

https://doi.org/10.26637/MJM0604/0022

On some topological sets

Pratap Kumar Saha^{1*}

Abstract

In this paper, we study semi-open, pre-open, $α$ -open and $β$ -open sets, and obtain some relations between them.

Keywords

Semi-open, pre-open, α -open, β -open.

AMS Subject Classification

54A05.

¹*Department of Mathematics, Behala College, Kolkata-700060, West Bengal, India.* ***Corresponding author**: ¹pratapsaha2@gmail.com **Article History**: Received 17 September 2018; Accepted 18 December 2018 **COMBINEY 18** (C) 2018 MJM

Contents

1. Introduction

As usual, we write *X* to denote the topological space (X, \mathscr{P}) . For a subset *A* of the topological space *X*, *Int*(*A*) (resp. *Cl*(*A*)) stands for the interior (resp. closure) of *A* in *X*. Throughout the paper, *N* denotes the set of natural numbers and *R*, the set of real numbers.

Levine [\[8\]](#page-3-0) introduced the notion of semi-open sets in 1963: a subset *A* of a topological space *X* is called semi-open if there exists an open set *G* such that $G \subset A \subset Cl(G)$. It is easy to see that a subset *A* of a topological space *X* is semi-open in *X* iff $A \subset Cl(Int(A))$ [\[8\]](#page-3-0). The closure and interior are two very basic and perhaps the most important operators in areas of study involving topology. Both of them when operated on a subset of a topological space give rise to a set whose nature depends upon the order of their operation e.g. semi-open sets [\[8\]](#page-3-0), locally dense sets [\[3\]](#page-3-1). The locally dense sets (also called pre-open sets by Mashhour et al. [\[10\]](#page-3-2)) introduced by Corson and Michael [\[3\]](#page-3-1): a subset *A* of a topological space *X* is called locally dense if there exists an open set *U* such that $A \subset U \subset Cl(A)$. Instead of using both pre-open and locally dense randomly in the paper, we agree to write preopen sets to symbolize locally dense sets also. We observe that a subset *A* of *X* is pre-open iff $A \subset Int(Cl(A))$ [\[10\]](#page-3-2). We see that in pre-open sets of a topological space the positions of the interior and closure operators in semi-open sets are just interchanged. Though the study of semi-open and preopen sets in topological spaces initiated about six decades back, they are still in the focus of research works e.g. see $[7, 11, 12]$ $[7, 11, 12]$ $[7, 11, 12]$ $[7, 11, 12]$ $[7, 11, 12]$. Andrijević $[1]$ $[1]$ introduced and studied the notion of semi-pre-open sets: a subset *A* of a topological space *X* is called semi-pre-open if there exists a pre-open set *U* such that $U \subset A \subset Cl(U)$. Equivalently, a subset A of a topological space *X* is semi-pre-open iff $A \subset (Cl(Int(Cl(A)))$. Njåstad [\[9\]](#page-3-7) and El-Monsef et al. [\[2\]](#page-3-8) independently introduced and studied β -sets and β -open sets respectively which are same as semi-pre-open sets. Changing the role of interior and closure operators in semi-pre-open sets, we get α -sets, i.e. a subset *A* of *X* is an α -set [\[9\]](#page-3-7) iff $A \subset Int(ClInt(A)))$. In tune with recent trend of topologists, we agree to call α -sets as α -open sets. Throughout the paper, we use the term β -open sets to represent $β$ -sets or semi-pre-open sets as well.

We list all of the sets described above as a gist for better understanding and for effective use of them in the sequel. A subset *A* of a topological space (X, \mathscr{P}) is

- (i) semi-open iff $A \subset Cl(Int(A))$ [\[8\]](#page-3-0),
- (ii) pre-open iff $A \subset Int(Cl(A))$ [\[10\]](#page-3-2),
- (iii) α -open iff $A \subset Int(ClInt(A)))$ [\[9\]](#page-3-7),
- (iv) β -open iff $A \subset Cl(Int(Cl(A)))$ [\[1,](#page-3-6) [2,](#page-3-8) [9\]](#page-3-7).

Obviously, open sets are included in either of above four categories of sets. The following diagram epitomizes the implication relations among them. The implications are not reversible.

As usual, a subset of *X* is called semi-closed [\[4\]](#page-3-9), pre-closed [\[10\]](#page-3-2), α -closed and β -closed if its complement is semiopen, pre-open, α-open and β-open respectively. So a subset *B* of a topological space *X* is

Note: An arrow between two notions in above diagram stands to mean implies that.

- (i) semi-closed iff $Int(Cl(B)) \subset B[4]$ $Int(Cl(B)) \subset B[4]$,
- (ii) pre-closed iff $Cl(int(B)) \subset B$ [\[10\]](#page-3-2),
- (iii) α -closed iff $Cl(int(Cl(B))) \subset B$,
- (iv) β -closed iff $Int(Cl(int(B))) \subset B$.

2. Properties of Some Topological Sets

Recall that a subset *A* of a topological space is called regularly open if $A = Int(Cl(A))$ which means that $A \subset Int(Cl(A))$ and *Int*($Cl(A)$) ⊂ *A*. That is, a subset *A* of *X* is regularly open iff *A* is both pre-open and semi-closed on *X* [\[5,](#page-3-11) p. 8]. A subset of *X* is regularly closed if its complement is regularly open. So a subset *B* of *X* is regularly closed iff $B = Cl(Int(B))$ which means $B \subset Cl(Int(B))$ and $Cl(int(B)) \subset B$. That is, a subset *B* of *X* is regularly closed iff *B* is both semi-open and pre-closed. Also for any subset *A* of *X*, $Int(Cl(A))$ (resp. $Cl(int(A)))$) is regularly open (resp. regularly closed). So if a subset *A* of *X* is semi-open (resp. α -open, pre-closed, β -closed), then there exists a regularly closed set *E* such that $A \subset E$ (resp. *A* ⊂ *Int*(*E*), *E* ⊂ *A*, *Int*(*E*) ⊂ *A*). But converses are not true.

Example 2.1 (Mukharjee et al. [\[11\]](#page-3-4)). *For* $a \in R$ *, we define*

$$
\mathscr{T} = \{ \emptyset, R, (-\infty, a-1), (-\infty, a), [a, \infty), (-\infty, a-1) \cup [a, \infty) \}.
$$

In the topological space (R, \mathcal{T}) *,* $(-\infty, a)$ *is regularly closed and* $(-\infty, b)$ ⊂ $(-\infty, a) = Int((- \infty, a))$ *for* $-\infty < b < a - 1$ *but* (−∞,*b*) *is neither semi-open nor* α*-open. Also* [*a*,∞) *is regularly closed and* $[a, \infty) = Int([a, \infty)) \subset (-\infty, a-1) \cup$ [*a*,∞) *but* (−∞,*a* − 1) ∪ [*a*,∞) *is neither pre-closed nor* β*closed.*

We also note that if a subset *A* of *X* is pre-open (resp. $β$ -open, semi-closed, $α$ -closed), then there exists a regularly open set *G* such that $A \subset G$ (resp. $A \subset Cl(G)$, $G \subset A$, $Cl(G) \subset$ *A*). But converses are not true. In the topological space of Example [2.1,](#page-1-1) $(-\infty, a)$ is regularly open. For any subset *D* of $[a-1,a)$, we see that *D* ⊂ (−∞,*a*) = *Cl*((−∞,*a*)) but *D* is neither pre-open nor β-open. Also $[a, \infty)$ in the topological space of Example [2.1](#page-1-1) is regularly open and $[a, \infty) \subset (-\infty, a-$ 1)∪[a, ∞) but $(-\infty, a-1)$ ∪[a, ∞) is neither semi-closed nor α -closed.

Definition 2.2 (Mukharjee et al. [\[11\]](#page-3-4)). *Let A be a semi-open set in X. A is said to be covered if there exist open sets G and* $H(\neq X)$ *such that* $G \subset A \subset H \subset Cl(G)$ *. A is said to be* u ncovered if $G ⊂ A ⊂ Cl(G)$ *for some open set* G *of* X *, then* $G \subset Int(Cl(G)) \subset A \subset Cl(G)$ *.*

If *A* is uncovered semi-open, then there does not exist an open set $H(\neq A)$ such that $G \subset A \subset H \subset Cl(G)$. If *A* is uncovered semi-open but not open, then *A* can not be covered semi-open. Also if *A* is covered semi-open but not open, then *A* can not be uncovered semi-open. Any nontrivial open set of a topological space is obviously a covered semi-open set. In Example [2.1,](#page-1-1) $(-\infty, a-1)$ is an open set but not an uncovered semi-open set which means that an open set may not be an uncovered semi-open set.

As usual, the complement of a covered (resp. uncovered) semi-open set is said to be a covered (resp. uncovered) semiclosed set.

We see that $A \subset X$ is a covered semi-closed iff there exist closed sets *E* and $F(\neq \emptyset)$ such that $Int(E) \subset F \subset A \subset E$ and *A* is uncovered semi-closed iff there exists a closed set *E* such that $Int(E) \subset A \subset Cl(int(E)) \subset E$. Thus if *A* is uncovered, then there does not exist a closed set $F(\neq A)$ such that *Int*(*E*) ⊂ *F* ⊂ *A* ⊂ *Cl*(*E*). If *A* is uncovered semi-closed but not closed, then *A* can not be covered semi-closed. Also if *A* is covered semi-closed but not closed, then *A* can not be uncovered semi-closed. Any nontrivial closed set of a topological space is obviously a covered semi-closed set. In Example [2.1,](#page-1-1) $[a-1, \infty)$ is a closed set but not an uncovered semi-closed set which means that a closed set may not be an uncovered semi-closed set. In Example [2.1,](#page-1-1) $[a - \frac{1}{n}, \infty)$ is covered semi-closed for each $n \in N$.

Example 2.3. *For a, b* \in *R with b* $>$ *a* + 1*, we define*

$$
\mathcal{T} = \{ \emptyset, R, (-\infty, a), (b, \infty), (-\infty, a) \cup (b, \infty) \}.
$$

In the topological space (R, \mathscr{T}) *, for each* $n \in N$ *,* $[a + \frac{1}{n}, \infty)$ *is a semi-closed set which is uncovered.*

Theorem 2.4 (Mukharjee et al. [\[11\]](#page-3-4)). *Covered semi-open sets of a topological space are pre-open.*

It can be seen that a subset *A* of a topological space *X* is semi-closed if there exists a closed set *E* such that $Int(E) \subset$ A ⊂ E .

Theorem 2.5. *Covered semi-closed sets of a topological space are pre-closed.*

Proof. Similar to that of Theorem [2.4.](#page-1-2)

Alternatively, if *A* is a covered semi-closed set, then *X* −*A* is a covered semi-open set. By Theorem [2.4,](#page-1-2) *X* −*A* is pre-open and so *A* is pre-closed. \Box

Theorem 2.6. *The following assertions hold good in a topological space X :*

(a) A ⊂ *X is both semi-closed and* β*-open, iff there exists a regularly open set G such that* $G \subset A \subset Cl(G)$ *.*

(b) A ⊂ *X is both semi-open and* β*-closed, iff there exists a regularly closed set E such that* $Int(E) \subset A \subset E$.

Proof. (a) Firstly, let *A* be both semi-closed and β-open. We put $G = Int(Cl(A))$. Then *G* is regularly open. By semiclosedness and β -openness of *A*, we have $G \subset A$ and $A \subset \beta$ *Cl*(*G*) respectively i.e., *G* ⊂ *A* ⊂ *Cl*(*G*).

Conversely, let there exist a regularly open set *G* such that *G* ⊂ *A* ⊂ *Cl*(*G*). Then *Cl*(*A*) = *Cl*(*G*) which means that $Int(Cl(A)) = Int(Cl(G)) = G$ and $Cl(G) = Cl(int(Cl(A))).$ From $G \subset A \subset Cl(G)$, we have $G \subset A$ which implies $Int(Cl(A))$ ⊂ *A* and *A* ⊂ *Cl*(*G*) which implies that *A* ⊂ *Cl*(*Int*(*Cl*(*A*))). (b): Just like that of (a) above. \Box

Remark 2.7. *In (a) of Theorem [2.6,](#page-1-3) A is also semi-open. But a semi-open set may not be both semi-closed and* β*open.* In Example [2.1,](#page-1-1) we see that $(-\infty, a-1) \subset (-\infty, b)$ *Cl*(($-\infty$, $a-1$)) *where* $a-1 < b < a$. *So* ($-\infty$, b) *is semi-open but not semi-closed. Note that* $(-\infty, a-1)$ *is not regularly open. Then it follows that regularity of G in Theorem [2.6](#page-1-3) (a) is very much essential to be A both semi-closed and* β*-open.*

Theorem 2.8. $A \subset X$ *is regularly open as well as regularly closed if*

- *(a) A is both pre-closed and* α*-open.*
- *(b) A is both pre-open and* α -*closed.*

Proof. (a) Let *A* be both pre-closed and α -open. We put $E =$ $Cl(int(A))$. Then *E* is regularly closed. By pre-closedness and α -openness of *A*, we have $E \subset A$ and $A \subset Int(E)$ respectively i.e., $E \subset A \subset Int(E)$. But $Int(E) \subset E$ implies that $A = E = Int(E)$. Since *E* is closed, $Int(E)$ is regularly open. So *A* is both regularly open and regularly closed.

(b) Let *A* be both pre-open and α -closed. We put $G =$ *Int*(*Cl*(*A*)). Then *G* is regularly open. By pre-openness and α -closedness of *A*, we have $A \subset G$ and $Cl(G) \subset A$ respectively i.e., $Cl(G)$ ⊂ *A* ⊂ *G*. But *G* ⊂ $Cl(G)$ which implies that *A* = $G = Cl(G)$. Since *G* is open, $Cl(G)$ is regularly closed. So *A* is both regularly open and regularly closed. \Box

The converses of Theorem [2.8](#page-2-1) are also true as open (resp. closed) sets are α -open (resp. α -closed) and so pre-open (resp. pre-closed).

We note that the notions of semi-open and pre-open sets are independent. However, we have the following results on semi-open and pre-open sets.

Theorem 2.9. *If A is semi-open and B is pre-open on X with* $Cl(A) = Cl(B)$ *, then there exist two open sets G and H such that* $Cl(G) = Cl(H) = Cl(A) = Cl(B)$ *.*

Proof. Due to semi-openness of *A*, we have an open set *G* such that $G \subset A \subset Cl(G)$ which implies that $Cl(G) = Cl(A)$. As *B* is pre-open, we obtain an open set *H* such that $B \subset H \subset$ $Cl(B)$ which means that $Cl(B) = Cl(H)$. So it follows that $Cl(G) = Cl(A) = Cl(B) = Cl(H).$ \Box

Theorem 2.10. *Let A and B be semi-open and pre-open respectively on X such that* $A \subset B$ *and* $Cl(A) = Cl(B)$ *. Then A is also pre-open and B is also semi-open on X.*

Proof. Since *A* is semi-open, there exists an open set *G* such that *G* ⊂ *A* ⊂ *Cl*(*G*) which implies that $Cl(A) = Cl(G)$. Since *B* is pre-open, we have an open set *H* such that $B \subset H \subset$ *Cl*(*B*). Since *A* ⊂ *B*, *G* ⊂ *Int*(*A*) ⊂ *Int*(*B*) ⊂ *B* ⊂ *H* ⊂ *Cl*(*B*) = $Cl(A) = Cl(G)$. So we have $G \subset B \subset Cl(G)$, i.e. *B* is semiopen. Again we have $A \subset B \subset H \subset Cl(B) = Cl(A)$. Hence $A \subset H \subset Cl(A)$ which means that *A* is pre-open. П

Theorem 2.11. *Let B be pre-open and H be open on X such that* $B \subset H \subset Cl(B)$ *. If A is semi-open on X such that* $B \subset A$ \mathcal{A} *and* \mathcal{I} *ht*(\mathcal{A}) = \mathcal{I} *nt*(\mathcal{B})*, then* $\mathcal{A} ∩ \mathcal{H}$ *is both semi-open and preopen on X.*

Proof. For *A*, we obtain an open set *G* such that $G \subset A \subset \mathbb{R}$ $Cl(G)$ which implies that $Cl(A) = Cl(G)$. Since $Int(A) =$ *Int*(*B*), *G* ⊂ *Int*(*A*) = *Int*(*B*) ⊂ *B* ⊂ *H* ⊂ *Cl*(*B*) ⊂ *Cl*(*A*) = *Cl*(*G*). Also *B* = *B*∩*H* ⊂ *A*∩*H* ⊂ *H* which in turn implies that *G* ⊂ *B* ⊂ *A* ∩ *H* ⊂ *H* ⊂ *Cl*(*B*) ⊂ *Cl*(*A*) = *Cl*(*G*). *B* ⊂ *A* ∩ *H* ⊂ *H* ⊂ *Cl*(*B*) implies that $Cl(B) = Cl(A ∩ H)$. Thus we get *A*∩*H* ⊂ *H* ⊂ *Cl*(*A*∩*H*). So it follows that *A* ∩*H* is pre-open on *X*. Also we have *G* ⊂ *A* ∩ *H* ⊂ *Cl*(*B*) ⊂ *Cl*(*A*) = *Cl*(*G*) which implies that *A*∩*H* is semi-open. \Box

Theorem 2.12. *Let A be semi-open on X and B be a subset of X such that* $B \subset A$ *and* $Int(A) = Int(B)$ *. Then B is semi-open on X.*

Proof. For *A*, we obtain an open set *G* such that $G \subset A \subset \mathbb{R}$ $Cl(G)$ which implies that $Cl(A) = Cl(G)$. Now $G \subset Int(A) =$ *Int*(*B*) ⊂ *B* ⊂ *Cl*(*B*) ⊂ *Cl*(*A*) = *Cl*(*G*). So we have *G* ⊂ *B* ⊂ $Cl(G)$, i.e. *B* is semi-open. П

Dualizing results from Theorem [2.9](#page-2-2) to Theorem [2.12,](#page-2-3) we have the results from Theorem [2.13](#page-2-4) to Theorem [2.16.](#page-2-5) The proofs of these results are omitted as the proofs are similar to the proofs of corresponding results already established.

Theorem 2.13. *If A is semi-closed and B is pre-closed on X with* $Int(A) = Int(B)$ *, then there exist two closed sets E and F* such that $Int(E) = Int(F) = Int(A) = Int(B)$.

Theorem 2.14. *Let A and B be semi-closed and pre-closed respectively on X such that* $B \subset A$ *and* $Int(A) = Int(B)$ *. Then A is also pre-closed and B is also semi-closed on X.*

Theorem 2.15. *Let B be pre-closed and E be closed on X such that* $Int(B) ⊂ E ⊂ B$. If *A is semi-closed on X such that A* ⊂ *B* and $Cl(A) = Cl(B)$, then $A ∪ E$ *is both semi-closed and pre-closed on X.*

Theorem 2.16. *Let A be semi-closed on X and B be a subset* $of X$ *such that* $A \subset B$ *and* $Cl(A) = Cl(B)$ *. Then B is semiclosed on X.*

References

- ^[1] D. Andrijević, Semi-preopen sets, *Mat. Vesnik*, 38(1986), 24–32.
- [2] M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mapping, *Bull. Fac. Sci. Assiut Univ,* 12(1983), 77–90.
- [3] H. H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math,* 8(1964), 351–360.
- [4] S. G. Crossley and S. K. Hildebrandt, Semi-closure, *Texas J. Sci,* 22(1971), 99–112.
- [5] K. P. Hart, J. Nagata and J. E. Vaughan, *Encyclopedia of general topology,* Elsevier Science Ltd, Amsterdam, 2004.
- [6] Y. B. Jun, S. W. Jeong, H. J. Lee and J. W. Lee, Applications of pre-open sets, *Appl. Gen. Topol,* 9(2008), 213–228.
- [7] L. D. R. Kočinak, A. Sabah, M. D. Khan and D. Seba, Semi-Hurewicz spaces, *Hacet. J. Math. Stat,* 46(1)(2017), 53–66.
- [8] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly,* 70(1963), 36–41.
- ^[9] O. Njåstad, On some classes of nearly open sets, Pacific *J. Math,* 15(1965), 961–970.
- [10] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phy. Soc. Egypt*, 53(1982), 47–53.
- [11] A. Mukharjee, A. Roy Choudhury and M. K. Bose, On some weaker and stronger versions of compactness, *An. Univ. Oradea Fasc. Mat,* 25(2)(2018), 121–125.
- [12] A. Sabah, M. D. Khan and L. D. R. Kočinak, Covering Properties defined by semi-open sets, *J. Nonlinear Sci. Appl,* 9(2016), 4388–4398.

 $* * * * * * * * * * *$ ISSN(P):2319−3786 [Malaya Journal of Matematik](http://www.malayajournal.org) ISSN(O):2321−5666 $***$ *******

