

https://doi.org/10.26637/MJM0604/0023

On maximal and minimal μ -clopen sets in GT spaces

Rebati Mohan Roy1*

Abstract

In this paper, we introduce the notions of maximal and minimal μ -clopen sets in a generalized topological space and their some properties. We obtain that maximal and minimal μ -clopen sets are independent of maximal and minimal μ -open and μ -closed sets. We observed that the existence of maximal μ -clopen set in a generalized topological space not only ensure the μ -disconnectedness of a generalized topological space but also the existence of minimal μ -clopen set in that space.

Keywords

 μ -open set, μ -closed set, maximal μ -open set, minimal μ -closed set, μ -clopen, maximal μ -clopen set, minimal μ -clopen set.

AMS Subject Classification 54A05, 54D05.

¹ Department of Mathematics, Mathabhanga College, Cooch Behar-736146, West Bengal, India.

*Corresponding author: ¹roy_rebati@rediffmail.com

Article History: Received 22 September 2018; Accepted 14 December 2018

©2018 MJM.

Contents

1	Introduction854
2	Maximal, minimal μ -open set(resp. μ -closed set) and μ -clopen set
3	Maximal and minimal μ -clopen sets
	References

1. Introduction

There are several generalizations of open sets of topological spaces. Two well-discussed generalizations of open sets of topological spaces are semi-open [4] and pre-open sets [5]). It is observed that the semi-open, pre-open sets of a topological space possess properties resembling those of open sets of the topological space with some exception e.g. the family of semi-open (or pre-open) sets are not closed even under finite intersections. Starting from this observation, Császár [1] finally introduced and studied the concepts of generalized topology.

Let *X* be a nonempty set and μ be a subcollection of the power set of *X*. Then μ is a generalized topology on *X* if $\emptyset \in \mu$ and μ is closed under unions. We write, GT (resp. GT space) to denote a generalized topology (resp. generalized topological space) for brevity. The members of μ are called the μ -open sets in *X* and the complement of a μ -open set is called a μ -closed set in *X*. The generalized interior of a subset *A* of *X* is the union of all μ -open sets contained in *A* and is denoted by $i_{\mu}(A)$. The generalized closure of a subset *A* of *X* is the intersection of all μ -closed sets containing *A* and is denoted by $c_{\mu}(A)$. It is easy to see that $i_{\mu}(A) = X - c_{\mu}(X - A)$. By a proper μ -open set (resp. μ -closed set) of *X*, we mean a μ -open set *G* (resp. μ -closed set *E*) such that $G \neq \emptyset$ and $G \neq X$ if *X* is μ -open (resp. $E \neq X$ and $E \neq \emptyset$ if \emptyset is μ -closed). We also write \mathbb{R} to denote the set of real numbers.

We observed that a subset has a double natures in X such as a subset which is both maximal and minimal μ -open, then either X is μ -disconnected or number of subset in X is unique to certain condition, e. g. theorem 2.4 [8]. Due to theorem 3.10 of this paper we obtain that the existence of a set which both maximal and minimal μ -clopen not only assures the μ disconnectedness of space but also ensure the existence of another set which is also both maximal μ -clopen and minimal μ -clopen and these two are only μ -clopen sets in that space. This notion reveals the difference among of maximal and minimal μ -open sets which the maximal and minimal μ -clopen and also beauty of maximal and minimal μ -clopen sets.

2. Maximal, minimal μ -open set(resp. μ -closed set) and μ -clopen set

We recall the following known definitions and results to make the article self sufficient as far as practical.

Definition 2.1 (Roy and Sen [6]). A proper μ -open set A of a GT space X is called a maximal μ -open set if there is no

 μ -open set $U(\neq A, X)$ such that $A \subset U \subset X$.

Definition 2.2 (Roy and Sen [6]). A proper μ -closed set E of a GT space X is called a minimal μ -closed set if there is no μ -closed set $F (\neq \emptyset, E)$ such that $\emptyset \subset F \subset E$.

Definition 2.3 (S. Al Ghour et al. [7]). A proper μ -open set U of X is said to be a minimal μ -open set if the only proper μ -open set which is contained in U is U.

Definition 2.4 (Mukharjee [8]). A proper μ -closed set E in a GT space X is called a maximal μ -closed set if any μ -closed set which contains E is X or E.

Definition 2.5 (Mukharjee [8]). A proper subset of a GT space X is said to be μ -clopen if it is both μ -open and μ -closed.

Definition 2.6 (Császár [3]). A GT space X is μ -connected if X can not be expressed as $G \cup H = X$ where G, H are disjoined μ -open sets. As usual, if X is not μ -connected then X is called μ -disconnected. So X is μ -disconnected if there exists two disjoint μ -open sets G, H such that $G \cup H = X$.

Theorem 2.7 (Roy and Sen [6]). If A is a maximal μ -open set and B is a μ -open set in a GT space X, then either $A \cup B = X$ or $B \subset A$. If B is also a maximal μ -open set distinct from A, then $A \cup B = X$.

Theorem 2.8 (Roy and Sen [6]). *If* F *is a minimal* μ *-closed set and* E *is a* μ *-closed set in a GT space* X*, then either* $E \cap F = \emptyset$ or $F \subset E$. *If* E *is also a minimal* μ *-closed set distinct from* F*, then* $F \cap E = \emptyset$.

Theorem 2.9 (Mukharjee [8]). If U is a minimal μ -open set and W is a μ -open set such that $U \cap W$ is a μ -open set, then either $U \cap W = \emptyset$ or $U \subset W$. If W is also a minimal μ -open set distinct from U, then $U \cap W = \emptyset$.

Theorem 2.10 (Mukharjee [8]). If G is a maximal μ -open set and H is a minimal μ -open set in a GT space X such that $G \cap H$ is a μ -open set then either $H \subset G$ or the space is μ -disconnected.

Theorem 2.11 (Mukharjee [8]). *If* E *is a maximal* μ *-closed set and* F *is any* μ *-closed set in a GT space* X *such that* $E \cup F$ *is a* μ *-closed set, then either* $E \cup F = X$ *or* $F \subset E$.

Theorem 2.12 (Roy and Sen [6]). A proper μ -open set A in a GT space X is maximal μ -open iff X - A is minimal μ -closed in X.

Similarly, we see that a proper μ -closed set *A* in a GT space *X* is a maximal μ -closed iff *X* – *A* is minimal μ -open in *X*.

Theorem 2.13 (Mukharjee [8]). If a GT space X has a set G which is both maximal and minimal μ -open and $G \cap H$ is a μ -open for a proper μ -open set H, then either G=H or the GT space μ -disconnected.

3. Maximal and minimal μ -clopen sets

We now introduce some new notions and obtain their following properties .

Definition 3.1. A proper μ -clopen set U of a GT space X is said to be minimal μ -clopen if V is a proper μ -clopen set such that $V \subset U$, then V = U or $V = \emptyset$.

Example 3.2. Let X = (-1,1) and $\mu = \{\emptyset, X, \{0\}, (-1,0), (-1,0], (0,1), [0,1), X - \{0\}\}.$

In the GT space (X, μ) , [0, 1) is a minimal μ -clopen set but it is neither minimal μ -open nor minimal μ -closed.

We observed that a minimal μ -open or a minimal μ -closed set may not be minimal μ -clopen. So the notion of minimal μ -clopen set is independent to the notion of minimal μ -open as well as minimal μ -closed sets. It is clearly to see that if a set *A* is both minimal μ -open and minimal μ -closed, then *A* is minimal μ -clopen. In fact, a μ -clopen set is minimal μ -closed.

Definition 3.3. A proper μ -clopen set U of a GT space X is said to be maximal μ -clopen if V is a proper μ -clopen set such that $V \subset U$, then V = U or B = X.

In the GT space (X, μ) , Example 3.2, (-1, 0) is a maximal μ -clopen set but it is neither maximal μ -open nor maximal μ -closed.

We observed that a maximal μ -open or a maximal μ -closed set may not be maximal μ -clopen. So, the notion of maximal μ -clopen set is independent to the notion of maximal μ -open as well as maximal μ -closed sets. It is clearly to see that if a set *A* is both maximal μ -open and maximal μ -closed, then *A* is maximal μ -clopen. In fact, a μ -clopen set is maximal μ -clopen if it is either maximal μ -open or maximal μ -closed.

In [8] we analyzed that if a GT space has only one proper μ -open set, then it is both maximal and minimal μ -open. But we note that it is neither maximal μ -clopen nor minimal μ -clopen. If a GT space X has only two proper μ -open sets such that one is not contain in other, then both are maximal μ -clopen and minimal μ -clopen. Also maximal μ -clopen or minimal μ -clopen sets can exists in a μ -disconnected GT space.

The result of following theorem are almost immediate and hence the proofs of them are omitted.

Theorem 3.4. In a GT space X, if A is a minimal μ -clopen set and B is a μ -clopen set in X, then $A \cap B = \emptyset$ or $A \subset B$.

Corollary 3.5. In a GT space X, if A and B are distinct minimal μ -clopen set in X, then $A \cap B = \emptyset$.

Theorem 3.6. In a GT space X, if A is a maximal μ -clopen set and B is a μ -clopen set in X, then $A \cap B = X$ or $B \subset A$.

Corollary 3.7. In a GT space X, if A and B are distinct maximal μ -clopen set in X, then $A \cup B = X$.

Lemma 3.8. In a GT space X, If A is minimal μ -clopen set, then X - A is maximal μ -clopen in X and conversely.

Proof. Let ther exists a μ -clopen set *B* such that $X - B \subset A$. Then we obtain $X - A \subset B$. Since *A* is minimal μ -clopen, we get X - B = A or $X - B = \emptyset$. Which implies that X - A = B or B = X. So X - A is maximal μ -clopen set. The converse is similarly follows.

Theorem 3.9. In a GT space X, if A is a minimal μ -clopen set and B is a maximal μ -clopen set in X then either $A \subset B$ or A = X - B.

Proof. From the Theorem 2.10, *A* and *B* are μ -clopen, then $A \cap B = \emptyset$ and $A \cup B = X$ implies A = X - B. Hence the theorem is proof.

Theorem 3.10. In a GT space X contain a set A which is both maximal and minimal μ -clopen, then (i) A and X - Aare the only sets in the space are both maximal and minimal μ -clopen and (ii) A and X - A are the only proper μ -clopen sets in the space.

Proof. (i) Since *A* is both maximal and minimal μ -clopen by Lemma 3.8, X - A is also both maximal and minimal μ -clopen. If a another set $B \neq A$ in *X* which is both maximal and minimal μ -clopen, then by Lemma 3.8, X - A is also both maximal and minimal μ -clopen. Since *A*, *B* are both maximal and minimal μ -clopen by Corollary 3.5 and corollary 3.7. We have $A \cap B = \emptyset$ and $A \cup B = X$, which implies that B = X - A i.e., if $A \neq B B$ and X - B are identical to X - A and *A* respectively. Considering all probable combination of *A*, *B*, *X* - *A* and *X* - *B*, we get same result.

(ii) Let *E* is a proper μ -clopen set in *X*. By maximal and minimal μ -clopenness of *A* we get $A \cup E = X$ or $E \subset A$ and $A \cap E = \emptyset$ or $A \subset E$. $A \cup E = X$ together with $A \cap E = \emptyset$ imply that E = X - A. $A \cup E = X$ and $A \subset E$ imply that E = X. $E \subset A$ and $A \cap E = \emptyset$ imply that $E = \emptyset$.

Theorem 3.11. In a GT space X, maximal μ -clopen and minimal μ -clopen sets appear in pairs.

Proof. By the theorem 3.10 if a GT space X has a set A which is both maximal and minimal μ -clopen, then X - A is also both maximal and minimal μ -clopen, and the space cannot have more than a pair of such sets. Due to lemma 3.8 if A is a maximal (resp. minimal) μ -clopen set in X then X - A is minimal (resp. maximal) μ -clopen in X.

Theorem 3.12. In a GT space X if A is a maximal μ -open set and B is a minimal μ -open set with A is not a subset of B, then A is maximal μ -clopen and B is minimal μ -clopen.

Proof. By the theorem 3.9, we have A = X - B, So A, B both are μ -clopen. Since A (resp. B) is both μ -clopen and maximal (minimal) μ -open, it is easy to see that A (resp. B) is maximal (resp. minimal) μ -clopen.

Theorem 3.13. In a GT space X, if E is a maximal μ -clopen set, then $E \cup U$ is not a proper μ -clopen set distinct from E for any proper μ -open or μ -closed U in X.

Proof. If possible, let $E \cup U$ be a proper μ -clopen set. Since $E \subset E \cup U$ and E is a maximal μ -clopen set we have $E \cup U = X$ or $E = E \cup U$. Now $E = E \cup U$ implies that $U \subset E$.

Theorem 3.14. In a GT space X, if E is a minimal μ -clopen set, then $E \cap U$ is not a proper μ -clopen set distinct from E for any proper μ -open or μ -closed U in X.

Proof. Dual role of maximal and minimal μ -clopen set so, similar proof is omitted.

Theorem 3.13 and Theorem 3.14 gives some ideas about μ -clopen set in GT space consists of a maximal and minimal μ -clopen set.

Theorem 3.15. In a GT space X, if \mathscr{A} is a collection of distinct maximal μ -clopen sets and $A \in \mathscr{A}$, then $\bigcap_{B \in \mathscr{A} - \{A\}} B \neq \emptyset$. If \mathscr{A} is a finite collection, then $\bigcap_{B \in \mathscr{A} - \{A\}} B$ is minimal μ -clopen iff $X - A = \bigcap_{B \in \mathscr{A} - \{A\}} B$.

Proof. While *B* ∈ *A* − *A* is a maximal *µ*-clopen set, *X* − *B* is a minimal *µ*-clopen set. By Theorem 3.9 we ge *X* − *B* ⊂ *A*. So, we have *X* − ∩_{*B*∈*A*−{*A*}} *B* ⊂ *A* which implies that *A* = *X* if ∩_{*B*∈*A*−{*A*}} *B* = Ø. Since *A* being a maximal *µ*-clopen set, then *A* = *X* is not possible. So we have ∩_{*B*∈*A*−{*A*}} *B* ≠ Ø. Obviously, ∩_{*B*∈*A*−{*A*}} *B* is a minimal *µ*-clopen set if *X* − *A* = ∩_{*B*∈*A*−{*A*}} *B*. For converse, let ∩_{*B*∈*A*−{*A*}} *B* is a minimal *µ*clopen set. If *A* is a finite collection, then ∩_{*B*∈*A*−{*A*}} *B* is a *µ*-clopen set. Since *X* − *A* ⊂ ∩_{*B*∈*A*−{*A*}} *B*, we have *X* − *A* ⊂ ∩_{*B*∈*A*−{*A*}} *B*. *A* being a maximal *µ*-clopen, *X* − *A* is minimal *µ*-clopen. If ∩_{*B*∈*A*−{*A*}} is minimal *µ*-clopen set distinct from *X* − *A*, then by Corrolary 3.5, we have (∩_{*B*∈*A*−{*A*}} *B*) ∩ (*X* − *A*) = Ø which implies that ∩_{*B*∈*A*−{*A*}} *B* ⊂ *A*. Thus we obtain *X* − *A* ⊂ ∩_{*B*∈*A*−{*A*}} *B* ⊂ *A*, this ia an absurd result. So we have *X* − *A* = ∩_{*B*∈*A*−{*A*}} *B*.

Theorem 3.16. In a GT space X, if \mathscr{A} is a collection of distinct minimal μ -clopen sets and $A \in \mathscr{A}$, then $\bigcup_{B \in \mathscr{A} - \{A\}} B \neq X$. If \mathscr{A} is a finite collection, then $\bigcup_{B \in \mathscr{A} - \{A\}} B$ is maximal μ -clopen iff $X - A = \bigcup_{B \in \mathscr{A} - \{A\}} B$.

Proof. Similar proof of the above Theorem. \Box

References

- Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar, 96(4)(2002), 351–357.
- [2] Á. Császár, Extremally disconnected generalized topologies, Ann. Univ. Sci. Budapest. Eötvös Sect. Math, 47(2004), 91–96.
- ^[3] Á. Császár, γ-connected sets, Acta Math.Hungar, 101(4)(2003), 273–279.
- [4] N. Levine, Semi-open sets and semi-continuity in topological spaces, *Amer. Math. Monthly*, 70(1963), 36–41.

- [5] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mapping, *Proc. Math. Phy. Soc. Egypt*, 53(1982), 47–53.
- [6] B. Roy and R. Sen, On maximal μ-open and μ-closed sets via Generalized topology, Acta Math. Hungar, 136(4)(2012), 233–239.
- [7] S. Al Ghour, A. Al-Omari, T. Noiri, On homogeneity and homogeneity components in generalized topological spaces, *Filomat*, 27(6)(2013), 1097–1105.
- ^[8] A. Mukharjee, On maximality and minimality of μ open and μ -closed sets, An. Univ. Oradea Fasc. Mat, 23(2)(2016), 15–19.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 *******

