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Abstract. In this paper, we study the well-posedness and asymptotic behaviour of solutions to a laminated beam in
thermoelasticity of type III with delay term in the fourth equation. We first give the well-posedness of the system by using
semigroup method and Lumer-Philips theorem. Then, by using the perturbed energy method and construct some Lyapunov
functionals, we obtain the exponential decay result for the case of equal wave speeds.
AMS Subject Classifications: 35B40, 35L56, 93D20, 74F05.

Keywords: Laminated beam, thermoelasticity of type III, delay, well-posedness, exponential stability.

Contents

1 Introduction 20

2 Preliminaries 22

3 Well-posedness of the problem 23

4 Exponential stability 28

1. Introduction

In this work, we consider a coupled system of a laminated beam with thermoelasticity of type III and delay term
in the fourth equation, which has the form

ρ1ϕtt +G (ψ − ϕx)x = 0,

ρ2 (3ω − ψ)tt −G (ψ − ϕx)−D (3ω − ψ)xx + αθx = 0,

ρ2ωtt +G (ψ − ϕx) + 4
3γω + 4

3βωt −Dωxx = 0,

ρ3θtt − δθxx + σ (3ω − ψ)ttx − µ1θtxx (x, t)− µ2θtxx (x, t− τ) = 0,

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(1.1)

with the following initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x),

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

ω(x, 0) = ω0(x), ωt(x, 0) = ω1(x),

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x),

θtx (x, t− τ) = f0 (x, t− τ) ,

ϕx(0, t) = ϕx(1, t) = ψ(0, t) = ψ(1, t) = 0,

ω(0, t) = ω (1, t) = θx (0, t) = θx (1, t) = 0,

x ∈ [0, 1],

x ∈ [0, 1],

x ∈ [0, 1],

x ∈ [0, 1],

(x, t) ∈ (0, 1)× (0, τ) ,

t ∈ [0,+∞),

t ∈ [0,+∞),

(1.2)
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A laminated beam in thermoelasticity of type III with delay

where ϕ(x, t) denotes the transverse displacement, ψ(x, t) represents the rotation angle. ω(x, t) is proportional
to the amount of slip along the interface at time t and longitudinal spatial variable x. θ(x, t) is the differential
temperature, and ρ1, ρ2, ρ3, G, D, α, β, γ, δ, σ, µ1 are positive constants, µ2 is a real number and τ > 0 represents
the time delay. Moreover,

√
G
ρ1

and
√

D
ρ2

are two wave speeds.
Laminated beam, which is a relevant research subject due to the high applicability of such materials in the

industry, was firstly introduced by Hansen and Spies, see, for instance [15, 16]. Hansen [15] proposed a model of
laminated beam based on the Timoshenko system which is one of particular interest. In [16], Hansen and Spies
derived three mathematical models for two-layered beams with structural damping due to the interfacial slip. The
system is given by the following equations

ρ1ϕtt +G (ψ − ϕx)x = 0,

ρ2 (3ω − ψ)tt −D (3ω − ψ)xx −G (ψ − ϕx) = 0,

3ρ2ωtt + 3G (ψ − ϕx) + 4γω + 4βωt − 3Dωxx = 0,

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

the coefficients ρ1, G, ρ2, D, γ and β are positive constants and represent density, shear stiffness, mass moment
of inertia, flexural rigidity, adhesive stiffness, and adhesive damping parameter, respectively. The third equation
describes the dynamics of the slip. For asymptotic behavior results to laminated beams, we refer the reader to
[1, 19, 21, 22, 31] and the references therein. In [26], Rivera and Racke established several exponential decay
results for linear Timoshenko systems in classical thermoelasticity where the heat flux is given by Fourier’s law.
Since this theory predicts an infinite speed of heat propagation, many theories have emerged, to overcome this
physical paradox. Green and Naghdi [11–13], suggest a replacing Fourier’s law by the so- called thermoelasticity
of type III. This is for heat conduction modeling thermal disturbances as wave-like pulses traveling at finite speed.
For more details, see [2]. A large number of interesting decay results depending on the stability number have
been established, (see [9, 24, 25, 27] and references therein). W. Liu et al. [23] considered a coupled system of a
laminated beam with thermoelasticity of type III, which has the form

ρ1ϕtt +G (ψ − ϕx)x = 0,

Iρ1 (3ω − ψ)tt −D (3ω − ψ)xx −G (ψ − ϕx) + αθx = 0,

Iρ1ωtt −Dωxx +G (ψ − ϕx) + 4
3β1ω + 4

3β2ωt = 0,

ρ2θtt − δθxx + γ (3ω − ψ)ttx − kθtxx = 0,

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

they used the energy method to prove an exponential decay result for the case of equal wave speeds.
Time delay appears in many physical, biological and economic problems, because, in most instances, the

present state system does not depend only on the current state but also on some past occurrences. In recent years,
the control of PDEs with time delay effects has become an active area of research.The presence of delay may
be a source of instability. It may turn a well-behaved system into a wild one. For example, it was shown in
[4, 5, 14, 28, 32] that an arbitrarily small delay may destabilize a system that is uniformly asymptotically stable
in the absence of delay unless additional control terms have been used. The stability issue of systems with delay
is, therefore, of theoretical and practical great importance. In [29], Nicaise, Pignotti and Valein replaced the
constant delay term in the boundary condition of [28] by a time-varying delay term and obtained an exponential
decay result under an appropriate assumption on the weights of the damping and delay. Moreover, Kafini et al.
[18] studied the following Timoshenko system of thermoelasticity of type III with delay of the form

ρ1φtt −K (φx + ψ)x + µ1φt (x, t) + µ2φt (x, t− τ) = 0,

ρ2ψtt − bψxx +K (φx + ψ) + βθtx = 0,

ρ3θtt − δθxx + γψtx − kθtxx = 0,

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

(x, t) ∈ (0, 1)× (0,+∞),

under the initial and boundary conditions
θ(., 0) = θ0, θt(., 0) = θ1, ψ(., 0) = ψ0, x ∈ [0, 1],

ψt(., 0) = ψ1, φ(., 0) = φ0, φt(., 0) = φ1, x ∈ [0, 1],

φt (x, t− τ) = f0 (x, t− τ) , t ∈ (0, τ) ,

φ(0, t) = φ(1, t) = ψ(0, t) = ψ(1, t) = θx (0, t) = θx (1, t) = 0, t ∈ [0,+∞),
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the energy of system decays exponentially in the case of equal wave speeds. For other related results, we refer
the reader to [3, 6–8, 17, 20]. Motivated by the above results, in the present work, we study the well-posedness
and asymptotic behaviour of solutions to the laminated beam (1.1)-(1.2) in thermoelasticity of type III with delay
term. The plan of the paper is as follows. In Section 2, we introduce some preliminaries. In Section 3, by
using semigroup method and Lumer-Philips theorem, we state and prove the well posedness of the system. In
Section 4, by using the perturbed energy method and construct some Lyapunov functionals, we then establish the
exponential result if and only if G

ρ1
= D

ρ2
.

2. Preliminaries

In this section, we present some material that we shall use in order to present our results, to exhibit the dissipative
nature of the system (1.1), we introduce some new variables

Φ = ϕt ,Ψ = ψt ,W = ωt,

and we introduce as in [28] the new variable

z (x, ρ, t) = θtx (x, t− τρ) , (x, ρ, t) ∈ (0, 1)× (0, 1)× (0,∞).

Then we have
τzt (x, ρ, t) + zρ (x, ρ, t) = 0, (x, ρ, t) ∈ (0, 1)× (0, 1)× (0,∞).

Therefore, system (1.1) takes the form
ρ1Φtt +G (Ψ− Φx)x = 0,

ρ2 (3W −Ψ)tt −G (Ψ− Φx)−D (3W −Ψ)xx + αθtx = 0,

ρ2Wtt +G (Ψ− Φx) + 4
3γW + 4

3βWt −DWxx = 0,

ρ3θtt − δθxx − µ1θtxx − µ2zx (x, 1, t) + σ (3W −Ψ)tx = 0,

τzt (x, ρ, t) + zρ (x, ρ, t) = 0,

(2.1)

where (x, ρ, t) ∈ (0, 1)× (0, 1)× (0,∞), with the initial data and boundary conditions

Φ(x, 0) = Φ0(x),Φt(x, 0) = Φ1(x),

Ψ(x, 0) = Ψ0(x),Ψt(x, 0) = Ψ1(x),

W (x, 0) = W0(x),Wt(x, 0) = W1(x),

θ(x, 0) = θ0(x), θt(x, 0) = θ1(x),

z (x, ρ, 0) = f0 (x,−τρ) ,

z (x, 0, t) = θtx (x, t) ,

Φx(0, t) = Φx(1, t) = Ψ(0, t) = Ψ(1, t) = 0,

W (0, t) = W (1, t) = θx (0, t) = θx (1, t) = 0,

x ∈ [0, 1],

x ∈ [0, 1],

x ∈ [0, 1],

x ∈ [0, 1],

(x, ρ) ∈ (0, 1)× (0, 1) ,

(x, t) ∈ (0, 1)× (0,∞),

t ∈ [0,+∞),

t ∈ [0,+∞),

(2.2)

where

Φ0(x) = ϕ1, Φ1(x) = −G
ρ1

(ψ0 − ϕ0x)x , Ψ0 (x) = ψ1,

Ψ1(x) = −4G

ρ2
(ψ0 − ϕ0x)− D

ρ2
(3ω0 − ψ0)xx +

α

ρ2
θ1x −

4γ

ρ2
ω0 −

4β

ρ2
ω1 +

3D

ρ2
ω0xx,

W0(x) = ω1,W1(x) = −G
ρ2

(ψ0 − ϕ0x)− 4γ

3ρ2
ω0 −

4β

3ρ2
ω1 +

D

ρ2
ω0xx,

where x ∈ [0, 1]. From equations (2.1)4 and (2.2), we easily verify that

d2

dt2

∫ 1

0

θ (x, t) dx = 0.
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So, if we set

θ (x, t) := θ (x, t)−
∫ 1

0

θ0 (x) dx− t
∫ 1

0

θ1 (x) dx,

then simple substitution shows that
(
Φ,Ψ,W, θ, z

)
satisfies (2.1), the boundary conditions in (2.2) and more

importantly ∫ 1

0

θ (x, t) dx = 0, ∀t > 0.

In this case, Poincaré’s inequality is applicable for θ. In the sequel, we work with θ but for convenience, we write
θ instead. We will assume that

µ1 > |µ2| , (2.3)

and show the well-posedness of the problem and that this condition is sufficient to prove the uniform decay of the
solution energy.

3. Well-posedness of the problem

In this Section, we prove the existence and uniqueness of solutions for (2.1)-(2.2). Introducing the vector function

U = (Φ, 3W −Ψ,W, θ,Φt, 3Wt −Ψt,Wt, θt, z)
T
,

system (2.1)-(2.2) can be written as
dU (t)

dt
= AU (t) , t > 0,

U (0) = U0 = (Φ0, 3W0 −Ψ0,W0, θ0,Φ1, 3W1 −Ψ1,W1, θ1, f0)
T
,

(3.1)

where A is a linear operator defined by

A



Φ

3W −Ψ

W

θ

Φt
3Wt −Ψt

Wt

θt
z


=



Φt
3Wt −Ψt

Wt

θt

−G
ρ1

(ψ − Φx)x

G

ρ2
(ψ − Φx) +

D

ρ2
(3W −Ψ)xx −

α

ρ2
θtx

−G
ρ2

(ψ − Φx)− 4γ

3ρ2
W − 4β

3ρ2
Wt +

D

ρ2
Wxx

δ

ρ3
θxx −

σ

ρ3
(3W −Ψ)tx +

µ1

ρ3
θtxx +

µ2

ρ3
zx (x, 1, t)

−τ−1zρ



.

We consider the following spaces

L2
∗ (0, 1) =

{
w ∈ L2 (0, 1) :

∫ 1

0

w (s) ds = 0

}
, H1
∗ (0, 1) = H1 (0, 1) ∩ L2

∗ (0, 1) ,

H2
∗ (0, 1) =

{
w ∈ H2 (0, 1) : wx (0) = wx (1) = 0

}
.

Let

H = H1
∗ (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

∗ (0, 1)× L2
∗ (0, 1)× L2 (0, 1)× L2 (0, 1)× L2

∗ (0, 1)

×L2
(
(0, 1) , L2 (0, 1)

)
,
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be the Hilbert space equipped with the inner product〈
U, Ũ

〉
H

= σρ1

∫ 1

0

ΦtΦtdx+ σG

∫ 1

0

(Ψ− Φx)
(
Ψ− Φx

)
dx+ 4σγ

∫ 1

0

WWdx+ 3σ

∫ 1

0

ρ2WtW tdx

+σρ2

∫ 1

0

(3W −Ψ)t
(
3W −Ψ

)
t
dx+ σ

∫ 1

0

D (3W −Ψ)x
(
3W −Ψ

)
x
dx

+3σD

∫ 1

0

WxW xdx+ αρ3

∫ 1

0

θtθtdx+ αδ

∫ 1

0

θxθxdx+ λ

∫ 1

0

∫ 1

0

zzdρdx,

where λ is the positive constant satisfying{
τα |µ2| < λ < τα (2µ1 − |µ2|) ,
λ = ταµ1,

if |µ2| < µ1,

if |µ2| = µ1.
(3.2)

Then, the domain of A is given by

D (A) =


U ∈ H | Φ, θ ∈ H2

∗ (0, 1) ∩H1
∗ (0, 1) ,Ψ,W ∈ H2 (0, 1) ∩H1

0 (0, 1) ,

Ψt,Wt ∈ H1
0 (0, 1) ,Φt, θt ∈ H1

∗ (0, 1) , (δ + e−τµ2) θ + µ1θt ∈ H2
∗ (0, 1) ,

z, zρ ∈ L2
(
(0, 1) , L2 (0, 1)

)
, z (x, 0) = θtx (x)

 . (3.3)

Clearly, D (A) is dense inH.
We have the following existence and uniqueness result.

Theorem 3.1. Assume that U0 ∈ H and (2.3) holds. Then there exists a unique solution U ∈ C (R+;H) of
problem (3.1). Moreover, if U0 ∈ D (A), then

U ∈ C
(
R+;D (A) ∩ C1

(
R+;H

))
.

Proof. The result follows from Lumer-Phillips theorem provided we prove that A is a maximal monotone
operator. For this purpose, we need the following two steps: A is dissipative and Id−A surjective.

Step 1. A is dissipative.
For any U ∈ D (A), and using the inner product, we obtain

〈AU,U〉H = −4σβ

∫ 1

0

W 2
t dx− αµ1

∫ 1

0

θ2tx + αµ2

∫ 1

0

zx (x, 1, t) θtdx−
λ

τ

∫ 1

0

∫ 1

0

zzρ (x, ρ, t) dρdx.

(3.4)

By using integration by parts and the fact that z (x, 0) = θtx (x), the last term in the right-hand side of (3.4) gives

−
∫ 1

0

∫ 1

0

zzρ (x, ρ, t) dρdx =
1

2

∫ 1

0

θ2txdx−
1

2

∫ 1

0

z2 (x, 1, t) dx. (3.5)

Substituting (3.5) in (3.4) yields

〈AU,U〉H = −4σβ

∫ 1

0

W 2
t dx− αµ1

∫ 1

0

θ2tx + αµ2

∫ 1

0

zx (x, 1, t) θtdx+
λ

2τ

∫ 1

0

θ2txdx

− λ

2τ

∫ 1

0

z2 (x, 1, t) dx. (3.6)

Also, using integration by parts and Young’s inequality we obtain, from (3.6)

〈AU,U〉H ≤ −
(
αµ1 −

α |µ2|
2
− λ

2τ

)∫ 1

0

θ2txdx−
(
λ

2τ
− α |µ2|

2

)∫ 1

0

z2 (x, 1, t) dx− 4σβ

∫ 1

0

W 2
t dx.
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Keeping in mind condition (3.2), we observe that

αµ1 −
α |µ2|

2
− λ

2τ
≥ 0,

λ

2τ
− α |µ2|

2
≥ 0.

Consequently, the operator A is dissipative.
Step 2. Id−A is surjective.
To prove that the operator Id − A is surjective, that is, for any F = (f1, ..., f9) ∈ H, there exists U =

(Φ, 3W −Ψ,W, θ,Φt, 3Wt −Ψt,Wt, θt, z) ∈ D (A) satisfying

(Id−A)U = F, (3.7)

which is equivalent to

Φ− Φt = f1,

(3W −Ψ)− (3W −Ψ)t = f2,

W −Wt = f3,

θ − θt = f4,

ρ1Φt −GΦxx −G (3W −Ψ)x + 3GWx = ρ1f5,

ρ2 (3W −Ψ)t +GΦx +G (3W −Ψ)− 3GW −D (3W −Ψ)xx + αθtx
= ρ2f6,

ρ2Wt −G (3W −Ψ) + 3GW −GΦx + 4γ
3 W + 4β

3 Wt −DWxx = ρ2f7,

ρ3θt − δθxx + σ (3W −Ψ)tx − µ1θtxx − µ2zx (x, 1, t) = ρ3f8,

τz + zρ = τf9.

(3.8)

From (3.8)1−(3.8)4, we have 
Φt = Φ− f1,
(3W −Ψ)t = (3W −Ψ)− f2,
Wt = W − f3,
θt = θ − f4.

(3.9)

By combining (3.9) and (3.8), it can be Φ, 3W −Ψ,W, θ shown that satisfy

ρ1Φ−GΦxx −G (3W −Ψ)x + 3GWx = ρ1 (f1 + f5) ,

ρ2 (3W −Ψ) +GΦx +G (3W −Ψ)− 3GW −D (3W −Ψ)xx + αθx
= ρ2 (f2 + f6) + α∂xf4,

ρ2W −G (3W −Ψ) + 3GW −GΦx + 4γ
3 W + 4β

3 W −DWxx

= ρ2 (f3 + f7) + 4β
3 f3,

ρ3θ − δθxx + σ (3W −Ψ)x − µ1θxx − µ2zx (x, 1, t)

= ρ3 (f4 + f8) + σ∂xf2 + µ1∂xxf4,

τz + zρ = τf9.

(3.10)

Using the last equation in (3.10) we can find z with

z (x, 0) = θtx (x) , x ∈ (0, 1) .

Following the same approach as in [28], we obtain, by using (3.10)5,

z (x, ρ, τ) = θtx (x) e−τρ + τe−τρ
∫ ρ

0

eτsf9 (x, s) ds.

From (3.9)4, we obtain

z (x, ρ, τ) = θxe
−τρ − ∂xf4 (x) e−τρ + τe−τρ

∫ ρ

0

eτsf9 (x, s) ds, (3.11)
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and in particular,
z (x, 1, τ) = θxe

−τ + z0 (x, τ) ,

where

z0 (x, τ) = −∂xf4 (x) e−τ + τe−τ
∫ 1

0

eτsf9 (x, s) ds.

In order to solve (3.8), we consider the following variational formulation

B

(
(Φ, 3W −Ψ,W, θ)

T
,
(

Φ̃, 3W̃ − Ψ̃, W̃ , θ̃
)T)

= G

((
Φ̃, 3W̃ − Ψ̃, W̃ , θ̃

)T)
, (3.12)

where B :
[
H1
∗ (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

∗ (0, 1)
]2 −→ R is the bilinear form

B

(
(Φ, 3W −Ψ,W, θ)

T
,
(

Φ̃, 3W̃ − Ψ̃, W̃ , θ̃
)T)

= σ

∫ 1

0

G(Ψ− Φx)(Ψ̃− Φ̃x)dx+ σ

∫ 1

0

ρ1ΦΦ̃dx+ σ

∫ 1

0

ρ2 (3W −Ψ)
(

3W̃ − Ψ̃
)
dx+ α

∫ 1

0

ρ3θθ̃dx

+ (3σρ2 + 4σγ + 4σβ)

∫ 1

0

WW̃dx+ σ

∫ 1

0

D (3W −Ψ)x

(
3W̃ − Ψ̃

)
x
dx+ 3σ

∫ 1

0

DWxW̃xdx

+α
(
δ + µ1 + e−τµ2

) ∫ 1

0

θxθ̃xdx+ σα

∫ 1

0

(3W −Ψ)x θ̃dx+ σα

∫ 1

0

θx

(
3W̃ − Ψ̃

)
dx,

and G : H1
∗ (0, 1)×H1

0 (0, 1)×H1
0 (0, 1)×H1

∗ (0, 1) −→ R is the linear form

F

((
Φ̃, 3W̃ − Ψ̃, W̃ , θ̃

)T)
= σ

∫ 1

0

ρ1 (f1 + f5) Φ̃dx+ σ

∫ 1

0

ρ2 (f2 + f6)
(

3W̃ − Ψ̃
)
dx+ 3σ

∫ 1

0

ρ2 (f3 + f7) W̃dx

+4σ

∫ 1

0

βf3W̃dx+ α

∫ 1

0

ρ3 (f4 + f8) θ̃dx+ ασ

∫ 1

0

∂xf2θ̃dx+ αµ1

∫ 1

0

∂xf4∂xθ̃dx

+σα

∫ 1

0

∂xf4

(
3W̃ − Ψ̃

)
dx− αµ2

∫ 1

0

∂xz0θ̃dx.

Now, for
V = H1

∗ (0, 1)×H1
0 (0, 1)×H1

0 (0, 1)×H1
∗ (0, 1) ,

equipped with the norm

‖(Φ, 3W −Ψ,W, θ)‖2V = ‖Ψ− Φx‖22 + ‖Φ‖22 + ‖(3W −Ψ)x‖
2
2

+ ‖Wx‖22 + ‖θ‖22 + ‖θx‖22 ,

one can easily see that B(., .) and G(.) are bounded. Furthermore, using integration by parts, we obtain

B
(

(Φ, 3W −Ψ,W, θ)
T
, (Φ, 3W −Ψ,W, θ)

T
)
≥ c ‖(Φ, 3W −Ψ,W, θ)‖2V ,

for some c > 0. Thus, B(., .) is coercive.
Consequently, by Lax-Milgram lemma, we obtain that (3.12) has a unique solution

Φ ∈ H1
∗ (0, 1) , (3W −Ψ) ∈ H1

0 (0, 1) , W ∈ H1
0 (0, 1) , θ ∈ H1

∗ (0, 1) .

The substitution of Φ, 3W −Ψ,W and θ into (3.9) yields

Φt ∈ H1
∗ (0, 1) , (3W −Ψ)t ∈ H

1
0 (0, 1) , Wt ∈ H1

0 (0, 1) , θt ∈ H1
∗ (0, 1) .
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Next, it remains to show that

Φ ∈
(
H2
∗ (0, 1) ∩H1

∗ (0, 1)
)
, (3W −Ψ) ∈

(
H2 (0, 1) ∩H1

0 (0, 1)
)
,

W ∈
(
H2 (0, 1) ∩H1

0 (0, 1)
)
, θ ∈

(
H2
∗ (0, 1) ∩H1

∗ (0, 1)
)
.

Taking
(

3W̃ − Ψ̃, W̃ , θ̃
)

= (0, 0, 0)∈H1
0 (0, 1)×H1

0 (0, 1)×H1
∗ (0, 1) in (3.12), we get

B

(
(Φ, 3W −Ψ,W, θ)

T
,
(

Φ̃, 0, 0, 0
)T)

= σ

∫ 1

0

ρ1ΦΦ̃dx+ σ

∫ 1

0

G(−ΦxxΦ̃− (3W −Ψ)x Φ̃ + 3WxΦ̃)dx

= σ

∫ 1

0

ρ1 (f1 + f5) Φ̃dx, ∀Φ̃ ∈ H1
∗ (0, 1) , (3.13)

which implies
GΦxx = ρ1Φ−G (3W −Ψ)x + 3GWx − ρ1 (f1 + f5) ∈ L2

∗ (0, 1) . (3.14)

Consequently, by the regularity theory for the linear elliptic equations, it follows that

Φ ∈ H2 (0, 1) ∩H1
∗ (0, 1) .

Moreover, (3.13) is also true for any φ ∈ C1 [0, 1] ⊂ H1
∗ (0, 1) . Hence, we have∫ 1

0

GΦxφxdx+

∫ 1

0

(ρ1Φ−G (3W −Ψ)x + 3GWx − ρ1 (f1 + f5))φdx = 0

for all φ ∈ C1 [0, 1] . Thus, using integration by parts and bearing in mind (3.14), we obtain

Φx (1)φ (1)− Φx (0)φ (0) = 0,∀φ ∈ C1 [0, 1] .

Therefore, Φx (0) = Φx (1) = 0. Consequently, we obtain

Φ ∈ H2
∗ (0, 1) ∩H1

∗ (0, 1) .

In the same way, taking
(

Φ̃, W̃ , θ̃
)

= (0, 0, 0)∈H1
∗ (0, 1)×H1

0 (0, 1)×H1
∗ (0, 1) in (3.12), we get

B

(
(Φ, 3W −Ψ,W, θ)

T
,
(

0, 3W̃ − Ψ̃, 0, 0
)T)

= σ

∫ 1

0

G
(

Φx

(
3W̃ − Ψ̃

)
+ (3W −Ψ)

(
3W̃ − Ψ̃

)
− 3W

(
3W̃ − Ψ̃

))
dx

+σ

∫ 1

0

ρ2 (3W −Ψ)
(

3W̃ − Ψ̃
)
dx+ σ

∫ 1

0

D (3W −Ψ)x

(
3W̃ − Ψ̃

)
x
dx+ σα

∫ 1

0

θx

(
3W̃ − Ψ̃

)
dx

= σ

∫ 1

0

ρ2 (f2 + f6)
(

3W̃ − Ψ̃
)
dx+ σα

∫ 1

0

∂xf4

(
3W̃ − Ψ̃

)
dx.

Recalling (3.8)2 and (3.8)4, we arrive at∫ 1

0

D (3W −Ψ)x

(
3W̃ − Ψ̃

)
x
dx

=

∫ 1

0

[ρ2f6 −G (Φx + (3W −Ψ)− 3W )− αθtx − ρ2 (3W −Ψ)t]
(

3W̃ − Ψ̃
)
dx (3.15)
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for all
(

3W̃ − Ψ̃
)
∈ H1 (0, 1) , which implies

ρ2f6 −G (Φx + (3W −Ψ)− 3W )− αθtx − ρ2 (3W −Ψ)t ∈ L
2 (0, 1) .

Consequently, (3.15) takes the form∫ 1

0

[−D (3W −Ψ)xx +GΦx +G (3W −Ψ)− 3GW + αθtx + ρ2 (3W −Ψ)t − ρ2f6]
(

3W̃ − Ψ̃
)
dx = 0.

We obtain

−D (3W −Ψ)xx +G (Φx +G (3W −Ψ)− 3W ) + αθtx + ρ2 (3W −Ψ)t = ρ2f6,

and
(3W −Ψ) ∈ H2 (0, 1) ∩H1

0 (0, 1) ,

which gives (3.8)6. Similarly, we can show that

W ∈ H2 (0, 1) ∩H1
0 (0, 1) ,

and (3.8)7 are satisfied. Also, if we take
(

Φ̃, 3W̃ − Ψ̃, W̃
)

= (0, 0, 0)∈H1
∗ (0, 1) × H1

0 (0, 1) × H1
0 (0, 1) in

(3.12), then using (3.8)2 and (3.8)4, we get(
δ + e−τµ2

)
θxx + µ1θtxx = ρ3θt − ρ3f8 + σ (3W −Ψ)tx + µ2∂xz0,

and we conclude that (
δ + e−τµ2

)
θ + µ1θt ∈ H2 (0, 1) .

Furthermore, it is obvious from(
δ + e−τµ2

)
θx + µ1θtx = ρ3

∫ x

0

θtdx− ρ3
∫ x

0

f8dx+ σ (3W −Ψ)t + µ2z0,

that ((
δ + e−τµ2

)
θx + µ1θtx

)
(0) =

((
δ + e−τµ2

)
θx + µ1θtx

)
(1) = 0,

then, we get (
δ + e−τµ2

)
θ + µ1θt ∈ H2

∗ (0, 1) .

Finally, it follows, from (3.11), that

z (x, 0) = θtx (x) and z, zρ ∈ L2
(
(0, 1) , L2 (0, 1)

)
.

Hence, there exists a unique U ∈ D (A) such that (3.7) is satisfied, the operator Id−A is surjective. Moreover,
it is easy to see that D (A) is dense inH.

At last, by Lumer-Philips theorem (see [10, 30]) we have the well-posedness result stated in Theorem 3.1. �

4. Exponential stability

In this section, we state and prove our stability result for the solution of problem (2.1)-(2.2), by using the
multiplier technique. We first introduce the following energy functional

E (t) :=
1

2

∫ 1

0

[
σρ1Φ2

t + σG (Ψ− Φx)
2

+ σρ2 (3W −Ψ)
2
t + σD (3W −Ψ)

2
x

+3σρ2W
2
t + 4σγW 2 + 3σDW 2

x + αρ3θ
2
t + αδθ2x + λ

∫ 1

0
z2 (x, ρ, t) dρ

]
dx.

(4.1)

To achieve our goal, we need the following lemmas.
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Lemma 4.1. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). Then the energy functional E(t) defined
by (4.1) satisfies

d

dt
E (t) = −4βσ

∫ 1

0

W 2
t dx− C1

∫ 1

0

θ2txdx− C2

∫ 1

0

z2 (x, 1, t) dx ≤ 0, (4.2)

where

C1 = µ1α−
|µ2|α

2
− λ

2τ
≥ 0 , C2 =

λ

2τ
− |µ2|α

2
≥ 0.

Proof. Multiplying the first four equations in (2.1) by σΦt, σ (3W −Ψ)t, 3σWt, αθt respectively, then,

integrating over (0, 1), and multiplying (2.1)5 by
λ

τ
z and integrating over (0, 1)× (0, 1) with respect to ρ and x,

summing them up, we obtain

d

dt

σ

2

∫ 1

0

[
ρ1Φ2

t +G (Ψ− Φx)
2

+ ρ2 (3Wt −Ψt)
2

+D (3Wx −Ψx)
2

+ 3ρ2W
2
t + 4γW 2 + 3DW 2

x

]
dx

+
d

dt

α

2

∫ 1

0

(
ρ3θ

2
t + δθ2x

)
dx+

d

dt

λ

2

∫ 1

0

∫ 1

0

z2 (x, ρ, t) dρdx

= −4βσ

∫ 1

0

W 2
t dx− µ1α

∫ 1

0

θ2txdx+ µ2α

∫ 1

0

θtzx (x, 1, t) dx− λ

τ

∫ 1

0

∫ 1

0

zzρ (x, ρ, t) dρdx. (4.3)

The last two terms of the right side of (4.3) can be estimated as follows.

−λ
τ

∫ 1

0

∫ 1

0

zzρ (x, ρ, t) dρdx =
λ

2τ

∫ 1

0

θ2txdx−
λ

2τ

∫ 1

0

z2 (x, 1, t) dx,

µ2α

∫ 1

0

θtzx (x, 1, t) dx ≤ |µ2|α
2

∫ 1

0

θ2txdx+
|µ2|α

2

∫ 1

0

z2 (x, 1, t) dx.

Hence,

d

dt
E (t) ≤ −4βσ

∫ 1

0

W 2
t dx−

(
µ1α−

|µ2|α
2
− λ

2τ

)∫ 1

0

θ2txdx−
(
λ

2τ
− |µ2|α

2

)∫ 1

0

z2 (x, 1, t) dx.

Using (3.2), we obtain the result. �

Lemma 4.2. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). The functional

F1 (t) := −ρ1
∫ 1

0

ΦΦtdx+ ρ2

∫ 1

0

WWtdx (4.4)

satisfies the estimate

F ′1 (t) ≤ −ρ1
∫ 1

0

Φ2
tdx−

2γ

3

∫ 1

0

W 2dx− D

2

∫ 1

0

W 2
xdx+ C3

∫ 1

0

W 2
t dx+ C4

∫ 1

0

(Ψ− Φx)
2
dx

+
D

18

∫ 1

0

(3Wx −Ψx)
2
dx, (4.5)

where

C3 = ρ2 +
4β2

3γ
, C4 = G+

9G2

2D
+

3G2

4γ
.
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Proof. By differentiating F1 with respect to t, using (2.1)1, (2.1)3 and integrating by parts, we obtain

F ′1 (t) = −ρ1
∫ 1

0

Φ2
tdx−G

∫ 1

0

Φx (Ψ− Φx) dx+ ρ2

∫ 1

0

W 2
t dx−D

∫ 1

0

W 2
xdx−G

∫ 1

0

W (Ψ− Φx) dx

−4γ

3

∫ 1

0

W 2dx− 4β

3

∫ 1

0

WWtdx.

Note that

−G
∫ 1

0

Φx (Ψ− Φx) dx = G

∫ 1

0

(Ψ− Φx)
2
dx−G

∫ 1

0

Ψ (Ψ− Φx) dx.

Then, we deduce that

F ′1 (t) = −ρ1
∫ 1

0

Φ2
tdx+G

∫ 1

0

(Ψ− Φx)
2
dx−G

∫ 1

0

Ψ (Ψ− Φx) dx+ ρ2

∫ 1

0

W 2
t dx−D

∫ 1

0

W 2
xdx

−G
∫ 1

0

W (Ψ− Φx) dx− 4γ

3

∫ 1

0

W 2dx− 4β

3

∫ 1

0

WWtdx.

Making use of Young’s and Poincaré inequalities, we obtain

F ′1 (t) ≤ −ρ1
∫ 1

0

Φ2
tdx−

2γ

3

∫ 1

0

W 2dx−D
∫ 1

0

W 2
xdx+

D

36

∫ 1

0

Ψ2
xdx+

(
ρ2 +

4β2

3γ

)∫ 1

0

W 2
t dx

+

(
G+

9G2

2D
+

3G2

4γ

)∫ 1

0

(Ψ− Φx)
2
dx.

Note that ∫ 1

0

Ψ2
xdx =

∫ 1

0

(Ψx − 3Wx + 3Wx)
2
dx ≤ 2

∫ 1

0

(3Wx −Ψx)
2

+ 18

∫ 1

0

W 2
xdx.

Then the estimate (4.5) is established. �

Lemma 4.3. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). The functional

F2 (t) := ρ2

∫ 1

0

(3W −Ψ) (3W −Ψ)t dx (4.6)

satisfies the estimate

F ′2 (t) ≤ −D
2

∫ 1

0

(3Wx −Ψx)
2
dx+ ρ2

∫ 1

0

(3Wt −Ψt)
2
dx+

G2

2D

∫ 1

0

(Ψ− Φx)
2
dx+

α2

D

∫ 1

0

θ2t dx,

(4.7)

Proof. By differentiating F2 with respect to t, using (2.1)2 and integrating by parts, we get

F ′2 (t) = G

∫ 1

0

(3W −Ψ) (Ψ− Φx) dx−D
∫ 1

0

(3Wx −Ψx)
2
dx+ α

∫ 1

0

(3Wx −Ψx) θtdx

+ρ2

∫ 1

0

(3Wt −Ψt)
2
dx.

Using Young’s and Poincaré inequalities, we obtain the result. �

Lemma 4.4. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). The functional

F3 (t) := ρ2ρ3

∫ 1

0

(3W −Ψ)t

∫ x

0

θt (y, t) dydx− δρ2
∫ 1

0

θx (3W −Ψ) dx (4.8)
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satisfies the estimate

F ′3 (t) ≤ −ρ2σ
2

∫ 1

0

(3W −Ψ)
2
t dx+ ε1

∫ 1

0

(Ψ− Φx)
2
dx+ C5 (ε1)

∫ 1

0

θ2xtdx+ ε1

∫ 1

0

(3Wx −Ψx)
2
dx

+
ρ2µ

2
2

σ

∫ 1

0

z2 (x, 1, t) dx, (4.9)

for any ε1 > 0, where

C5 (ε1) =
αρ3
2

+
ρ2µ

2
2

σ
+
D2ρ23
8ε1

+
δ2ρ22
4ε1

+
G2ρ23
16ε1

.

Proof. By differentiating F3 with respect to t, using (2.1)2, (2.1)4 and integrating by parts, we obtain

F ′3 (t) = ρ3

∫ 1

0

G (Ψ− Φx)

∫ x

0

θt (y, t) dydx− δρ2
∫ 1

0

θxt (3W −Ψ) dx

+

[
ρ3 (−GΦ +D (3W −Ψ)x − αθt)

∫ x

0

θt (y, t) dy

]x=1

x=0

+ αρ3

∫ 1

0

θ2t dx− ρ2σ
∫ 1

0

(3W −Ψ)
2
t dx

+ρ2µ1

∫ 1

0

(3W −Ψ)t θtxdx−Dρ3
∫ 1

0

θt (3W −Ψ)x dx+ ρ2µ2

∫ 1

0

(3W −Ψ)t z (x, 1, t) dx.

Note that ∫ 1

0

θt (y, t) dy =
d

dt

∫ 1

0

θ (y, t) dy = 0,

then, by Young’s and Poincaré inequalities, with ε1 > 0 to obtain (4.9). �

Lemma 4.5. Let (Φ,Ψ,W, θ, z) be the solution of problem (2.1)-(2.2). The functional

F4 (t) :=

∫ 1

0

[
ρ3θtθ +

µ1

2
θ2x + σ (3W −Ψ)x θ

]
dx (4.10)

satisfies the estimate

F ′4 (t) ≤ −δ
2

∫ 1

0

θ2xdx+

(
ρ3 +

σ2

4ε2

)∫ 1

0

θ2t dx+ ε2

∫ 1

0

(3W −Ψ)
2
x dx+

µ2
2

2δ

∫ 1

0

z2 (x, 1, t) dx, (4.11)

for any ε2 > 0.

Proof. By differentiating F4 with respect to t, using (2.1)4 and integrating by parts, we obtain

F ′4 (t) =

∫ 1

0

δθxxθdx+

∫ 1

0

ρ3θ
2
t dx+

∫ 1

0

µ2zx (x, 1, t) θdx+

∫ 1

0

σ (3W −Ψ)x θtdx.

Using Young’s inequality with ε2 > 0, we establish (4.11). �

Lemma 4.6. Let (Φ,Ψ,W, θ, z)be the solution of (2.1)-(2.2). Then the functional

F5 (t) := ρ2

∫ 1

0

(3W −Ψ)t (Φx −Ψ) dx+
Dρ1
G

∫ 1

0

(3W −Ψ)x Φtdx (4.12)

satisfies the estimate

F ′5 (t) ≤ −G
2

∫ 1

0

(Ψ− Φx)
2
dx+

α2

2G

∫ 1

0

θ2txdx+ (ρ2 + ε3)

∫ 1

0

(3W −Ψ)
2
t dx+

9ρ22
4ε3

∫ 1

0

W 2
t dx

+

(
Dρ1
G
− ρ2

)∫ 1

0

(3W −Ψ)xt Φtdx, (4.13)

for any ε3 > 0.
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Proof. By differentiating F5 with respect to t, using (2.1)1, (2.1)2 and integrating by parts, we obtain

F ′5 (t) = −
∫ 1

0

G (Ψ− Φx)
2
dx+

∫ 1

0

αθtx (Ψ− Φx) dx− ρ2
∫ 1

0

(3W −Ψ)t Ψtdx

+

(
Dρ1
G
− ρ2

)∫ 1

0

(3W −Ψ)xt Φtdx.

Using Young’s inequality with ε3 > 0, we establish (4.13). �

Lemma 4.7. Let (Φ,Ψ,W, θ, z)be the solution of (2.1)-(2.2). Then the functional

F6 (t) :=

∫ 1

0

∫ 1

0

e−2τρz2 (x, ρ, t) dρdx (4.14)

satisfies, for some m, c > 0, the following estimate

F ′6 (t) ≤ −m
∫ 1

0

∫ 1

0

z2 (x, ρ, t) dρdx− c

τ

∫ 1

0

z2 (x, 1, t) dx+
1

τ

∫ 1

0

θ2txdx, (4.15)

Proof. By differentiating F6 with respect to t, using (2.1)5 and integrating by parts, we obtain

F ′6 (t) = −2

τ

∫ 1

0

∫ 1

0

e−2τρz (x, ρ, t) zρ (x, ρ, t) dρdx

= −2

∫ 1

0

∫ 1

0

e−2τρz2 (x, ρ, t) dρdx− 1

τ

∫ 1

0

∫ 1

0

∂

∂ρ

(
e−2τρz2 (x, ρ, t)

)
dρdx

≤ −m
∫ 1

0

∫ 1

0

z2 (x, ρ, t) dρdx− c

τ

∫ 1

0

z2 (x, 1, t) dx+
1

τ

∫ 1

0

θ2txdx.

This gives (4.15). �

The stability result reads as follows.

Theorem 4.8. Assume that G
ρ1

= D
ρ2

and (2.3) holds. Let U0 ∈ H, then there exist two positive constants c0 and
c1, such that the energy E (t) associated with problem (2.1)-(2.2) satisfies

E (t) ≤ c0E (0) e−c1t, t ≥ 0.

Proof. To establish the decay result, we assume G
ρ1

= D
ρ2

and define a Lyapunov functional L as follows

L (t) := δ1E (t) + F1 (t) + δ2F2 (t) + δ3F3 (t) + F4 (t) + δ4F5 (t) + F6 (t) ,

where δ1, δ2, δ3, δ4 are positive constants to be chosen properly later.
Using Cauchy-Schwarz inequality and the Poincaré’s inequality, one can easily see that all Fi (t) , i = 1, ..., 6

are bounded by an expression with the existing terms in the energy E (t). This leads to the equivalence of L (t)

and E (t).
Gathering the estimates in the previous lemmas and using∫ 1

0

θ2t dx ≤
∫ 1

0

θ2txdx,
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we arrive at

L′ (t) ≤ −
[
4βσδ1 − C3 −

9ρ22
4ε3

δ4

] ∫ 1

0

W 2
t dx−

D

2

∫ 1

0

W 2
xdx−

δ

2

∫ 1

0

θ2xdx

−
[
δ1C1 −

α2

D
δ2 − C5 (ε1) δ3 −

(
ρ3 +

σ2

4ε2

)
− α2

2G
δ4 −

1

τ

] ∫ 1

0

θ2txdx

−
[
G

2
δ4 − C4 −

G2

2D
δ2 − ε1δ3

] ∫ 1

0

(Ψ− Φx)
2
dx− ρ1

∫ 1

0

Φ2
tdx−

2γ

3

∫ 1

0

W 2dx

−
[
D

2
δ2 −

D

18
− ε1δ3 − ε2

] ∫ 1

0

(3Wx −Ψx)
2
dx−

[ρ2σ
2
δ3 − ρ2δ2 − (ρ2 + ε3) δ4

] ∫ 1

0

(3Wt −Ψt)
2
dx

−
[
δ1C2 +

c

τ
− ρ2µ

2
2

σ
δ3 −

µ2
2

2δ

] ∫ 1

0

z2 (x, 1, t) dx−m
∫ 1

0

∫ 1

0

z2 (x, ρ, t) dρdx. (4.16)

At this point we will choose all the constants, carefully. First, we take δ2 large enough and ε2 small, such that

D

2
δ2 −

D

18
− ε2 > 0.

Then we can take δ4 sufficiently large such that

G

2
δ4 − C4 −

G2

2D
δ2 > 0.

Next, we pick ε3 small and choose δ3 large enough such that

ρ2σ

2
δ3 − ρ2δ2 − (ρ2 + ε3) δ4 > 0.

After that, we then select ε1 so small that

D

2
δ2 −

D

18
− ε2 − ε1δ3 > 0 ,

G

2
δ4 − C4 −

G2

2D
δ2 − ε1δ3 > 0.

Finally, we choose δ1 so large such that

4βσδ1 − C3 −
9ρ22
4ε3

δ4 > 0 , δ1C2 +
c

τ
− ρ2µ

2
2

σ
δ3 −

µ2
2

2δ
> 0,

δ1C1 −
α2

D
δ2 − C5 (ε1) δ3 −

(
ρ3 +

σ2

4ε2

)
− α2

2G
δ4 −

1

τ
> 0.

On the hand, from the above, we deduce that for some positive constants α1, α2 one has

α1E (t) ≤ L (t) ≤ α2E (t) .

Therefore, (4.16) becomes
L′ (t) ≤ −cE (t) .

For c1 =
c

α2
, we get

L′ (t) ≤ −c1L (t) ,∀t ≥ 0. (4.17)

Integrating (4.17) over (0, t), yields
L (t) ≤ L (0) e−c1t,∀t ≥ 0. (4.18)

At last, estimate (4.18) gives the desired result Theorem 4.8 when combined with the equivalence of L (t) and
E (t). �
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