML,
a contradiction. We can get the same contradictions when
the edges incident with v4 receive the labels {9,7,5} and
{8,7,6}.

Theorem 4.2. Let G be a (p,q) graph. If q = p+1, then G
is not V -SVM.

Proof. Suppose q = p+ 1. Then by Lemma 2.6, M = 2q+
p+1

2 + q(q+1)
p = 2(p+ 1)+ p+1

2 + (p+1)(p+2)
p = 3p+ 5+ 1

2 +
p
2 +

2
p , which is an integer only when p= 4. Thus by Lemma 4.1

G is not V -SVM.

Corollary 4.3. For n ≥ 4, the cycle with one chord is not
V -SVM.
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