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Vi-Super vertex magic labeling of graphs

Sivagnanam Mutharasu' and Duraisamy Kumar*

Abstract

Let G be a simple graph with p vertices and ¢ edges. A V-super vertex magic labeling is a bijection f: V(G)U
E(G) — {1,2,...,p+q} such that f(V(G)) ={1,2,...,p} and for each vertex v e V(G), f(v)+ ¥ f(uw)=M

ueN(v)

for some positive integer M. A V,-super vertex magic labeling (V,-SVML) is a bijection f: V(G)UE(G) —
{1,2,...,p+q} with the property that f(V(G)) = {1,2,...,p} and for each v € V(G), f(v) +wi(v) = M for some
positive integer M. A graph that admits a V;,-SVML is called V,-super vertex magic. This paper contains several
properties of V,-SVML in graphs. A necessary and sufficient condition for the existence of V,-SVML in graphs
has been obtained. Also, the magic constant for Ej-regular graphs has been obtained. Further, we study some
classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs which

admit V,-SVML.
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1. Introduction

Throughout this paper, we consider only finite, simple
and undirected graphs. The set of vertices and edges of a
graph G(p, q) will be denoted by V(G) and E(G) respectively,
p =|V(G)| and g = |E(G))|. For graph theoretic terminology,
we follow [2].

A graph labeling is a mapping or a function that carries
a set of graph elements (usually vertices and/or edges) into a
set of numbers (usually integers). Lot of labelings have been
defined and studied by many authors and an excellent survey
of graph labeling can be found in [1].

In 2002, MacDougall et al. [3] introduced the notion of
vertex magic total labeling (VMTL) in graphs. A VMTL of
the graph G is a bijection f: V(G)UE(G) — {1,2,...,p+q}

such that for each vertex v € V(G), f(v)+ Y f(uv)=M
ueN(v

for some positive integer M [3]. This constan(t >is called as

the magic constant of VMTL of G. They studied some basic

properties of vertex magic graphs and showed some families

of graphs having a VMTL.

In 2004, MacDougall et al. [4] defined the super vertex-
magic total labeling (SVMTL) in graphs. They call a VMTL is
super if f(V(G)) ={1,2,..., p}. In this labeling, the smallest
labels are assigned to the vertices.

This paper generalizes the definition of SVMTL and de-
fine a new labeling called Vj-super vertex magic labeling. Let
G(V,E) be a graph and k be an integer such that 1 <k <
diam(G). For e € E(G), we define Ei(e) as the set of all
vertices which are at a distance at most k from e. Also
Ei(v) denotes the set of all edges which are at a distance
at most k from v. Note that if uv is an edge, then the ver-
tices u and v are at distance 1 from the edge uv. The graph
G is said to be Ej-regular with regularity r if and only if
|Ex(e)| = r for some integer r > 1 and for all e € E(G).
Note that all nontrivial graphs are E;-regular. For a vertex

v € V(G), we denote wg(v) = Y f(e). Consider the fol-
ecEr(v)

lowing graph G(V,E), where V(G) = {v1, v2, v3, V4, Vs, V6 }



and E(G) = {61762763764765766}.
Vi el V2
e3 ey
€s €6
v %4y Vs Ve
Figl: G

Table 1 gives Ei(v) and Ey(e) for k = 2.

E(v) Ex(e)

Ex(vi) ={e1,ez,e3,ea} Ex(er) ={vi,v2,v3,v4}
Ex(v2) = {e1,ez,e3,e4,e5} | Ea(e2) ={v1,v2,v3,v4,vs5}
E>(v3) ={e1,e2,e3,ea,e5} E>(e3) = {vi,v2,v3,v4}

Ex(vs) = {e1,e2,e3,eq,e5,e6} | Ea(es) = {vi,v2,v3,v4,V5}

E>(vs) ={e2,e4,e5,€6} E>(es) = {v2,v3,va,vs5,V6}

Ey(ve) = {es,e6} Ey(es) = {va,vs,ve}
Table 1

A Vg-super vertex magic labeling (V;-SVML) is a bi-
jection f: V(G)UE(G) — {1,2,...,p+ ¢} with the prop-
erty that f(V(G)) = {1,2,...,p} and for every v € V(G),
F(v) +wi(v) = M for some positive integer M. This constant
is called as the magic constant of V;-SVML of G. A graph that
admits a V3-SVML is called Vj-super vertex magic (Vy-SVM).

This paper contains several properties of V;-SVML in
graphs. A necessary and sufficient condition for the existence
of V;-SVML in graphs has been obtained. Also, the magic
constant for Ey-regular graphs has been obtained. Further, we
study some classes of graphs such as cycles, complement of
cycles, prism graphs and a family of circulant graphs which
admit V,-SVML.

2. Main Results

In this section, we obtain some basic properties of V-
SVML.

Let G be a connected graph of order p(> 2). Suppose
Ex(u) = Ex(v) for two different vertices u and v of G. Then
S(u)+wr(u) # f(v) +wi(v) for any Vi-SVML f of G (since
f is one to one). In this case, G does not admit V;-SVML and
hence the next result follows.

Lemma 2.1. Let G be a connected graph of order p(> 2). If
Ex(u) = Ex(v) for some u,v € V(G) (u # v), then the graph
G does not admit Vi,-SVML.

Corollary 2.2. The star graph S, does not admit V;-SVML
fork > 2.

796

Vi-Super vertex magic labeling of graphs — 796/799

If a graph G admits V;-SVML, then | < k < diam(G)
(otherwise, Ej (1) = Ex(v) for any two different vertices u,v €
V(G)).

Definition 2.3. In a graph G, a vertex of degree |V (G)| — 1
is called a full vertex of G.

Corollary 2.4. Let G be a connected graph of order p(> 2)
and u be a full vertex of G. Then G does not admit V;,-SVML
fork > 3.

Lemma 2.5. If a graph G(p,q) is Vi-SVM and G is Ey-
regular with regularity r, then the magic constant is given

byM— p+l +rg+ rq(q+1)

Proof. Let f be a V;-SVML of G with the magic constant
M. Then f(V(G)) = {1,2,....p}, fE(G)) = {p+ Lp+
2,...,p+qtand M = f(v )+wk( ) for all v € V(G). By
summing overallve V(G),pM =Y f(v)+ ¥ wi(v).

veV(G) veV(G)
The first sum is p(p;l) and the second sumis Y wi(v) =
veV(G)
Y fley)=r ¥ fle)=r(pg)+= <q+l) , where the

veV(G) ecEx(v) e€E(G)
second equality uses from Ej-regular that each edge is in ex-

actly r of the sets Ei(v). Thus pM = (P+1) +r(pg) + w
and hence M = P+l trg+ rq(q+1). E

In Lemma 2.5, we give the magic constant only for Ej-
regular graphs which admit V;-SVML for k > 1. MacDougall
et. al obtained the following result which gives the magic
constant of V-SVML for any graph.

Lemma 2.6. [4] If G has a super-vertex magic total labeling,
then M = 2q+ <p+l) + LMH)

When k = 1, we have r = |E|(e)| =2 for all e € E(G).
Thus if we put kK = 1 in Lemma 2.5, then it gives the proof of
Lemma 2.6.

Lemma 2.7. For k > 2, there dose not exist a tree, which is
Ey-regular and Vi-SVM.

Proof. Let T be a tree and diam(7) = d(> 3). Let P =
uoug .. .ug—1ug be a path of length d. Then ugu; and uy_uy
must be pendent edges. When k = d, we have E;(up) =
Ey(uy) and hence T is not Vy-SVM. Also, k < d — 1, we have
Ey(uuz) > Ey(uou;) and hence T is not Ej-regular. Thus
diam(7) < 2 and hence T is a star graph. By Corollary2.2,
the star graph S, does not admit V;,-SVML for k > 2. 0

Theorem 2.8. If G(p,q) is a connected Ey-regular graph with
regularity r, then
M>123 ik =1and M > 2PN 4y ek >0

Proof. For k =1, we have r = 2. Since G is connected, g >
p— 1. Thus by Lemma 2.5, M > 2L 4-2(p— 1)+ (p— 1)
7” 3 (This is already proved in [4]).

Let k > 2. If g= p—1, then G must be a tree and hence by

009 nn,,
5:
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Lemma 2.7, there dose not exist a tree T, which is Ej-regular
and V;-SVM. Hence assume that ¢ > p. By Lemma 2.5,

M > pTHJrerrr(sz) = (pH)z(rH)Jrrp. O

Remark 2.9. For k > 2, the lower bound for the magic con-
stant M obtained in Theorem 2.8 is sharp. For example,
consider the following V,-SVML of Cs (see Figure 2).

Fig 2: V»-SVML of Cs

Note that the cycle Cs is Ep-regular with regularity 4. Here
the magic constant M = 35. In Theorem 2.8, we proved that
M > 35.

Theorem 2.10. Let G be a (p,q) graph and g be a bijection
from E(G) onto {p+1,p+2,....,p+q}. Then g can be
extended to a Vi-SVML of G if and only if {wi(u)/u € V(G)}
consists of p sequential integers.

Proof. Assume that {wy(u)/u € V(G)} consists of p sequen-
tial integers. Let r = min {wy(u)/u € V(G)}. Define f :
V(G)UE(G) = {1,2,....p+q} as f(xy) = g(x) for xy €
E(G) and f(x) =1+ p—wi(x). Then f(E(G)) ={p+1,p+
2,...,p+q}and f(V(G)) ={1,2,...,p} (since {wi(x) —1:
x € V(G)} is a set of consecutive integers). Hence f is V-
SVML with M =t + p.

Conversely, suppose g can be extended to a V;-SVML f of
G with a magic constant M. Since f(u) 4+ wy(u) = M for ev-
ery u € V(G), we have wy(u) = M — f(u). Thus {wy(u)/u €
V(G)}={M—p,M—p+1,...,M—1}, which is a set of p
consecutive integer. U

3. ,-SVML of cycles and prisms

In this section, we identified some classes of graphs such
as cycles, complement of cycles, prism graphs and a family
of circulant graphs, which admit V,-SVML.

Lemma 3.1. [5] For any integers a and b, we have
ged(a,b) = ged(b,a) = ged(+a,+b) = ged(a,b—a) =
ged(a,b+a).

By Lemma 2.1, the cycles C3 and Cy4 are not V,-SVM.

Theorem 3.2. For an integer n(>5), the cycle C, is Vo-SVM
if and only if n is odd.

Proof. Suppose there exists a V,-SVML f of C,. Since
|Ex(e)| =r=4foralle € E(C,), by takingk=2,p=g=n
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%. Since M is an

and r =4 in Lemma 2.5, we get M =
integer, n must be odd.
Conversely, assume that n is odd and n > 5. Let V(C,) =
{aj: 1 <i<n}and E(C,) = {aiaie,1 : 1 <i<n}, where the
operation @, stands for addition modulo n.
Case A: Suppose n = 4¢+ 1 for some integer ¢ > 1.
Define a function f: V(C,)UE(C,) — {1,2,...,2n} as fol-
lows: f(a;)=i—3 when4 <i<nand f(a;) = (n—3)+i
when 1 <i <3; f(aiaie,1) = [(i — 1)l &y, 1] +n, where (i —
1)@, 1 is the positive residue when (i — 1)¢+ 1 divides n.
Now we prove that f(E(C,)) = {n+1,n+2,...,2n}. By
taking b = n and a = ¢ in Lemma 3.1, we get ged(¢,n) =
ged(, 40+ 1) =ged(0,30+ 1) = ged (0,20 + 1) = ged (£, £+
1) =ged(¢,1) = 1. Thus ¢ is a generator for the finite cyclic
group (Z,,®,) and hence f(E(C,)) ={n+1,n+2,...,2n}.
Claim 1: wy(a;) =260+ 12 —ifor4 <i<n.
Case i: Suppose i = 4x for some 1 < x < £. Now wy(q;) =
flaiaair) + flai1ai) + f(aiai1) + flaiv1ai12).
Since f(aj-2ai—1) = [(i —3)"F @y 1] +n=[nx—x— 3 +
S@pll+n=[-x—2+3@,1]+n=[-x—30d,1]+n,by
the definition of f, we have wa(a;) = [-x— 34D, 1]+ [—x—
21+ [—x—LD, 1|+ [—xD, 1] +4n.
Since 1 < x </, in the above four terms(brackets), all the
residues are not positive, we have
wa(a;)) =dn+n—x—-30+1]+np—x—-204+1]+[n—x—
{+1]+[n—x+1]. By taking n =4¢+ 1, we get wp(a;) =
260+12—i.
Case ii: Suppose i = 4x+ 1 for some 1 <x < /. In this
case, wp(a;) =[x — 3+ 3@ 1 +n+[—x—2+ 1@, 1]+
nt[—x@, ] +n+[—x+2—1@,1]+n =dn+[—x—
2D, )+ [—x—LDy 1|+ [—xBy 1]+ [-x+ LD, 1]. Since
1 <x </, the first three terms are not positive, we have
wo(a))=dn+n—x—2UP, 1]+ [n—x—L D, 1|+ [n—xD,
1]+ [—x+£®, 1] = 26¢+ 12 —i. Similarly, we can show that
wa(a;) =260+ 12 —iwheni=4x+2and i =4x+3.
Claim 2: wy(a;) = (2¢+1)11 —ifor 1 <i<3.
Consider the vertex aj. wa(a1) = f(an—1an) + f(anar) +
(n—

flaraz) + f(azas). Since f(an_1a,) = [(n—2) "M e, 1))+
n=[(40— 1) @, 1]4n=[-20@,1]+n, we have wa(a))
=[-20 B 1]+ LBy 1]+ [£ D, 1] +4n+ 1. Here, the first
two terms are not positive. Thus wy(ay) = [n—20+ 1]+ [n—
L+1]+[¢®,1]+4n+1=(2041)11— 1. Similarly, we can
prove wa(az) = (20 +1)11 =2 and wa(az) = (2¢+1)11 3.
Note that £ = 27! Thus by Claim 1, f(a;) +wa(a;) =i —
3+26€+12—i:%:Mf0r4§i§n. Also by Claim
2, fla;)+wa(a) = (n=3)+i+11(20+1)—i= 125 =y
fori=1,2,3.

Case B: Suppose n = 4/ + 3 for some integer ¢ > 1.
Define f:V(C,)UE(Cy) — {1,2,...,2n} as follows: f(a;) =
n—iwhen 1 <i<n—1and f(a,) = n; flaigie,1) =[(i—
1)(£+1)®, 1] +n, where [(i — 1)(£+ 1) ®, 1] +n is the pos-
itive residue (i — 1)(¢+ 1) + 1 divides n. By Lemma 3.1,
ged(l+1,n)=ged(£+1,404+3) =ged(L+1,30+2) =
ged(0+1,204+1)=ged(l+1,0) =ged(l,0+1)=gcd(L,1) =



1. Hence ¢+ 1 is a generator for the finite cyclic group
(Zy,®,) and hence f(E(C,)) ={n+1,n+2,...,2n}. As
proved in Case A, we can prove that the above labeling is a
V2-SVML with magic constant M = % O

Theorem 3.3. Let G = C,, be the complement of the cycle C,,
where n(> 5) is an integer. Then G is V2-SVM with the magic

4_~3 2
constant w.

Proof. Define f:V(C,) UE(C,) — {1,2,.. ”2_"} as fol-
lows: First we label the n edges {a1a3,a2a4, .,azaz} by
Sflaign—1,aig1) =n+ifor 1 <i<n. And the remaining

n%—3n
2

— n edges are randomly labeled with the labels {2n +

1,2n+2,..., "22_"}. The vertices are labeled as f(a;) = i.
Note that for each vertex a;, the only edge with label n 41, is
not in E5(a;). Thus for each a; with 1 <i <n, we have f(a;)+

walay) = i+ [t (4 )] = 2 ln

Definition 3.4. Let D, be a prism graph of order n with
|V(Dy)| =2nand |E(D,)|=3n. We take V(D,) = {a;,b;/1 <
i<n}and E(D,) = {aibi/1 <i<n}U{aiaie,1,bibic,1/1 <
i<n}.

Theorem 3.5. For an integer n(> 3), the prism D, is V-SVM
if and only if n is even.

Proof. Suppose there exists a V,b-SVML f of D, with the
magic constant M. Since |Ex(e)| =r =6 for all e € E(D,),
by taking k =2, p =2n, ¢ =3n and r = 6 in Lemma 2.5, we
get M = 65”“0 . Since M is an integer, n must be even.

Conversely, assume that n is even. Let V(D,,) = {a;,b;/1 <
i<n}and E(D,) = {a;b;/1 Slﬁn}u{aa,@nl,bb@nl/l <
i<n}. Deﬁnef V( ) UE(Dy) — {1,2,...,5n} as follows:

fla) =n+5—5 L if i is odd; The range is given by {n +
Ln+2,. n+2}

f( )= 2n—(7—2)ifi24andiiseven;{n+%+2,n+%+
3,...,2n},

f(az)—n+§+1;{n+g+1},

fbi) = Htifiis odd; {1,2,...,5},
fbi)=5+5—1ifi>4andiiseven; {5 +1,...,n—1},
f(b2) = n; {n},

flaibi) =2n+ELifiis odd; {2n+1,2n+2,....2n+ 4},
Sflaib;) = 2n—|—”—|—21fllseven {2n+5+1,...,3n},
flaiais, )—3n+§—71f11s odd; {3n+1 S3n45),
F(bibig,1) =4n— (5 —1)if iis even; {3n+ % +1,3n+%+
2,...,4n}, .

flaiaio,1 )—4n—|—2 ifiiseven; {4n+1,4n+2,...,4n+ 5},
f(bibis,1) =5n— S ifiis odd; {dn+2+1,...,5n}.

It is easily seen that f is a V,-SVML w1th the magic constant
M= 65n2+10. O

Let I" be a finite group with e as the identity. A generating
set of I is a subset A such that every element of I" can be ex-
pressed as a product of finitely many elements of A. Assume
that e ¢ A and a € A implies a~! € A (A is called as symmetric
generating set). A Cayley graph is a graph G = (V, E), where
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V(G) =T and E(G) = {(x,a)/x € V(G),a € A}, denoted by
Cay(T',A). Since A is a generating set for I', G is a connected
regular graph of degree |A|. When I' = Z,, the correspond-
ing Cayley graph is called as a circulant graph, denoted by
Cir(n,A).

In Lemma 2.5, we find the magic constant of Ej-regular
graphs which admit V;-SVML. When A = {1,2,n— 1,n—2},
the circulant graph Cir(n,A) is not Ep-regular. In the next
result, we find the magic constant of this family of circulant
graphs.

Theorem 3.6. For an integer n >, the graph G = Cir(n, {1,
2, n—1, n—2}) is V2-SVM with the magic constant M =
27n+17.

Proof. LetV(G) ={a1,az,...,
aiaie,2 : 1 <i<n}. Define f:V(G)UE(G) —{1,2,...
as follows:
fla)=i—4for5<i<m
fla)=n+i—4forl <i<4;

flaiaig,1) =n+ifor1 <i<nand

flaiaig,p) =3n+1—ifor1 <i<n.
Letv € V(G). Suppose v = q; for some integer i with 5 < i <n.
Then f(a;) +wa(a;) = f(ai) + flai-3ai-2) + f(ai-2ai-1) +
flaicrai) + f(aiaio,1) + f(aig,18i0,2) + f(ig,20i0,3) +
flai—aa;i2) + f(aizai—1) + f(ai—2a;) +
flaicraig,1) + flaiaig,2) + f(ais,16i0,3) + f(die,2ai0,4)

an} and E(G) ={aaie, 1,

,3n}

=li—4]+[n+i-3]+n+i-2|+[n+i—1]+[n+i]+[n+
i+ 14+ n+i+2]+Bn+1-(i—4)]+Bn+1-(i—3)]+
Bn+1—(i—2)]4+Bn+1—(i—1)]+[3n+1—i]+[3n+1—

(+D)]+
prove that f(a;) +wa(a;) =

[Bn+1—(i4+2)] =27n+7 = M. Similarly, we can
27047 fori=1,2,3,4. 0

4. Some Results on V-SVML

In this section, we obtained some results on V-SVML.

Lemma 4.1. Any connected graph on four vertices is not
V-SVM.

Proof. Suppose there exists a V-SVML with magic constant
M. All the non-isomorphic connected graphs on four vertices
are given below.

Vi V2 V1 V2 V1 V2
V4 V3 V4 V3 V4 V3
A B C
Vi V2 Vi V2 Vi V2
V4 V3 V4 V3 V4 V3
D E F



By Lemma 2.6, M = 2g + PTH + @. For the graphs
A, B,C and D, the magic constant is not an integer and hence
they are not V-SVM.
Suppose the graph E admits a V-SVML, say f. Then M = 20,
f(V(E))=A{1,2,3,4} and f(E(E)) = {5,6,7,8,9}.
Note that the vertices v; and v3 are of degree two and f(v;),
f(v3) € {1,2,3,4}. Since M = 20, both w(v;) and w(v3)
must be greater than or equal to 16, which is not possible
since f(E(E))={5,6,7,8,9}. Thus E is not E-SVM.
Next, we consider the graph F. Suppose the graph F' admits
V-SVML, say f. Then M =25, f(V(F)) ={1,2,3,4} and
f(E(F))=1{5,6,7,8,9,10}. With out loss of generality, we
take f(vi) =1, f(v2) =2, f(v3) =3 and f(v4) = 4. Consider

fv) incident edges of v possible edge labelings w(v)
fo) =1 V1va,v1v3, Vv {(10,9,5),(10,8,6),(9,8,7)} | w(v;) =24
flrn)=2 V2V, vavs, vavs {(10,8,5),(10,7,6),(9,8,6)} | w(v2) =23
flvs) =3 VAVI, V3V, V3V {(10,7,5),(9,8,5),(9,7,6)} | w(vs) =22
flva) =4 VAV1,V4V2,V4V3 {(10,6,5),(9,7,5),(8,7,6)} | w(v1)=21

Table 2

the vertex v4. Suppose the edges incident with v4 receive
the labels {10,6,5}. In this case the edges incident with
v cannot be labeled with {(10,9,5),(10,8,6)}. Since v; is
adjacent with v4, one of the edge incident with v; must be
labeled with 10 or 6 or 5. Thus the the edges incident with
v cannot be labeled with {(9,8,7)}. Hence f is not SVML,
a contradiction. We can get the same contradictions when
the edges incident with v4 receive the labels {9,7,5} and
{8,7,6}. O

Theorem 4.2. Let G be a (p,q) graph. If g=p+1, then G
is not V-SVM.

Proof. Suppose g = p+ 1. Then by Lemma 2.6, M = 2q +

ol ) —o(p1) 4 2t 4 D) 345 Ly
2+ %, which is an integer only when p =4. Thus by Lemma 4.1
G is not V-SVM. O

Corollary 4.3. For n > 4, the cycle with one chord is not
V-SVM.
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