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On leap Zagreb indices of some nanostructures
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Abstract
In recent years, higher order topological indices are gaining much importance because of their greater correlation
with many chemical properties. One among them is leap Zagreb index which is based on both distance and
degree. For a graph G, the first, second and third leap Zagreb indices are the sum of squares of 2-distance
degree of vertices of G; the sum of product of 2-distance degree of end vertices of edges in G and the sum of
product of 1-distance degree and 2-distance degrees of vertices of G, respectively. In this paper, we compute the
expressions for these three leap Zagreb indices of some nanostructures.
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1. Introduction
Let G be a simple graph with a vertex set V (G) and

an edge set E(G). The k-neighbourhood [21] of a vertex
v ∈ V (G) is denoted and defined as Nk(v/G) = {u ∈ V (G) :
d(u,v) = k} where d(u,v) is the distance between the two
vertices u and v in G. The k-distance degree of a vertex
v ∈ V (G) is denoted by dk(v/G) and dk(v/G) = |Nk(v/G)|.
Also, we denote NG(v) by N1(v/G) and dG(v) by d1(v/G).
The degree of an edge e = uv in G is given by d1(e/G) =
d1(u/G)+ d1(v/G)− 2. If all the vertices of G have same
degree and is equal to r ∈ Z+, then G is called an r-regular
graph. For undefined graph terminology and notations, a
reader can refer [10] or [16].

In chemical graph theory and in mathematical chemistry,
a molecular graph or chemical graph is a representation of
the structural formula of a chemical compound in terms of
graph theory. A molecular graph is a graph whose vertices
correspond to the atoms of the chemical compound and edges

to the chemical bonds. Chemical graph theory is a branch
of mathematical chemistry which has an important effect on
the development of the chemical sciences. A single number
that can be used to characterize some property of a molecule
is called a topological index of that graph. There are nu-
merous molecular descriptors, which are also referred to as
topological indices, see [9], that have found some applica-
tions in theoretical chemistry, especially in QSPR/QSAR re-
search. There are plenty of topological indices defined in
the literature. Wiener index [22], Zagreb indices [9], F-index
[8], connectivity index ( or Randić index ) [5], are few of
them. Recently, indices like Sanskruti index [11], second
order first Zagreb index [3] and (β ,α)-connectivity index [4]
were introduced. Higher order topological indices have ad-
vanced chemical applications in QSPR/QSAR study. The
authors in the papers [3, 4, 8, 12, 13, 15, 19, 20] calculated
various topological indices for some of the nanostructures.
Many topological indices for nanostructures such as armchair
polyhex nanotube, armchair polyhex nanotorus, V-phenylenic
nanotube, V-phenylenic nanotorus, H-tetracenic nanotube, V-
tetracenic nanotube and tetracenic nanotorus can be found in
[1, 2, 6, 7, 14, 18].

Recently in [17], Naji et al. has introduced three topologi-
cal indices called first leap Zagreb index, second leap Zagreb
index and third leap Zagreb index which are denoted and de-
fined as:
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LM1(G) = ∑
v∈V (G)

d2(v/G)2,

LM2(G) = ∑
uv∈E(G)

d2(u/G)d2(v/G),

LM3(G) = ∑
v∈V (G)

d1(v/G)d2(v/G).

In this paper, we compute the expressions for first, second,
third leap Zagreb indices of some nanostructures.

2. Order and size of some nanostructures

Table 1. Order and Size of nanostructures
Sl.
No.

Graph Order Size

1 Armchair
polyhex
nanotube
TUAC6[2p,q]

2pq 3pq−2p

2 Armchair
polyhex
nanotorus
TUAC6[p,q]

2pq 3pq

3 V-Phenylenic
nanotube
V PHX [p,q]

6pq 9pq− p

4 V-Phenylenic
nanotorus
V PHY [p,q]

6pq 9pq

5 V-Tetracenic
nanotube
G[p,q]

18pq 27pq−4p

6 H-Tetracenic
nanotube
G[p,q]

18pq 27pq−2q

7 Tetracenic
nanotorus
G[p,q]

18pq 27pq

3. Main results
In this section, we compute the expressions for leap Za-

greb indices of some nanostructures.
For the sake of convenience we use the names A, B, C,

D, E, F , H for the molecular graphs of armchair polyhex nan-
otube, armchair polyhex nanotorus, V-phenylenic nanotube,
V-phenylenic nanotorus, V-tetracenic nanotube, H-tetracenic
nanotube, tetracenic nanotorus respectively.

Theorem 3.1. If A is an armchair polyhex nanotube
TUAC6[2p,q], where p > 1 and q > 1, then

(i) LM1(A) = 72pq−152p,

Figure 1. (A) armchair polyhex nanotube

Table 2. Vertex set partition of graph A
d2(v/A) No. of vertices

3 4p
5 4p
6 2pq−8p

Table 3. Edge set partition of graph A. Here uv ∈ E(A)
No. of edges d2(u/A) d2(v/A)

2p 3 3
4p 3 5
2p 5 5
4p 5 6

3pq−14p 6 6

(ii) LM2(A) = 108pq−256p,

(iii) LM3(A) = 36pq−60p.

Proof. The graph A = TUAC6[2p,q] has 2pq vertices and
3pq−2p edges.
Using the definition of first leap Zagreb index and vertex set
partition of the graph A given in Table 2 we get,

LM1(A) = ∑
v∈V (A)

d2(v/A)2

= 32(4p)+52(4p)+62(2pq−8p)

= 72pq−152p.

Using the definition of second leap Zagreb index and edge set
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partition of the graph A given in Table 3 we get,

LM2(A) = ∑
uv∈E(A)

d2(u/A)d2(v/A)

= 3 ·3(2p)+3 ·5(4p)+5 ·5(2p)+5 ·6(4p)

+6 ·6(3pq−14p)

= 108pq−256p.

Using the definition of third leap Zagreb index, degree se-
quence of vertices and vertex set partition of the graph A
given in Table 2 we get,

LM3(A) = ∑
v∈V (A)

d1(v/A)d2(v/A)

= 2 ·3(4p)+3 ·5(4p)+3 ·6(2pq−8p)

= 36pq−60p.

Figure 2. (B) armchair polyhex nanotorus

Table 4. Vertex set partition of graph B
d2(v/B) 6

No. of vertices 2pq

Table 5. Edge set partition of graph B. Here uv ∈ E(B)
No. of edges d2(u/B) d2(v/B)

3pq 6 6

Theorem 3.2. If B is an armchair polyhex nanotorus
TUAC6[p,q], where p > 1 and q > 1, then

(i) LM1(B) = 72pq,

(ii) LM2(B) = 108pq,

(iii) LM3(B) = 36pq.

Proof. The graph B = TUAC6[p,q] has 2pq vertices and 3pq
edges.
Using the definition of first leap Zagreb index and vertex set
partition of the graph B given in Table 4 we get,

LM1(B) = ∑
v∈V (B)

d2(v/B)2

= 62(2pq)

= 72pq.

Using the definition of second leap Zagreb index and edge set
partition of the graph B given in Table 5 we get,

LM2(B) = ∑
uv∈E(B)

d2(u/B)d2(v/B)

= 6 ·6(3pq)

= 108pq.

Using the definition of third leap Zagreb index, degree se-
quence of vertices and vertex set partition of the graph B
given in Table 4 we get,

LM3(B) = ∑
v∈V (B)

d1(v/B)d2(v/B)

= 3 ·6(2pq)

= 36pq.

Figure 3. (C) V-phenylenic nanotube

Table 6. Vertex set partition of graph C
d2(v/C) 4 5 6

No. of vertices 6p 4p(q−1) 2p(q−1)

818



On leap Zagreb indices of some nanostructures — 819/822

Table 7. Edge set partition of graph C. Here uv ∈ E(C)
No. of edges d2(u/C) d2(v/C)

6p 4 4
4p 4 5

2p(2q−3) 5 5
4p(q−1) 5 6
p(q−1) 6 6

Theorem 3.3. If C is a V-phenylenic nanotube V PHX [p,q],
where p > 1 and q > 1, then

(i) LM1(C) = 172pq−76p,

(ii) LM2(C) = 256pq−130p,

(iii) LM3(C) = 96pq−32p.

Proof. The graph C =V PHX [p,q] has 6pq vertices and 9pq−
p edges.
Using the definition of first leap Zagreb index and vertex set
partition of the graph C given in Table 6 we get,

LM1(C) = ∑
v∈V (C)

d2(v/C)2

= 42(6p)+52[4p(q−1)]+62[2p(q−1)]
= 172pq−76p.

Using the definition of second leap Zagreb index and edge set
partition of the graph C given in Table 7 we get,

LM2(C) = ∑
uv∈E(C)

d2(u/C)d2(v/C)

= 4 ·4(6p)+4 ·5(4p)+5 ·5[2p(2q−3)]
+5 ·6[4p(q−1)]+6 ·6[p(q−1)]

= 256pq−130p.

Using the definition of third leap Zagreb index, degree se-
quence of vertices and vertex set partition of the graph C
given in Table 6 we get,

LM3(C) = ∑
v∈V (C)

d1(v/C)d2(v/C)

= 2 ·4(2p)+3 ·4(4p)+3 ·5[4p(q−1)]
+3 ·6[2p(q−1)]

= 96pq−32p.

Table 8. Vertex set partition of graph D
d2(v/D) 5 6

No. of vertices 4pq 2pq

Theorem 3.4. If D is a V-phenylenic nanotorus V PHY [p,q],
where p > 1 and q > 1, then

(i) LM1(D) = 172pq,

(ii) LM2(D) = 256pq,

Figure 4. (D) V-phenylenic nanotorus

Table 9. Edge set partition of graph D. Here uv ∈ E(D)
No. of edges d2(u) d2(v)

4pq 5 5
4pq 5 6
pq 6 6

(iii) LM3(D) = 96pq.

Proof. The graph D =V PHY [p,q] has 6pq vertices and 9pq
edges.
Using the definition of first leap Zagreb index and vertex set
partition of the graph D given in Table 8 we get,

LM1(D) = ∑
v∈V (D)

d2(v/D)2

= 52(4pq)+62(2pq)

= 172pq.

Using the definition of second leap Zagreb index and edge set
partition of the graph D given in Table 9 we get,

LM2(D) = ∑
uv∈E(D)

d2(u/D)d2(v/D)

= 5 ·5(4pq)+5 ·6(4pq)+6 ·6(pq)

= 256pq.

Using the definition of third leap Zagreb index, vertex degree
sequence and vertex set partition of the graph D given in Table
8 we get,

LM3(D) = ∑
v∈V (D)

d1(v/D)d2(v/D)

= 3 ·5(4pq)+3 ·6(2pq)

= 96pq.
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Figure 5. (E) V-tetracenic nanotube G[p,q]

Table 10. Vertex set partition of graph E
d2(v/E) 4 5 6

No. of vertices 18p 4p(q−1) 14p(q−1)

Table 11. Edge set partition of graph E. Here uv ∈ E(E)
No. of edges d2(u/E) d2(v/E)

18p 4 4
4p 4 5
6p 4 6
4p 5 6

9p(3q−4) 6 6

Theorem 3.5. If E is a V-tetracenic nanotube G[p,q], where
p > 1 and q > 1, then

(i) LM1(E) = 604pq−316p,

(ii) LM2(E) = 972pq−664p,

(iii) LM3(E) = 312pq−128p.

Proof. The graph E = G[p,q] has 18pq vertices and 27pq−
4p edges.
Using the definition of first leap Zagreb index and vertex set
partition of the graph E given in Table 10 we get,

LM1(E) = ∑
v∈V (E)

d2(v/E)2

= 42(18p)+52[4p(q−1)]]+62[14p(q−1)]
= 604pq−316p.

Using the definition of second leap Zagreb index and edge set
partition of the graph E given in Table 11 we get,

LM2(E) = ∑
uv∈E(E)

d2(u/E)d2(v/E)

= 4 ·4(18p)+4 ·5(4p)+4 ·6(6p)+5 ·6(4p)

+6 ·6[9p(3q−4)]
= 972pq−664p.

Using the definition of third leap Zagreb index, degree se-
quence of vertices and vertex set partition of the graph E
given in Table 10 we get,

LM3(E) = ∑
v∈V (E)

d1(v/E)d2(v/E)

= 2 ·4(8p)+3 ·4(10p)+3 ·5[4p(q−1)]
+3 ·6[14p(q−1)]

= 312pq−128p.

Figure 6. (F) H-tetracenic nanotube G[p,q]

Table 12. Vertex set partition of graph F
d2(v/F) 3 5 6

No. of vertices 2pq 4pq 12pq

Table 13. Edge set partition of graph F . Here uv ∈ E(F)
No. of edges d2(u/F) d2(v/F)

pq 3 3
2pq 3 5
3pq 5 5
2pq 5 6

19pq−2q 6 6

Theorem 3.6. If F is a H-tetracenic nanotube G[p,q], where
p > 1 and q > 1, then

(i) LM1(F) = 550pq,

(ii) LM2(F) = 858pq−72q,

(iii)LM3(F) = 288pq.

Proof. The graph F = G[p,q] has 18pq vertices and
27pq−2q edges.
Using the definition of first leap Zagreb index and vertex set
partition of the graph F given in Table 12 we get,

LM1(F) = ∑
v∈V (F)

d2(v/F)2

= 32(2pq)+52(4pq)+62(12pq)

= 550pq.
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Using the definition of second leap Zagreb index and edge set
partition of the graph F given in Table 13 we get,

LM2(F) = ∑
uv∈E(F)

d2(u/F)d2(v/F)

= 3 ·3(pq)+3 ·5(2pq)+5 ·5(3pq)

+5 ·6(2pq)+6 ·6[(19pq−2q)]

= 858pq−72q.

Using the definition of third leap Zagreb index, vertex degree
sequence and vertex set partition of the graph F given in Table
12 we get,

LM3(F) = ∑
v∈V (F)

d1(v/F)d2(v/F)

= 2 ·3(2pq)+3 ·5(4pq)+3 ·6(12pq)

= 288pq.

Figure 7. (H) tetracenic nanotorus G[p,q]

Table 14. Vertex set partition of graph H
d2(v/H) 5 6

No. of vertices 4pq 14pq

Table 15. Edge set partition of graph H. Here uv ∈ E(H)
No. of edges d2(u/H) d2(v/H)

4pq 5 5
4pq 5 6

19pq 6 6

Theorem 3.7. If H is a tetracenic nanotorus G[p,q], where
p > 1 and q > 1, then

(i) LM1(H) = 604pq,

(ii) LM2(H) = 904pq,

(iii) LM3(H) = 312pq.

Proof. The graph H = G[p,q] has 18pq vertices and 27pq
edges.

Using the definition of first leap Zagreb index and vertex set
partition of the graph H given in Table 14 we get,

LM1(H) = ∑
v∈V (H)

d2(v/H)2

= 52(4pq)+62(14pq)

= 604pq.

Using the definition of second leap Zagreb index and edge set
partition of the graph H given in Table 15 we get,

LM2(H) = ∑
uv∈E(H)

d2(u/H)d2(v/H)

= 5 ·5(4pq)+5 ·6(4pq)+6 ·6(19pq)

= 904pq.

Using the definition of third leap Zagreb index, degree se-
quence of vertices and vertex set partition of the graph H
given in Table 14 we get,

LM3(H) = ∑
v∈V (H)

d1(v/H)d2(v/H)

= 3 ·5(4pq)+3 ·6(14pq)

= 312pq.

4. Conclusion
In this paper, we have computed the expressions for first,

second and third leap Zagreb indices of some nanostructures.
It is interesting to find these three leap Zagreb indices of some
other nanotubes and networks for future studies.
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