

https://doi.org/10.26637/MJM0604/0014

V_k-Super vertex magic labeling of graphs

Sivagnanam Mutharasu¹ and Duraisamy Kumar^{2*}

Abstract

Let *G* be a simple graph with *p* vertices and *q* edges. A *V*-super vertex magic labeling is a bijection $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., p + q\}$ such that $f(V(G)) = \{1, 2, ..., p\}$ and for each vertex $v \in V(G)$, $f(v) + \sum_{u \in N(v)} f(uv) = M$

for some positive integer *M*. A V_k -super vertex magic labeling (V_k -SVML) is a bijection $f : V(G) \cup E(G) \rightarrow \{1, 2, ..., p+q\}$ with the property that $f(V(G)) = \{1, 2, ..., p\}$ and for each $v \in V(G)$, $f(v) + w_k(v) = M$ for some positive integer *M*. A graph that admits a V_k -SVML is called V_k -super vertex magic. This paper contains several properties of V_k -SVML in graphs. A necessary and sufficient condition for the existence of V_k -SVML in graphs has been obtained. Also, the magic constant for E_k -regular graphs has been obtained. Further, we study some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs which admit V_2 -SVML.

Keywords

Vertex magic total labeling, super vertex magic total labeling, V_k -super vertex magic labeling, E_k -regular graphs, circulant graphs.

AMS Subject Classification

05C78.

^{1,2} Department of Mathematics, C. B. M. College, Coimbatore - 641 042, Tamil Nadu, India. *Corresponding author: ² dkumarcnc@gmail.com; ¹skannanmunna@yahoo.com Article History: Received 14 August 2018; Accepted 19 October 2018

©2018 MJM.

Contents 1 Introduction 795 2 Main Results 796 3 V₂-SVML of cycles and prisms 797 4 Some Results on V-SVML 798 References 799

1. Introduction

Throughout this paper, we consider only finite, simple and undirected graphs. The set of vertices and edges of a graph G(p,q) will be denoted by V(G) and E(G) respectively, p = |V(G)| and q = |E(G)|. For graph theoretic terminology, we follow [2].

A graph labeling is a mapping or a function that carries a set of graph elements (usually vertices and/or edges) into a set of numbers (usually integers). Lot of labelings have been defined and studied by many authors and an excellent survey of graph labeling can be found in [1].

In 2002, MacDougall et al. [3] introduced the notion of vertex magic total labeling (VMTL) in graphs. A VMTL of the graph *G* is a bijection $f: V(G) \cup E(G) \rightarrow \{1, 2, ..., p+q\}$

such that for each vertex $v \in V(G)$, $f(v) + \sum_{u \in N(v)} f(uv) = M$ for some positive integer *M* [3]. This constant is called as the magic constant of VMTL of *G*. They studied some basic properties of vertex magic graphs and showed some families of graphs having a VMTL.

In 2004, MacDougall et al. [4] defined the super vertexmagic total labeling (SVMTL) in graphs. They call a VMTL is super if $f(V(G)) = \{1, 2, ..., p\}$. In this labeling, the smallest labels are assigned to the vertices.

This paper generalizes the definition of SVMTL and define a new labeling called V_k -super vertex magic labeling. Let G(V, E) be a graph and k be an integer such that $1 \le k \le \text{diam}(G)$. For $e \in E(G)$, we define $E_k(e)$ as the set of all vertices which are at a distance at most k from e. Also $E_k(v)$ denotes the set of all edges which are at a distance at most k from v. Note that if uv is an edge, then the vertices u and v are at distance 1 from the edge uv. The graph G is said to be E_k -regular with regularity r if and only if $|E_k(e)| = r$ for some integer $r \ge 1$ and for all $e \in E(G)$. Note that all nontrivial graphs are E_1 -regular. For a vertex $v \in V(G)$, we denote $w_k(v) = \sum_{e \in E_k(v)} f(e)$. Consider the following graph G(V, E), where $V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6\}$

and $E(G) = \{e_1, e_2, e_3, e_4, e_5, e_6\}.$

Fig 1: G

Table 1 gives $E_k(v)$ and $E_k(e)$ for k = 2.

$E_2(v)$	$E_2(e)$	
$E_2(v_1) = \{e_1, e_2, e_3, e_4\}$	$E_2(e_1) = \{v_1, v_2, v_3, v_4\}$	
$E_2(v_2) = \{e_1, e_2, e_3, e_4, e_5\}$	$E_2(e_2) = \{v_1, v_2, v_3, v_4, v_5\}$	
$E_2(v_3) = \{e_1, e_2, e_3, e_4, e_5\}$	$E_2(e_3) = \{v_1, v_2, v_3, v_4\}$	
$E_2(v_4) = \{e_1, e_2, e_3, e_4, e_5, e_6\}$	$E_2(e_4) = \{v_1, v_2, v_3, v_4, v_5\}$	
$E_2(v_5) = \{e_2, e_4, e_5, e_6\}$	$E_2(e_5) = \{v_2, v_3, v_4, v_5, v_6\}$	
$E_2(v_6) = \{e_5, e_6\}$	$E_2(e_6) = \{v_4, v_5, v_6\}$	
T 11 4		

A V_k -super vertex magic labeling (V_k -SVML) is a bijection $f: V(G) \cup E(G) \rightarrow \{1, 2, \dots, p+q\}$ with the property that $f(V(G)) = \{1, 2, \dots, p\}$ and for every $v \in V(G)$, $f(v) + w_k(v) = M$ for some positive integer M. This constant is called as the magic constant of V_k -SVML of G. A graph that admits a V_k -SVML is called V_k -super vertex magic (V_k -SVM).

This paper contains several properties of V_k -SVML in graphs. A necessary and sufficient condition for the existence of V_k -SVML in graphs has been obtained. Also, the magic constant for E_k -regular graphs has been obtained. Further, we study some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs which admit V₂-SVML.

2. Main Results

In this section, we obtain some basic properties of V_k -SVML.

Let G be a connected graph of order p(>2). Suppose $E_k(u) = E_k(v)$ for two different vertices u and v of G. Then $f(u) + w_k(u) \neq f(v) + w_k(v)$ for any V_k -SVML f of G (since f is one to one). In this case, G does not admit V_k -SVML and hence the next result follows.

Lemma 2.1. Let G be a connected graph of order $p(\geq 2)$. If $E_k(u) = E_k(v)$ for some $u, v \in V(G)$ ($u \neq v$), then the graph G does not admit V_k -SVML.

Corollary 2.2. The star graph S_n does not admit V_k -SVML for $k \geq 2$.

If a graph G admits V_k -SVML, then $1 \le k \le \text{diam}(G)$ (otherwise, $E_k(u) = E_k(v)$ for any two different vertices $u, v \in$ V(G)).

Definition 2.3. In a graph G, a vertex of degree |V(G)| - 1is called a full vertex of G.

Corollary 2.4. Let G be a connected graph of order $p(\geq 2)$ and u be a full vertex of G. Then G does not admit V_k -SVML for $k \geq 3$.

Lemma 2.5. If a graph G(p,q) is V_k -SVM and G is E_k regular with regularity r, then the magic constant is given by $M = \frac{p+1}{2} + rq + \frac{rq(q+1)}{2p}$.

Proof. Let f be a V_k -SVML of G with the magic constant M. Then $f(V(G)) = \{1, 2, ..., p\}, f(E(G)) = \{p+1, p+1\}$ 2,..., p + q and $M = f(v) + w_k(v)$ for all $v \in V(G)$. By summing over all $v \in V(G)$, $pM = \sum_{v \in V(G)} f(v) + \sum_{v \in V(G)} w_k(v)$. The first sum is $\frac{p(p+1)}{2}$ and the second sum is $\sum_{v \in V(G)} w_k(v) =$

 $\sum_{v \in V(G)} \sum_{e \in E_k(v)} f(e) = r \sum_{e \in E(G)} f(e) = r(pq) + \frac{rq(q+1)}{2}, \text{ where the}$ second equality uses from E_k -regular that each edge is in exactly *r* of the sets $E_k(v)$. Thus $pM = \frac{p(p+1)}{2} + r(pq) + \frac{rq(q+1)}{2}$ and hence $M = \frac{p+1}{2} + rq + \frac{rq(q+1)}{2p}$.

In Lemma 2.5, we give the magic constant only for E_k regular graphs which admit V_k -SVML for $k \ge 1$. MacDougall et. al obtained the following result which gives the magic constant of V-SVML for any graph.

Lemma 2.6. [4] If G has a super-vertex magic total labeling, then $M = 2q + \frac{(p+1)}{2} + \frac{q(q+1)}{n}$.

When k = 1, we have $r = |E_1(e)| = 2$ for all $e \in E(G)$. Thus if we put k = 1 in Lemma 2.5, then it gives the proof of Lemma 2.6.

Lemma 2.7. For k > 2, there dose not exist a tree, which is E_k -regular and V_k -SVM.

Proof. Let T be a tree and diam $(T) = d \ge 3$. Let P = $u_0u_1 \dots u_{d-1}u_d$ be a path of length d. Then u_0u_1 and $u_{d-1}u_d$ must be pendent edges. When k = d, we have $E_k(u_0) =$ $E_k(u_d)$ and hence T is not V_k -SVM. Also, $k \le d-1$, we have $E_k(u_1u_2) > E_k(u_0u_1)$ and hence T is not E_k -regular. Thus diam $(T) \leq 2$ and hence T is a star graph. By Corollary2.2, the star graph S_n does not admit V_k -SVML for $k \ge 2$. \square

Theorem 2.8. If G(p,q) is a connected E_k -regular graph with regularity r, then

$$M \ge \frac{7p-5}{2}$$
 if $k = 1$ and $M \ge \frac{(p+1)(r+1)}{2} + rp$ if $k \ge 2$.

Proof. For k = 1, we have r = 2. Since G is connected, $q \ge 1$ p-1. Thus by Lemma 2.5, $M \ge \frac{p+1}{2} + 2(p-1) + (p-1)$ $=\frac{7p-5}{2}$ (This is already proved in [4]). Let $k \ge 2$. If q = p - 1, then G must be a tree and hence by

Lemma 2.7, there dose not exist a tree *T*, which is E_k -regular and V_k -SVM. Hence assume that $q \ge p$. By Lemma 2.5, $M \ge \frac{p+1}{2} + rp + \frac{r(p+1)}{2} = \frac{(p+1)(r+1)}{2} + rp$.

Remark 2.9. For $k \ge 2$, the lower bound for the magic constant *M* obtained in Theorem 2.8 is sharp. For example, consider the following V_2 -SVML of C_5 (see Figure 2).

Note that the cycle C_5 is E_2 -regular with regularity 4. Here the magic constant M = 35. In Theorem 2.8, we proved that $M \ge 35$.

Theorem 2.10. Let G be a (p,q) graph and g be a bijection from E(G) onto $\{p+1, p+2, ..., p+q\}$. Then g can be extended to a V_k -SVML of G if and only if $\{w_k(u)/u \in V(G)\}$ consists of p sequential integers.

Proof. Assume that $\{w_k(u)/u \in V(G)\}$ consists of p sequential integers. Let $t = \min \{w_k(u)/u \in V(G)\}$. Define f: $V(G) \cup E(G) \rightarrow \{1, 2, ..., p+q\}$ as f(xy) = g(xy) for $xy \in E(G)$ and $f(x) = t + p - w_k(x)$. Then $f(E(G)) = \{p+1, p+2, ..., p+q\}$ and $f(V(G)) = \{1, 2, ..., p\}$ (since $\{w_k(x) - t : x \in V(G)\}$ is a set of consecutive integers). Hence f is V_k -SVML with M = t + p.

Conversely, suppose *g* can be extended to a V_k -SVML *f* of *G* with a magic constant *M*. Since $f(u) + w_k(u) = M$ for every $u \in V(G)$, we have $w_k(u) = M - f(u)$. Thus $\{w_k(u)/u \in V(G)\} = \{M - p, M - p + 1, \dots, M - 1\}$, which is a set of *p* consecutive integer.

3. V₂-SVML of cycles and prisms

In this section, we identified some classes of graphs such as cycles, complement of cycles, prism graphs and a family of circulant graphs, which admit V_2 -SVML.

Lemma 3.1. [5] For any integers a and b, we have $gcd(a,b) = gcd(b,a) = gcd(\pm a, \pm b) = gcd(a,b-a) = gcd(a,b+a).$

By Lemma 2.1, the cycles C_3 and C_4 are not V_2 -SVM.

Theorem 3.2. For an integer $n(\geq 5)$, the cycle C_n is V_2 -SVM if and only if n is odd.

Proof. Suppose there exists a V_2 -SVML f of C_n . Since $|E_2(e)| = r = 4$ for all $e \in E(C_n)$, by taking k = 2, p = q = n

and r = 4 in Lemma 2.5, we get $M = \frac{13n+5}{2}$. Since *M* is an integer, *n* must be odd.

Conversely, assume that *n* is odd and $n \ge 5$. Let $V(C_n) = \{a_i : 1 \le i \le n\}$ and $E(C_n) = \{a_i a_{i \oplus_n 1} : 1 \le i \le n\}$, where the operation \bigoplus_n stands for addition modulo n.

Case A: Suppose $n = 4\ell + 1$ for some integer $\ell \ge 1$.

Define a function $f: V(C_n) \cup E(C_n) \rightarrow \{1, 2, ..., 2n\}$ as follows: $f(a_i) = i - 3$ when $4 \le i \le n$ and $f(a_i) = (n - 3) + i$ when $1 \le i \le 3$; $f(a_i a_{i \oplus_n 1}) = [(i - 1)\ell \oplus_n 1] + n$, where $(i - 1)\ell \oplus_n 1$ is the positive residue when $(i - 1)\ell + 1$ divides n. Now we prove that $f(E(C_n)) = \{n + 1, n + 2, ..., 2n\}$. By taking b = n and $a = \ell$ in Lemma 3.1, we get $gcd(\ell, n) = gcd(\ell, 4\ell + 1) = gcd(\ell, 3\ell + 1) = gcd(\ell, 2\ell + 1) = gcd(\ell, \ell + 1) = gcd(\ell, 1) = 1$. Thus ℓ is a generator for the finite cyclic group (Z_n, \oplus_n) and hence $f(E(C_n)) = \{n + 1, n + 2, ..., 2n\}$. Claim 1: $w_2(a_i) = 26\ell + 12 - i$ for $4 \le i \le n$.

Case i: Suppose i = 4x for some $1 \le x \le \ell$. Now $w_2(a_i) = f(a_{i-2}a_{i-1}) + f(a_{i-1}a_i) + f(a_ia_{i+1}) + f(a_{i+1}a_{i+2})$.

Since $f(a_{i-2}a_{i-1}) = [(i-3)\frac{n-1}{4} \oplus_n 1] + n = [nx - x - \frac{3n}{4} + \frac{3}{4} \oplus_n 1] + n = [-x - 3\ell \oplus_n 1] + n$, by the definition of f, we have $w_2(a_i) = [-x - 3\ell \oplus_n 1] + [-x - 2\ell \oplus_n 1] + [-x - \ell \oplus_n 1] + [-x \oplus_n 1] + 4n$.

Since $1 \le x \le \ell$, in the above four terms(brackets), all the residues are not positive, we have

 $w_2(a_i) = 4n + [n - x - 3\ell + 1] + [n - x - 2\ell + 1] + [n - x - \ell + 1] + [n - x - \ell + 1] + [n - x + 1]$. By taking $n = 4\ell + 1$, we get $w_2(a_i) = 26\ell + 12 - i$.

Case ii: Suppose i = 4x + 1 for some $1 \le x \le \ell$. In this case, $w_2(a_i) = [-x - \frac{n}{2} + \frac{1}{2} \oplus_n 1] + n + [-x - \frac{n}{4} + \frac{1}{4} \oplus_n 1] + n + [-x \oplus_n 1] + n + [-x + \frac{n}{4} - \frac{1}{4} \oplus_n 1] + n$. $= 4n + [-x - 2\ell \oplus_n 1] + [-x - \ell \oplus_n 1] + [-x \oplus_n 1] + [-x + \ell \oplus_n 1]$. Since $1 \le x \le \ell$, the first three terms are not positive, we have $w_2(a_i) = 4n + [n - x - 2\ell \oplus_n 1] + [n - x - \ell \oplus_n 1] + [n - x \oplus_n 1] + [-x + \ell \oplus_n 1] = 26\ell + 12 - i$. Similarly, we can show that $w_2(a_i) = 26\ell + 12 - i$ when i = 4x + 2 and i = 4x + 3. **Claim 2:** $w_2(a_i) = (2\ell + 1)11 - i$ for $1 \le i \le 3$.

Consider the vertex a_1 . $w_2(a_1) = f(a_{n-1}a_n) + f(a_na_1) + f(a_1a_2) + f(a_2a_3)$. Since $f(a_{n-1}a_n) = [(n-2)\frac{(n-1)}{4} \oplus_n 1] + n = [(4\ell-1)\frac{(n-1)}{4} \oplus_n 1] + n = [-2\ell \oplus_n 1] + n$, we have $w_2(a_1) = [-2\ell \oplus_n 1] + [-\ell \oplus_n 1] + [\ell \oplus_n 1] + 4n + 1$. Here, the first two terms are not positive. Thus $w_2(a_1) = [n-2\ell+1] + [n-\ell+1] + [\ell \oplus_n 1] + 4n + 1 = (2\ell+1)11 - 1$. Similarly, we can prove $w_2(a_2) = (2\ell+1)11 - 2$ and $w_2(a_3) = (2\ell+1)11 - 3$. Note that $\ell = \frac{n-1}{4}$. Thus by Claim 1, $f(a_i) + w_2(a_i) = i - 3 + 26\ell + 12 - i = \frac{13n+5}{2} = M$ for $4 \le i \le n$. Also by Claim 2, $f(a_i) + w_2(a_i) = (n-3) + i + 11(2\ell+1) - i = \frac{13n+5}{2} = M$ for i = 1, 2, 3.

Case B: Suppose $n = 4\ell + 3$ for some integer $\ell \ge 1$.

Define $f: V(C_n) \cup E(C_n) \to \{1, 2, ..., 2n\}$ as follows: $f(a_i) = n - i$ when $1 \le i \le n - 1$ and $f(a_n) = n$; $f(a_i a_{i \oplus_n 1}) = [(i - 1)(\ell + 1) \oplus_n 1] + n$, where $[(i - 1)(\ell + 1) \oplus_n 1] + n$ is the positive residue $(i - 1)(\ell + 1) + 1$ divides *n*. By Lemma 3.1, $gcd(\ell + 1, n) = gcd(\ell + 1, 4\ell + 3) = gcd(\ell + 1, 3\ell + 2) = gcd(\ell + 1, 2\ell + 1) = gcd(\ell + 1, \ell) = gcd(\ell, \ell + 1) = gcd(\ell, 1) = gcd(\ell$

1. Hence $\ell + 1$ is a generator for the finite cyclic group (Z_n, \oplus_n) and hence $f(E(C_n)) = \{n + 1, n + 2, ..., 2n\}$. As proved in Case A, we can prove that the above labeling is a V_2 -SVML with magic constant $M = \frac{13n+5}{2}$.

Theorem 3.3. Let $G = \overline{C_n}$ be the complement of the cycle C_n , where $n(\geq 5)$ is an integer. Then G is V_2 -SVM with the magic constant $\frac{n^4 - 2n^3 - n^2 - 14n}{8}$.

Proof. Define $f: V(\overline{C_n}) \cup E(\overline{C_n}) \to \{1, 2, \dots, \frac{n^2 - n}{2}\}$ as follows: First we label the *n* edges $\{a_1a_3, a_2a_4, \dots, a_na_2\}$ by $f(a_{i\oplus n-1}, a_{i\oplus 1}) = n + i$ for $1 \le i \le n$. And the remaining $\frac{n^2 - 3n}{2} - n$ edges are randomly labeled with the labels $\{2n + 1, 2n + 2, \dots, \frac{n^2 - n}{2}\}$. The vertices are labeled as $f(a_i) = i$. Note that for each vertex a_i , the only edge with label n + i, is not in $E_2(a_i)$. Thus for each a_i with $1 \le i \le n$, we have $f(a_i) + w_2(a_i) = i + [\frac{n^4 - 2n^3 - n^2 - 6n}{8} - (n + i)] = \frac{n^4 - 2n^3 - n^2 - 14n}{8}$.

Definition 3.4. Let D_n be a prism graph of order n with $|V(D_n)| = 2n$ and $|E(D_n)| = 3n$. We take $V(D_n) = \{a_i, b_i/1 \le i \le n\}$ and $E(D_n) = \{a_ib_i/1 \le i \le n\} \cup \{a_ia_{i\oplus_n1}, b_ib_{i\oplus_n1}/1 \le i \le n\}$.

Theorem 3.5. For an integer $n \ge 3$, the prism D_n is V_2 -SVM if and only if n is even.

Proof. Suppose there exists a V_2 -SVML f of D_n with the magic constant *M*. Since $|E_2(e)| = r = 6$ for all $e \in E(D_n)$, by taking k = 2, p = 2n, q = 3n and r = 6 in Lemma 2.5, we get $M = \frac{65n+10}{2}$. Since M is an integer, n must be even. Conversely, assume that *n* is even. Let $V(D_n) = \{a_i, b_i/1 \le i \le n\}$ $i \leq n$ and $E(D_n) = \{a_i b_i / 1 \leq i \leq n\} \cup \{a_i a_{i \oplus_n 1}, b_i b_{i \oplus_n 1} / 1 \leq i \leq n\}$ $i \leq n$ }. Define $f: V(D_n) \cup E(D_n) \rightarrow \{1, 2, \dots, 5n\}$ as follows: $f(a_i) = n + \frac{n}{2} - \frac{i-1}{2}$ if *i* is odd; The range is given by $\{n + i\}$ $1, n+2, \ldots, n+\frac{n}{2}\},\$ $f(a_i) = 2n - (\frac{i}{2} - 2)$ if $i \ge 4$ and *i* is even; $\{n + \frac{n}{2} + 2, n + \frac{n}{2} + 2\}$ $3, \ldots, 2n$, $f(a_2) = n + \frac{n}{2} + 1; \{n + \frac{n}{2} + 1\},\$ $f(b_i) = \frac{i+1}{2}$ if *i* is odd; $\{1, 2, \dots, \frac{n}{2}\},\$ $f(b_i) = \frac{n}{2} + \frac{i}{2} - 1$ if $i \ge 4$ and *i* is even; $\{\frac{n}{2} + 1, \dots, n-1\}$, $f(b_2) = n; \{n\},\$ $f(a_ib_i) = 2n + \frac{i+1}{2}$ if *i* is odd; $\{2n+1, 2n+2, \dots, 2n+\frac{n}{2}\},\$ $f(a_ib_i) = 2n + \frac{n}{2} + \frac{i}{2}$ if *i* is even; $\{2n + \frac{n}{2} + 1, \dots, 3n\},\$ $f(a_i a_{i \oplus_n 1}) = 3n + \frac{n}{2} - \frac{i-1}{2} \text{ if } i \text{ is odd; } \{3n+1, \dots, 3n+\frac{n}{2}\},$ $f(b_i b_{i \oplus_n 1}) = 4n - (\frac{i}{2} - 1) \text{ if } i \text{ is even; } \{3n + \frac{n}{2} + 1, 3n + \frac{n}{2} + 1\}$ $2, \ldots, 4n\},\$ $f(a_i a_{i \oplus_n 1}) = 4n + \frac{i}{2}$ if *i* is even; $\{4n + 1, 4n + 2, \dots, 4n + \frac{n}{2}\},\$ $f(b_i b_{i \oplus_n 1}) = 5n - \frac{\overline{i} - 1}{2}$ if *i* is odd; $\{4n + \frac{n}{2} + 1, \dots, 5n\}$. It is easily seen that f is a V_2 -SVML with the magic constant $M = \frac{65n+10}{2}.$

Let Γ be a finite group with *e* as the identity. A generating set of Γ is a subset *A* such that every element of Γ can be expressed as a product of finitely many elements of *A*. Assume that $e \notin A$ and $a \in A$ implies $a^{-1} \in A$ (A is called as symmetric generating set). A Cayley graph is a graph G = (V, E), where $V(G) = \Gamma$ and $E(G) = \{(x, a)/x \in V(G), a \in A\}$, denoted by $Cay(\Gamma, A)$. Since A is a generating set for Γ , *G* is a connected regular graph of degree |A|. When $\Gamma = Z_n$, the corresponding Cayley graph is called as a circulant graph, denoted by Cir(n, A).

In Lemma 2.5, we find the magic constant of E_k -regular graphs which admit V_k -SVML. When $A = \{1, 2, n - 1, n - 2\}$, the circulant graph Cir(n,A) is not E_2 -regular. In the next result, we find the magic constant of this family of circulant graphs.

Theorem 3.6. For an integer $n \ge 7$, the graph $G = Cir(n, \{1, 2, n-1, n-2\})$ is V_2 -SVM with the magic constant M = 27n+7.

Proof. Let $V(G) = \{a_1, a_2, ..., a_n\}$ and $E(G) = \{a_i a_{i \oplus_n 1}, ..., a_n\}$ $a_i a_{i \oplus n^2}$: $1 \le i \le n$ }. Define $f: V(G) \cup E(G) \to \{1, 2, \dots, 3n\}$ as follows: $f(a_i) = i - 4$ for $5 \le i \le n$; $f(a_i) = n + i - 4$ for $1 \le i \le 4$; $f(a_i a_{i \oplus_n 1}) = n + i$ for $1 \le i \le n$ and $f(a_i a_{i \oplus n^2}) = 3n + 1 - i$ for $1 \le i \le n$. Let $v \in V(G)$. Suppose $v = a_i$ for some integer *i* with $5 \le i \le n$. Then $f(a_i) + w_2(a_i) = f(a_i) + f(a_{i-3}a_{i-2}) + f(a_{i-2}a_{i-1}) + f(a_{i-2}a_{i-1}) + f(a_{i-2}a_{i-1}) + f(a_{i-3}a_{i-2}) + f(a_{i-3}a$ $f(a_{i-1}a_i) + f(a_ia_{i\oplus_n 1}) + f(a_{i\oplus_n 1}a_{i\oplus_n 2}) + f(a_{i\oplus_n 2}a_{i\oplus_n 3}) +$ $f(a_{i-4}a_{i-2}) + f(a_{i-3}a_{i-1}) + f(a_{i-2}a_i) +$ $f(a_{i-1}a_{i\oplus_n 1}) + f(a_i a_{i\oplus_n 2}) + f(a_{i\oplus_n 1}a_{i\oplus_n 3}) + f(a_{i\oplus_n 2}a_{i\oplus_n 4})$ = [i-4] + [n+i-3] + [n+i-2] + [n+i-1] + [n+i] + [n+i]i+1 + [n+i+2] + [3n+1-(i-4)] + [3n+1-(i-3)] + [3n+1-(i-2)] + [3n+1-(i-1)] + [3n+1-i] + [3n+1-i](i+1)] + [3n+1-(i+2)] = 27n+7 = M. Similarly, we can prove that $f(a_i) + w_2(a_i) = 27n + 7$ for i = 1, 2, 3, 4. \square

4. Some Results on V-SVML

In this section, we obtained some results on V-SVML.

Lemma 4.1. Any connected graph on four vertices is not *V*-SVM.

Proof. Suppose there exists a *V*-SVML with magic constant *M*. All the non-isomorphic connected graphs on four vertices are given below.

By Lemma 2.6, $M = 2q + \frac{p+1}{2} + \frac{q(q+1)}{p}$. For the graphs *A*, *B*, *C* and *D*, the magic constant is not an integer and hence they are not *V*-SVM.

Suppose the graph *E* admits a *V*-SVML, say *f*. Then M = 20, $f(V(E)) = \{1, 2, 3, 4\}$ and $f(E(E)) = \{5, 6, 7, 8, 9\}$.

Note that the vertices v_1 and v_3 are of degree two and $f(v_1)$, $f(v_3) \in \{1, 2, 3, 4\}$. Since M = 20, both $w(v_1)$ and $w(v_3)$ must be greater than or equal to 16, which is not possible since $f(E(E)) = \{5, 6, 7, 8, 9\}$. Thus *E* is not E-SVM.

Next, we consider the graph *F*. Suppose the graph *F* admits *V*-SVML, say *f*. Then M = 25, $f(V(F)) = \{1, 2, 3, 4\}$ and $f(E(F)) = \{5, 6, 7, 8, 9, 10\}$. With out loss of generality, we take $f(v_1) = 1$, $f(v_2) = 2$, $f(v_3) = 3$ and $f(v_4) = 4$. Consider

f(v)	incident edges of v	possible edge labelings	w(v)
$f(v_1) = 1$	v_1v_2, v_1v_3, v_1v_4	$\{(10,9,5),(10,8,6),(9,8,7)\}$	$w(v_1) = 24$
$f(v_2) = 2$	v_2v_1, v_2v_3, v_2v_4	$\{(10,8,5),(10,7,6),(9,8,6)\}$	$w(v_2) = 23$
$f(v_3) = 3$	v_3v_1, v_3v_2, v_3v_4	$\{(10,7,5),(9,8,5),(9,7,6)\}$	$w(v_3) = 22$
$f(v_4) = 4$	v_4v_1, v_4v_2, v_4v_3	$\{(10,6,5),(9,7,5),(8,7,6)\}$	$w(v_1) = 21$

Table 2

the vertex v_4 . Suppose the edges incident with v_4 receive the labels $\{10,6,5\}$. In this case the edges incident with v_1 cannot be labeled with $\{(10,9,5),(10,8,6)\}$. Since v_1 is adjacent with v_4 , one of the edge incident with v_1 must be labeled with 10 or 6 or 5. Thus the the edges incident with v_1 cannot be labeled with $\{(9,8,7)\}$. Hence *f* is not SVML, a contradiction. We can get the same contradictions when the edges incident with v_4 receive the labels $\{9,7,5\}$ and $\{8,7,6\}$.

Theorem 4.2. Let G be a (p,q) graph. If q = p + 1, then G is not V-SVM.

Proof. Suppose q = p + 1. Then by Lemma 2.6, $M = 2q + \frac{p+1}{2} + \frac{q(q+1)}{p} = 2(p+1) + \frac{p+1}{2} + \frac{(p+1)(p+2)}{p} = 3p + 5 + \frac{1}{2} + \frac{p}{2} + \frac{2}{p}$, which is an integer only when p = 4. Thus by Lemma 4.1 *G* is not *V*-SVM.

Corollary 4.3. For $n \ge 4$, the cycle with one chord is not *V*-SVM.

References

- [1] J.A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, (2017), #DS6.
- ^[2] F. Harary, *Graph Theory*, Addison-Wesley, 1969.
- [3] J.A. MacDougall, M. Miller, Slamin, W.D.Wallis, Vertexmagic total labelings of graphs, *Util. Math.*, 61(2002), 3–21.
- [4] J.A. MacDougall, M. Miller, K.A. Sugeng, Super vertexmagic total labelings of graphs, in: *Proceedings of the* 15th Australian Workshop on Combinatorial Algorithms, (2004), 222–229.

[5] W. Stein, *Elementary Number Theory*, Springer-Verlag, USA, 2011.

