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Abstract
The purpose of this paper is to study the structural characterizations of γ-generalized directable fuzzy automata.
We introduce γ-necks, γ-local necks, γ-directable, γ-trap-directable, γ-monogenically directable, γ- monogenically
strongly directable,γ-monogenically trap directable, γ- uniformly monogenically directable, γ-uniformly mono-
genically strongly directable, γ-uniformly monogenically trap-directable fuzzy automata. We prove γ-generalized
directable fuzzy automaton is an extension of a γ-uniformly monogenically strongly directable fuzzy automaton by
a γ-uniformly monogenically trap-directable fuzzy automaton. We obtain equivalent conditions of γ-generalized
directable fuzzy automaton.
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1. Introduction
Automata theory is the study of abstract computing

devices or machines. Before there were computers, in 1930’s
Alen Turing presented an abstract machine that has all the ca-
pabilities of today’s computers. In 1940’s and 1950’s simpler
kinds of machines, which we today call finite automata, were
studied by a number of researchers. These automata originally
proposed to model brain function, turned out to be extremely
useful for a variety of other purposes. Also in the late 1950’s,
the linguist Naum Chomsky began the study of formal gram-
mars, while not strictly machines, these grammars have close
relationships to abstract automata and serve today on the basis
of some important software components including parts of

compilers. In 1969, S. Cook extend Turing’s study of what
could and what could not be computed. Finite automata are
useful models for many kind of software. The following are
some of them. Software for designing digital circuits, Pattern
matching, File searching program and so on. A finite automa-
ton consists of finite set of states and set of transitions from
state to state that occur on input symbols chosen from a finite
set of elements called alphabet. Any system that is at each
moment in one of finite number of discrete states and moves
among the states in response to individual input signals can
be modeled by a finite automaton. Automata are basically
language acceptors. The family of languages accepted by any
finite automata is called the family of regular languages.

Fuzzy concept is introduced whenever uncertainty
occurs. Fuzzy sets are sets whose elements have degrees of
membership. Fuzzy sets were introduced by Lotfi A. Zadeh
in 1965 [26] as an extension of the classical notion of set. In
classical set theory, the membership of elements in a set is
assessed in binary terms according to a bivalent condition -
an element either belongs or does not belong to the set. By
contrast, fuzzy set theory permits the gradual assessment of
the membership of elements in a set; this is described with the
aid of a membership function valued in the real unit interval
[0,1]. Fuzzy sets generalize classical sets, since the indicator
functions of classical sets are special cases of the membership
functions of fuzzy sets, if the latter only take values 0 or 1. In
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fuzzy set theory, classical bivalent sets are usually called crisp
sets [5]. The fuzzy set theory can be used in a wide range of
domains in which information is incomplete or imprecise.

Automata are the prime example of general com-
putational systems over discrete spaces. The incorporation of
fuzzy logic into automata theory resulted in fuzzy automata
which can handle continuous spaces. Moreover, they are able
to model uncertainty which is inherent in many applications.
L. A. Zadeh (1965) [26] introduced the notion of fuzzy subset
of a set as a tool for representing uncertainty. His ideas have
been applied to wide range of scientific areas. W. Z. Wee
(1967) [25] applied the ideas of Zadeh in automata theory and
language theory. E. S. Santos (1968) [22] proposed fuzzy au-
tomata as a model of pattern recognition and control systems.
Many other researchers like W. Wechler (1978) have worked
in these areas. K. S. Fu and R. W. McLaren (1965) worked in
applications of stochastic automata as a model of learning sys-
tems [7]. The syntactic approach to pattern recognition was
examined by K. S. Fu (1982) using formal deterministic and
stochastic languages [8]. Friedrich Steimann and Klaus-Peter
Adlassnig (1994) dealt with applications of fuzzy automata
in the field of Clinical Monitoring [23]. J. N. Mordeson and
D. S. Malik gave a detailed account of fuzzy automata and
languages in their book (2002) [17].

Directable automata, known also as synchroniz-
able, cofinal and reset automata, are a significant type of
automata with very interesting algebraic properties and im-
portant applications in various branches of Computer science
[synchronization in binary messages, verification software,
etc.]. They have been a subject of interest of many eminent
authors since 1964, when they were introduced by J. Cerny
in [4], although some of their special types were investigated
even several years earlier. Various other specializations and
generalizations of directable automata have appeared recently.
In the papers by Petkovic, Ciric and Bogdanovic, and Bog-
danovic, Ciric, Imreh, Petkovic and Steinby, and in the Ph.D
thesis by Petkovic, trap-directable, trapped, generalized di-
rectable, locally directable, uniformly locally directable and
other related kinds of automata have been introduced and stud-
ied. Certain generalizations of directability and definiteness
have also appeared in theories of nondeterministic automata
and tree automata and languages (cf. [6], [9, 10], [11], and
[18] for example). In some origins various other names for
directable automata and directing words are used. For ex-
ample, J. E. Pin used in [19, 20] the names ”synchronizable
automata” and ”synchronizing words”, M. Ito and J. Duske in
[12] used the name ”‘cofinal automata”, whereas the names
”reset automata” and ”‘reset words” were used by I. Rystsov.
In [16] definite automata were studied under the name ”local
automata”. Rosa Montalbano investigated the problem of a
completing a finite automata preserving its properties in the
case of deterministic local automata.

T. Petkovic et al. [1] discussed directable au-
tomata, monogenically directable, generalized directable us-
ing necks. T. Petkovic et al.[3] introduce and studied trap-

directable, trapped automata and other related automata. Also,
we refer the survey paper Directable automata and their gen-
eralizations were investigated by S. Bogdanovic et al [2]. The
notion of the generalized directable automaton was intro-
duced by T. Petkovic et al.[3]. Consequently T. Petkovic
et al.[21] were studied structural characterizations of gen-
eralized directable automata. Subsequently, the necks and
local necks, generalized directable of fuzzy automata were
studied and discussed in [13–15]. In this paper we introduce
γ-necks, γ-local necks, γ-monogenically directable, γ- mono-
genically strongly directable, γ-monogenically trap directable,
γ- uniformly monogenically directable, γ-uniformly mono-
genically strongly directable, γ-uniformly monogenically trap-
directable,γ-generalized directable fuzzy automata and study
their structural characterizations. We prove γ-generalized di-
rectable fuzzy automaton is an extension of a γ-uniformly
monogenically strongly directable fuzzy automaton by a γ-
uniformly monogenically trap-directable fuzzy automaton.
We obtain equivalent conditions for a γ-generalized directable
fuzzy automaton.

2. Preliminaries

Definition 2.1. [17] A fuzzy automaton S=(D, I, ψ),
where,

D - set of states {d0, d1, d2, ...., dn},
I - alphabets (or) input symbols,
ψ - function from D× I×D→ [0,1],

The set of all words of I is denoted by I∗. The empty word
is denoted by λ , and the length of each t ∈ I∗ is denoted by
|t|.

Definition 2.2. [17] Let S = (D, I, ψ) be a fuzzy automaton.
The extended transition function is defined by
ψ∗ : D× I∗×D→ [0,1] and is given by

ψ
∗(di, λ , d j) =

{
1 if di = d j

0 if di 6= d j

ψ∗(di, tt ′,d j)=∨qr∈D{ψ∗(di, t,dr)∧ψ(dr, t ′,d j)}, t ∈ I∗, t ′ ∈
I.

Definition 2.3. [13] Let S = (D, I, ψ) be a fuzzy
automaton. Let D′ ⊆ D. Let ψ ′ is the restriction of ψ and let
S′ = (D′, I, ψ ′). The fuzzy automaton S′ is called a subau-
tomaton of S if

(i) ψ ′ : D′× I×D′→ [0,1] and
(ii) For any di ∈ D′ and ψ ′(di, t,d j) > 0 for some

t ∈ I∗, then d j ∈ D′.

Definition 2.4. [17] Let S = (D, I, ψ) be a fuzzy
automaton. S is said to be strongly connected if for every
di, d j ∈ D, there exists t ∈ I∗ such that ψ∗(di, t, d j) > 0.
Equivalently, S is strongly connected if it has no proper sub-
automaton.
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Definition 2.5. [14] A relation R on a set D is said
to be equivalence relation if it is reflexive, symmetric and
transitive.

Definition 2.6. [14] Let S = (D, I, ψ) be a fuzzy au-
tomaton. An equivalence relation R on D in S is called congru-
ence relation if ∀di,d j ∈ D and t ∈ I,diRd j implies that, then
there exists dl ,dk ∈D such that ψ(di,a,dl)> 0,ψ(d j,a,dk)>
0 and dlRdk.

Definition 2.7. [13] Let S = (D, I, ψ) be a fuzzy
automaton. Let S′ = (D′, I, ψ ′) be a subautomaton of S. A
relation RS′ on S is defined as follows. For any di,d j ∈ D, we
say that (di,d j)∈RS′ if and only if either di = d j or di,d j ∈D′.

This relation is clearly an equivalence relation
and it is also congruence. This relation is called Rees congru-
ence relation on D in S determined by S′. A fuzzy automaton
S/S′ is called Rees factor fuzzy automaton determined by the
relation RS′ and it is defined as S/S′ = ( D, I, ψS/S′), where
D = { [di] / di ∈ D} and ψS/S′ : D× I×D→ [0,1].

Definition 2.8. [13] Let S = (D, I, ψ) be a fuzzy
automaton. A state d j ∈ D is called a neck of S if there exists
t ∈ I∗ such that ψ∗(di, t, d j)> 0 for every di ∈ D.
In that case d j is also called t-neck of S and the word t is
called a directing word of S.
If S has a directing word, then we say that S is a directable
fuzzy automaton.

Remark 2.9. In this paper we consider only deter-
minstic fuzzy automaton.

3. γ-Necks, γ-Local Necks, γ-Generalized
Directable of Fuzzy Automata

Definition 3.1. Let S = (D, I, ψ) be a fuzzy automa-
ton and let di ∈ D. The γ-subautomaton of S generated by di
is denoted by 〈di〉. It is given by
〈di〉= { d j | ψ∗(di, t, d j)≥ γ > 0, t ∈ I∗, γ ∈ [0,1]}. If it ex-
ists, then it is called the γ- least subautomaton of S containing
di.

Definition 3.2. Let S = (D, I, ψ) be a fuzzy automaton. For
any non-empty D′ ⊆D, the γ-subautomaton of S generated by
D′ is given by 〈D′〉 and is given by
〈D′〉 = { d j | ψ∗(di, t, d j) ≥ γ > 0, di ∈ D′, t ∈ I∗}. It is
called the γ-least subautomaton of S containing D′. The γ-
least subautomaton of a fuzzy automaton S if it exists is called
the γ-kernel of S.

Definition 3.3. Let S = (D, I, ψ) be a fuzzy automaton. A
state d j ∈ D is called a γ-neck of S if there exists t ∈ I∗ such
that ψ∗(di, t, d j)≥ γ, γ ∈ [0,1] for every di ∈ D.
In that case d j is also called t-neck of S and the word t is
called a γ-directing word of S.
If S has a γ- directing word, then we say that S is a γ-directable
fuzzy automaton.

Remark 3.4. 1) The set of all γ-necks of a fuzzy au-
tomaton S is denoted by γN(S).

2) The set of all γ-directing words of a fuzzy automa-
ton S is denoted by γDW (S).

3) A fuzzy automaton S is called γ-strongly directable
if D = γN(S).

Definition 3.5. Let S = (D, I, ψ) be a fuzzy automa-
ton. A state d j ∈D is called a γ-trap of S if ψ∗(d j, t, d j)≥ γ,
∀t ∈ I∗.

If S has exactly one γ-trap, then S is called one γ-trap
fuzzy automaton. The set of all γ-traps of a fuzzy automaton S
is denoted by γT R(S).

A fuzzy automaton S is called a γ-trapped fuzzy au-
tomaton, for each di ∈D,if there exists a word t ∈ I∗ such that
ψ∗(di, t, d j)≥ γ, d j ∈ γT R(S).

Definition 3.6. Let S = (D, I, ψ) be a fuzzy automaton. If S
has a single γ-neck, then S is called a γ-trap-directable fuzzy
automaton.

Definition 3.7. Let S = (D, I, ψ) be a fuzzy automa-
ton. A state di ∈ D is called γ-local neck of S if it is γ-neck of
some γ- directable subautomaton of S. The set of all γ-local
necks of S is denoted by γLN(S).

Definition 3.8. Let S = (D, I, ψ) be a fuzzy automa-
ton. S is called γ-monogenically directable if every monogenic
subautomaton of S is γ-directable.

Definition 3.9. Let S = (D, I, ψ) be a fuzzy automaton. S is
called γ-monogenically strongly directable if every monogenic
subautomaton of S is γ-strongly directable.

Definition 3.10. Let S = (D, I, ψ) be a fuzzy au-
tomaton. S is called γ-monogenically trap-directable if every
monogenic subautomaton of S has a single γ-neck.

Definition 3.11. Let S = (D, I, ψ) be a fuzzy automaton. If
t ∈ I∗ is γ-common directing word of S if t is a γ-directing
word of every monogenic subautomaton of S. The set all γ-
common directing words of S will be denoted by γCDW (S).
In other words, γCDW (S) = ∩di ∈ DγDW (〈di〉).

Definition 3.12. Let S = (D, I, ψ) be a fuzzy au-
tomaton. S is called γ- uniformly monogenically directable
fuzzy automaton if every monogenic subautomaton of S is
γ-directable and have atleast one γ-common directing word.

Definition 3.13. Let S = (D, I, ψ) be a fuzzy au-
tomaton. S is called γ- uniformly monogenically strongly
directable fuzzy automaton if every monogenic subautomaton
of S is strongly γ-directable and have atleast one γ-common
directing word.

Definition 3.14. Let S= (D, I, ψ) be a fuzzy automa-
ton. S is called γ- uniformly monogenically trap directable
fuzzy automaton if every monogenic subautomaton of S has a
single γ-neck and have atleast one γ-common directing word.
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Definition 3.15. Let S = (D, I, ψ) be a fuzzy automaton. S
is called a γ-generalized directable fuzzy automaton if for
every t ′ ∈ I∗ and di ∈D, there exists a word t ∈ I∗ and d j ∈D
such that ψ(di, tt ′t,d j) ≥ γ > 0⇔ ψ(di, t,d j) ≥ γ > 0 and
the word t is called γ-generalized directing word of a fuzzy
automaton S.

4. Properties of γ-Necks, γ-Local Necks,
and γ-Generalized Directable Fuzzy

Automata
Theorem 4.1. Let S = (D, I, ψ) be a fuzzy automaton. If
γN(S) 6= φ , then γN(S) is a γ-subautomaton of S.

Proof. Let S = (D, I, ψ) be a fuzzy automaton. Let
d j ∈ γN(S) and t ′ ∈ I∗. Assume that d j is a t-γ-neck of S, for
some t ∈ I∗. Then for each di ∈ D we have
ψ∗(di, tt ′, dk) = ∧d j ∈ D{{ψ∗(di, t, d j),ψ

∗(d j, t ′, dk)}} ≥
γ, it means that dk is a tt ′-γ-neck of S and hence, dk ∈ γN(S).
Therefore, γN(S) is a γ-subautomaton of S.

Theorem 4.2. A fuzzy automaton S = (D, I, ψ) is γ-strongly
directable fuzzy automaton if and only if it is strongly con-
nected and γ-directable.

Proof. Let S = (D, I, ψ) be a γ-strongly directable
fuzzy automaton. It is clearly γ-directable. Now we will prove
it is strongly connected. It is enough to show that for any
di,d j ∈ D, there exists t ∈ I∗ such that ψ∗(di, t,d j) ≥ γ > 0.
Since d j ∈ γN(S) [γN(S) = D], ψ∗(dk, t,d j)≥ γ > 0, for ev-
ery dk ∈ S.
Therefore, ψ∗(di, t,d j) ≥ γ > 0. Thus, S is strongly con-
nected.
Conversely, let S be strongly connected and γ-directable. Then
γN(S) 6= φ and by Theorem 4.1, γN(S) is γ-subautomaton of
S. Since S is strongly connected, there is no proper subau-
tomaton. Hence, D = γN(S). Thus, S is strongly γ-directable
fuzzy automaton.

Theorem 4.3. A fuzzy automaton S=(D, I, ψ) is γ-directable
if and only if it is an extension of a γ-strongly directable fuzzy
automaton S′ by a γ-trap-directable fuzzy automaton S′′.
(i) γDW (S′′).γDW (S′)⊆ γDW (S)⊆ γDW (S′′)∩ γDW (S′);
(ii) γN(S) = S′.

Proof. Let S be γ-directable fuzzy automaton. Then
γN(S) is non-empty and by Theorem 4.1, γN(S) is a
γ-subautomaton of S.
The Rees factor fuzzy automaton S/γN(S) is also γ-directable.
Further, by Rees factor, S/γN(S) is a γ- trap-directable fuzzy
automaton and hence, S is an extension of a γ-strongly di-
rectable fuzzy automaton γN(S) by a γ- trap-directable fuzzy
automaton S/γN(S).
Conversely, let S be an extension of γ-strongly directable
fuzzy automaton S′ by a γ-trap-directable fuzzy automaton S′′.
Let t ∈ αDW (S′′) and t ′ ∈ γDW (S′). Then for all di, d j ∈ D
we have that ψ∗(di, t, dk) ≥ γ, ψ∗(d j, t, dk) ≥ γ, where

dk ∈ S′. Hence,
ψ∗(di, tt ′, dm) = ∧{{ψ∗(di, t, dk),ψ

∗(dk, t ′, dm)}} ≥ γ

Thus, tt ′ ∈ γDW (S) and hence, S is a γ-directable fuzzy au-
tomaton.
If t ∈ γDW (S′′) and t ′ ∈ γDW (S′), then tt ′ ∈ γDW (S).
Therefore, γDW (S′′).γDW (S′)⊆ γDW (S).
Let t ∈ γDW (S). Since S is an extension of a γ-strongly di-
rectable fuzzy automaton S′ by a γ-trap-directable fuzzy au-
tomaton S′′.
Therefore, t is a γ-directing word of S′ and S′′.
Hence, γDW (S)⊆ γDW (S′)∩ γDW (S′′).
Thus, (i) holds and which implies that γN(S) is the γ- kernel
of S, so γN(S)⊆ S′.
Conversely, assume that d j ∈ S′. Since S′ is γ-strongly di-
rectable, we conclude that there exists t ′ ∈ γDW (S′) such that
ψ∗(di, t ′, d j)≥ γ, for every di ∈ S′. Hence, for every di ∈ D
and t ∈ γDW (S′′), ψ∗(di, t, dl)≥ γ, where dl ∈ S′.
Now,ψ∗(di, tt ′, d j)=∧dl ∈ S′{{ψ(di, t, ql),ψ(dl , t ′, d j)}}≥
γ . Therefore, d j ∈ γN(S) and hence, γN(S) = S′.

Theorem 4.4. Let S = (D, I, ψ) be a fuzzy automaton and
di ∈ D. Then the following conditions are equivalent:

(i) di is a γ-local neck;
(ii)〈di〉 is a γ-strongly directable fuzzy automaton;
(iii) for every t ′ ∈ I∗, there exists t ∈ I∗ such that

ψ∗(di, t ′t, di)≥ γ > 0.

Proof. (i)⇒ (ii)
Let di be a γ-local neck of S. Then there exists a γ-

directable subautomaton S′ of S such that di ∈ γN(S′). Thus
γN(S′) is a γ-strongly directable fuzzy automaton. Also,
〈di〉 ⊆ γN(S′), and γN(S′) is strongly connected, then 〈di〉=
γN(S′). Therefore, 〈di〉 is a γ-strongly directable fuzzy au-
tomaton.
(ii)⇒ (iii)

Let 〈di〉 be a γ-strongly directable fuzzy automaton.
Then di is a t-γ-neck of 〈di〉 for some t ∈ I∗. Since 〈di〉 is
γ-strongly directable, for every t ′ ∈ I∗, there exists some
dl ∈ 〈di〉 such that ψ∗(di, t ′, dl)≥ γ > 0. Now,
ψ∗(di, t ′t, di)= {∧dl ∈ D{ψ∗(di, t ′, dl),ψ

∗(dl , t, di)}}≥ γ >
0.
(iii)⇒ (i)

(iii) clearly shows that di is a t− γ-neck of 〈di〉 , and
hence, it is a γ-local neck of S.

Theorem 4.5. Let S = (D, I, ψ) be a fuzzy automaton. If
γLN(S) 6= φ , then γLN(S) is a γ-subautomaton of S.

Proof. Let di ∈ γLN(S) and t ∈ I. Then, the γ-monogenic
subautomaton 〈di〉 of S is γ-strongly directable. Now, 〈di〉 ⊆
〈dl〉 , for some dl ∈ 〈di〉. Since 〈di〉 is strongly connected,
〈di〉 = 〈dl〉. Therefore, dl is also a γ-local neck of S, i.e.,
dl ∈ γLN(S). Hence, γLN(S) is a γ-subautomaton of S.

Theorem 4.6. A fuzzy automaton S = (D, I, ψ) is
γ-generalized directable if and only if it is an extension of a
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γ-uniformly monogenically strongly directable fuzzy automa-
ton S′ by a γ-uniformly monogenically trap-directable fuzzy
automaton S′′. In that case:
(i) γDW (S′′).γCDW (S′)⊆ γGDW (S)⊆ γDW (S′′)∩γCDW (S);
(ii) γLN(S) = S′.

Proof. Let S be a γ-generalized directable fuzzy au-
tomaton.
Let S′=

{
d j | ψ∗(di, t,d j)≥ γ > 0, di ∈ D, t ∈ γGDW (S)

}
be a subautomaton of S. Now we have to show that S′ is a γ

uniformly monogenically strongly directable fuzzy automa-
ton.
Let d j ∈ S′. That is, ψ∗(di, t,d j)≥ γ > 0, for some di ∈D and
t ∈ γGDW (S).
Then for every t ′ ∈ I∗ we have that
ψ∗(di, t,d j)≥ γ > 0⇔ ψ∗(di, tt ′t,d j)≥ γ > 0
⇔{∧d j ∈ Q

{
ψ∗(di, t,d j),ψ

∗(d j, t ′t,d j)
}
} ≥ γ > 0

⇒ ψ∗(d j, t ′t,d j)≥ γ > 0.
d j is a gamma-local neck and

〈
d j
〉

is a γ-strongly directable
fuzzy automaton. Further t ∈ γCDW (

〈
d j
〉
).

Therefore, S′ is a γ-uniformly monogenically strongly di-
rectable fuzzy automaton and γGDW (S)⊆ γCDW (S′)—(1)
Define Rees congruence on S. Then there exists a γ-factor
fuzzy automaton
S′′= S/S′ which is a γ-uniformly monogenically trap-directable
fuzzy automaton and γGDW (S)⊆ DW (S′′) ——(2)
From (1) and (2), γGDW (S)⊆ γCDW (S′)∩ γDW (S′′) —(3)
Conversely, let S be an extension of a γ-uniformly monogeni-
cally strongly directable fuzzy automaton S′ by a γ-uniformly
monogenically trap-directable fuzzy automaton S′′. Consider
an arbitrary di ∈ D, t1 ∈ γDW (S′′),
t2 ∈ γCDW (S′) and t ′ ∈ I∗.
Now, let t = t1t2 ∈ I∗. Then
ψ∗(di, t1,dk)≥ γ > 0, ψ∗(di, t1t2t ′t1,dk)≥ γ > 0 where dk ∈
〈di〉 for some γ-strongly directable subautomaton 〈di〉 of S′.
Now,
ψ∗(di, tt ′t,d j) = ψ∗(di, t1t2t ′t1t2,d j)≥ γ > 0
⇔{∧dk ∈ D

{
ψ∗(di, t1t2t ′t1,dk),ψ

∗(dk, t2,d j)
}
} ≥ γ > 0

⇒ ψ∗(dk, t2,d j)≥ γ > 0. Now,
ψ∗(di, t1t2,d j)= {∧dk ∈ D

{
ψ∗(di, t1,dk),ψ

∗(dk, t2,d j)
}
}≥ γ >

0.
ψ(di, tt ′t,d j)≥ γ > 0⇔ ψ(di, t,d j)≥ γ > 0.
Therefore, S is a γ-generalized directable fuzzy automaton
and t ∈ γGDW (S).
Hence, γDW (S′′).γCDW (S′)⊆ γGDW (S) ——–(4)
From (3) and (4),
γDW (S′′).γCDW (S′)⊆ γGDW (S)⊆ γDW (S′′)∩ γCDW (S′).
Now let us prove that γLN(S) = S′.
Clearly, S′ ⊆ γLN(S). Conversely, let di ∈ γLN(S). Then,
∀t ′ ∈ I∗, ∃t ∈ I∗ such that ψ∗(di, t ′t,di)≥ γ > 0.
If we assume that t ′ ∈ γDW (S′′), then ψ∗(di, t ′,dk)≥ γ > 0,
for some dk ∈ S′. Now,
ψ(di, t ′t,di)≥ γ > 0⇔
{∧dk ∈ D {ψ∗(di, t ′,dk),ψ

∗(dk, t,di)}} ≥ γ > 0
⇒ ψ∗(dk, t,di)≥ γ > 0
⇒ di ∈ S′[Since S′ is strongly connected].

Therefore, γLN(S)⊆ S′. Hence, γLN(S) = S′.

Theorem 4.7. Let S = (D, I, ψ) be a fuzzy automa-
ton. Then the following conditions are equivalent:
(i) S is a γ-generalized directable fuzzy automaton;
(ii) every strongly connected subautomaton of S is γ-directable;
(iii) every subautomaton of S contains a γ-direcable subau-
tomaton;
(iv) (∀di ∈ D)(∃t ∈ I∗)(∀t ′ ∈ I∗)(∃t1 ∈ I∗) such that
ψ∗(di, tt ′t1,dl) ≥ γ > 0⇔ ψ∗(di, tt ′,dl) ≥ γ > 0, for some
dl ∈ D.

Proof. (i)⇒ (ii)
Let S be a γ-generalized directable fuzzy automaton.

Let S′=
{

d j | ψ∗(di, t,d j)≥ γ > 0, di ∈ D, t ∈ γGDW (S)
}

be a subautomaton of S. Now we have to show that S′ is a
γ-strongly directable fuzzy automaton.
Let d j ∈ S′. That is, ψ∗(di, t,d j)≥ γ > 0, for some di ∈D and
t ∈ γGDW (S).
Then for every t ′ ∈ I∗ we have that
ψ8(di, t,d j)≥ γ > 0⇔ ψ∗(di, tt ′t,d j)≥ γ > 0
⇔∧d j ∈ D

{
ψ∗(di, t,d j),ψ

∗(d j, t ′t,d j)
}
≥ γ > 0

⇒ ψ∗(d j, t ′t,d j)≥ γ > 0.
Thus d j is a γ-local neck and

〈
d j
〉

is a γ-strongly directable
fuzzy automaton.
(ii)⇒ (i)
It is clear that S is an extension of a fuzzy automaton S′ by a
trap-directable fuzzy automaton S′′, where S′ is a direct sum
strongly connected of fuzzy automata S′i, i ∈ [1,n].
By the hypothesis it follows that S′i is a γ-directable fuzzy
automaton, for every i ∈ [1,n].
Since γDW (S′i) is an ideal of I∗, for each i ∈ [1,n] and the
intersection of any finite family of ideals is non-empty, then
there exists t ∈ ∩n

i=1γDW (S′i).
Thus S is a γ generalized directable fuzzy automaton.
(ii)⇒ (iii)

Let S′′ be any γ-strongly connected directable subau-
tomaton of S.
Since S′′ is strongly connected and γ-directable, γN(S′′) = S′′

which is a γ-least subautomaton of S.
If S′ is any other γ-subautomaton of S, then S′′ ⊆ S′. Hence,
S′ is the γ-subautomaton of S that contains a γ-directable sub-
automaton S′′.
(iii)⇒ (i)
Consider an arbitrary di ∈ D. By the hypothesis, theγ- mono-
genic subautomaton 〈di〉 contains a γ-directable subautomaton
S′.
Therefore, there exists a t1 ∈ I∗ such that ψ∗(di, t1,dk) ≥
γ > 0, for some dk ∈ S′.
Let t = t1t2, where t2 ∈ γDW (S′) and let t ′ ∈ I∗.
Now,ψ∗(di, t,d j) = ψ∗(di, t1t2,d j)
= ∧dk ∈ S′

{
ψ∗(di, t1,dk),ψ

∗(dk, t2,d j)
}
.

Since ψ∗(di, t1,dk)≥ γ > 0 and S is a deterministic fuzzy au-
tomaton, we have ψ∗(dk, t2,d j)≥ γ > 0.
Therefore, ψ∗(di,u,d j)≥ γ > 0 —(1)

870



γ-Generalized directable fuzzy automata — 871/872

Now, ψ∗(di, tt ′t,d j)= {∧d j ∈ D
{

ψ∗(di, t,d j),ψ
∗(d j, t ′t,d j)

}
}.

Since from (1), ψ∗(di, t,d j)≥ γ > 0 and S is a deterministic
fuzzy automaton,
we have ψ∗(d j, t ′t,d j)≥ γ > 0.
Therefore, ψ∗(di, tt ′t,d j)≥ γ > 0 ——-(2)
From (1) and(2), we have
(∀di ∈ D)(∃t ∈ I∗)(∀t ′ ∈ I∗) such that ψ∗(di, tt ′t,d j) ≥ γ >
0⇔ ψ∗(di, t,d j)≥ γ > 0.
(i)⇒ (iv)
By the hypothesis, (∀ di ∈ D)(∃ t ∈ I∗)(∀ t ′ ∈ I∗) such
that
ψ∗(di, tt ′t,d j) ≥ γ > 0⇔ ψ∗(di, t,d j) ≥ γ > 0. Let t1 = tt ′1
for some t ′1 ∈ I∗.
Now,ψ∗(di, tt ′tt ′1,dl) = ψ∗(di, tt ′tt ′1,dl)
= ∧d j ∈ D

{
ψ(di, tt ′t,d j),ψ(d j, t1,dl)

}
By the hypothesis, ψ8(di, tt ′t,d j)≥ γ > 0 and since S is a de-
terministic fuzzy automaton ψ∗(d j, t1,dl)≥ γ > 0. Therefore,
ψ∗(di, tt ′t1,dl)≥ γ > 0 —(1)
ψ∗(di, tt1,dl) = ψ∗(di, ttt ′1,dl)
⇒∧d j ∈ D

{
ψ∗(di, tt,d j),ψ

∗(d j, t1,dl)
}

.
Since ψ∗(di, t,d j)≥ γ > 0, we have ψ∗(di, tt,d j)≥ γ > 0 and
therefore, ψ∗(d j, t1, tl)≥ γ > 0.
Hence, ψ∗(di, tt1,dl)≥ γ > 0—(2)
From (1)and (2), ψ∗(di, tt ′t1,dl)≥ γ > 0⇔ ψ∗(di, tt1,dl)≥
γ > 0.
Therefore, (∀ di ∈ D)(∃ t ∈ I∗)(∀ t ′ ∈ I∗)(∃ t1 ∈ I∗) such
that
ψ∗(di, tt ′t1,dl)≥ γ > 0⇔ ψ∗(di, tt1,dl)≥ γ > 0.

(iv)⇒ (ii)
By the hypothesis, (∀ di ∈ D)(∃ t ∈ I∗)(∀ t ′ ∈ I∗)(∃ t1 ∈ I∗)
such that
ψ∗(di, tt ′t1,dl) ≥ γ > 0⇔ ψ∗(di, tt1,dl) ≥ γ > 0 for some
dl ∈D. Take an arbitrary γ- strongly connected subautomaton
S′ of S and di,dk ∈ S′.
Now, ψ∗(di, t,d j)≥ γ > 0 and ψ∗(dk, t,dl)≥ γ > 0, for some
t ∈ I∗ and d j,dl ∈ S′. Since S′ is γ-strongly connected, there
exists t ′1 ∈ I∗ such that
ψ∗(di, tt ′1,dl)≥ γ > 0. —–(1)
For that t ′1, there exists t2 ∈ I∗ such that
ψ∗(di, tt ′1t2,dm)≥ γ > 0⇔ ψ∗(di, tt2,dm)≥ γ > 0, for some
dm ∈ S′—(2)
ψ∗(di, tt2,dm)≥ γ > 0⇔ ψ∗(di, tt ′1t2,dm)≥ γ > 0.
⇔∧dl ∈ S′ {ψ∗(di, tt ′1,dl),ψ

∗(dl , t2,dm)} ≥ γ > 0
⇒ ψ∗(dl , t2,dm)≥ γ > 0.
Now ψ∗(dk, tt2,dm)= {∧dl ∈ S′ {ψ∗(dk, t,dl),ψ

∗(dl , t2,dm)}}≥
γ > 0
Therefore, we have proved that di and dk are γ-mergeable.
Hence,S′ is a γ-directable fuzzy automaton.

5. Conclusion
In this paper we introduce γ-necks, γ-local necks,

γ-monogenically directable, γ- monogenically strongly di-
rectable, γ-monogenically trap directable, γ- uniformly mono-
genically directable, γ-uniformly monogenically strongly di-

rectable, γ-uniformly monogenically trap-directable,
γ-generalized directable fuzzy automata and study their struc-
tural characterizations. We prove γ-generalized directable
fuzzy automaton is an extension of a γ-uniformly monogeni-
cally strongly directable fuzzy automaton by a γ-uniformly
monogenically trap-directable fuzzy automaton. We obtain
equivalent conditions for a γ-generalized directable fuzzy au-
tomaton.
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