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Abstract. In this paper, we study the well-posedness and asymptotic behaviour of solutions to a laminated beam in
thermoelasticity of type III with delay term in the fourth equation. We first give the well-posedness of the system by using
semigroup method and Lumer-Philips theorem. Then, by using the perturbed energy method and construct some Lyapunov
functionals, we obtain the exponential decay result for the case of equal wave speeds.
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1. Introduction

In this work, we consider a coupled system of a laminated beam with thermoelasticity of type III and delay term
in the fourth equation, which has the form

P1Ptt + G (110 - @x)z = Oa (I,t) € (Oa 1) X (Oa +OO)7
P2 (3W—¢)tt—G(¢—<Px)_D(3W_w)m+049wZoa (.Z’,t) € (051) X (0,+OO), (1 ])
pawit + G (1/) - Soz) + %’7(‘) + %Bwt - Dwzm = 07 (:C,t) € (Oa 1) X (Oa +OO)7 .
P30 — 600 + 0 (3w — V)4 — H10tza (2,1) — pi2bias (x,t —7) =0, (2,t) € (0,1) x (0, +00),
with the following initial and boundary conditions
50(9370) :QDO(I)?@t(z?O) (I)a T e [07 1]a
P(x,0) = to(x),ve(x,0) = 1 (), z € [0,1],
w(z,0) = wo(x), w(x,0) = wl(x), z € [0,1],
9(%,0) = 00( )a Qt(l‘,O) = 01( )7 MS [07 ]-]a (1.2)
gtw (Z‘,t ) fO (x t_T)a ($7t) € (071) X (077-)
02(0,1) = o (1, 1) = 4(0,t) =9(1,1) =0, ¢ €[0,+00),
w(0,t) =w(1,t) = 65 (0,) = 0, (1,1) =0, ¢ €[0,+00),
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A laminated beam in thermoelasticity of type III with delay

where o(z,t) denotes the transverse displacement, ¢ (z, t) represents the rotation angle. w(z,t) is proportional
to the amount of slip along the interface at time ¢ and longitudinal spatial variable z. 6(z,t) is the differential

temperature, and p1, p2, p3, G, D, «, 3,7, §, 0, pu1 are positive constants, jio is a real number and 7 > 0 represents
-

Laminated beam, which is a relevant research subject due to the high applicability of such materials in the
industry, was firstly introduced by Hansen and Spies, see, for instance [15, 16]. Hansen [15] proposed a model of
laminated beam based on the Timoshenko system which is one of particular interest. In [16], Hansen and Spies
derived three mathematical models for two-layered beams with structural damping due to the interfacial slip. The
system is given by the following equations

P1Ptt + G (¢ - @x)w = Oa (J),t) € (07 1) X (07 —|—OO),
P2 (3w - ’(/))tt -D (SW - T/J)M -G (¢ - (pz) = 07 ($7t) € (Oa 1) X <Oa +OO),
3pawy + 3G (Y — @y) + dyw + 4pw; — 3Dw,, =0, (z,t) € (0,1) x (0, +00),

the coefficients p1, G, p2, D, 7y and 3 are positive constants and represent density, shear stiffness, mass moment
of inertia, flexural rigidity, adhesive stiffness, and adhesive damping parameter, respectively. The third equation
describes the dynamics of the slip. For asymptotic behavior results to laminated beams, we refer the reader to
[1, 19, 21, 22, 31] and the references therein. In [26], Rivera and Racke established several exponential decay
results for linear Timoshenko systems in classical thermoelasticity where the heat flux is given by Fourier’s law.
Since this theory predicts an infinite speed of heat propagation, many theories have emerged, to overcome this
physical paradox. Green and Naghdi [11-13], suggest a replacing Fourier’s law by the so- called thermoelasticity
of type III. This is for heat conduction modeling thermal disturbances as wave-like pulses traveling at finite speed.
For more details, see [2]. A large number of interesting decay results depending on the stability number have
been established, (see [9, 24, 25, 27] and references therein). W. Liu et al. [23] considered a coupled system of a
laminated beam with thermoelasticity of type III, which has the form

the time delay. Moreover, 4/ p% and are two wave speeds.

pl@tt"‘G(lp_pr)z =0, (.%‘,t) € (07 1) X (07 +OO)>
Ipl (3w - w)tt -D (3"‘) - w)m -G W - 9096) + aem = 07 (xvt) € <Ov 1) X <Ov +OO),
Iy wi — Dwyy + G (Y — @) + %ﬁlw + %Bzwt =0, (z,t) € (0,1) x (0, +00),
P20t — 6050 + v (Bw — 1),y — kbtze = 0, (x,t) € (0,1) x (0, +00),

they used the energy method to prove an exponential decay result for the case of equal wave speeds.

Time delay appears in many physical, biological and economic problems, because, in most instances, the
present state system does not depend only on the current state but also on some past occurrences. In recent years,
the control of PDEs with time delay effects has become an active area of research.The presence of delay may
be a source of instability. It may turn a well-behaved system into a wild one. For example, it was shown in
[4, 5, 14, 28, 32] that an arbitrarily small delay may destabilize a system that is uniformly asymptotically stable
in the absence of delay unless additional control terms have been used. The stability issue of systems with delay
is, therefore, of theoretical and practical great importance. In [29], Nicaise, Pignotti and Valein replaced the
constant delay term in the boundary condition of [28] by a time-varying delay term and obtained an exponential
decay result under an appropriate assumption on the weights of the damping and delay. Moreover, Kafini et al.
[18] studied the following Timoshenko system of thermoelasticity of type III with delay of the form

p1¢tt -K (¢r + ¢)x + M1¢t (xat) + :u2¢t (xat - T) = 07 (l’,t) € (Oa 1) X (Ov -l—OO),

prtt - b%wc + K (¢x + 1;[}) + Bet:c = 07 ('Tvt) c (Oa 1) X (Oa +OO)7
301 — 0040 + Y — kOipr = 0, (z,t) € (0,1) x (0,400),
under the initial and boundary conditions
9(70) = 90a 9t(70) = alvw(ﬂo) = /(/)07 T e [07 1]7
1/%(-70):1/11#25(-70):¢07¢t(-a0):¢1, S [Ov 1}7
¢t (xyt —7) = fo(x,t —7), te (0,7),

¢(07t) = ¢(17t) = ¢(07t) = w(Lt) =0, (Ovt) =0, (Lt) =0,t € [O,—I—OO),
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the energy of system decays exponentially in the case of equal wave speeds. For other related results, we refer
the reader to [3, 6-8, 17, 20]. Motivated by the above results, in the present work, we study the well-posedness
and asymptotic behaviour of solutions to the laminated beam (1.1)-(1.2) in thermoelasticity of type III with delay
term. The plan of the paper is as follows. In Section 2, we introduce some preliminaries. In Section 3, by
using semigroup method and Lumer-Philips theorem, we state and prove the well posedness of the system. In
Section 4, by using the perturbed energy method and construct some Lyapunov functionals, we then establish the
exponential result if and only if ,TGI = p%.

2. Preliminaries

In this section, we present some material that we shall use in order to present our results, to exhibit the dissipative
nature of the system (1.1), we introduce some new variables

S =y, U= , W=y,
and we introduce as in [28] the new variable
z(z,p,t) = Oy (x,t —Tp), (z,p,t) € (0,1) x (0,1) x (0, 00).
Then we have
Tz (@, p,t) + 2, (2, p,t) =0, (z,p,t) € (0,1) x (0,1) x (0, 00).

Therefore, system (1.1) takes the form

1Py + G (¥ —P,), =0,

P2 (3W — W), — G (W —d,) — D (3W — U),_+aby =0,
PSott — 005, — Nletxx — H22g (xa 1, t) +o (3W - \Ij)m =0,
Tz (,p,t) + 2, (2, p, 1) =0,

where (z,p,t) € (0,1) x (0,1) x (0, 00), with the initial data and boundary conditions
‘I)(.C(),O) :<I>o(x),<l>t(x,0) :(I)l(x)7 S [07 1];
U(x,0) = Vg(z), ¥s(x,0) = Uy (z), x €10,1],
W(z,0) = Wy(x), We(z,0) = Wi(x), x € [0,1],
9(1’,0) = OO(I)7 ot I,O) = el(x)a YIS [07 1]5 (2 2)
Z(xapa ):fO (iIJ,—Tp), (-%",p) (071> X (071>7 '
2 (x,0,t) = Oy (x,t), (z,t) € (0,1) x (0,00),
®,(0,t) = ©,(1,t) = V(0,¢) = ¥(1,¢) =0, t€[0,+00),
wW(0,t) =W (1,t) =0, (0,t) =6, (1,t) =0, te€]0,+00),
where
G
(I)O(x) = 1, CDl(m) = _pT (% - 90093)1? Uy (J?) = 1#17
4G « 4 4 3D
Ui (z) = —— (Yo — por) — — (Bwo — o), + — 012 — le - jwl + —Woza,
P2 P2 P2 P2 P2 P2
G 4y 43 D
W$:w7Wx:—— - z) — ——Wo — — W1 + —Wozx,
o(z) 1, Wi(x) P (Y0 — Yoz) 30,0 T 3,0 T e

where z € [0, 1]. From equations (2.1)4 and (2.2), we easily verify that

[t
ﬁ/o 0 (z,t)dx = 0.
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A laminated beam in thermoelasticity of type III with delay

So, if we set . .
0 (x,t) := 0 (x,t) —/ 0o (z) dx —t/ 01 (z) dx,
0 0
then simple substitution shows that (®, ¥, W, 6, z) satisfies (2.1), the boundary conditions in (2.2) and more
importantly
1
/ 0 (x,t)dz =0, Vt>0.
0

In this case, Poincaré’s inequality is applicable for 6. In the sequel, we work with # but for convenience, we write

0 instead. We will assume that
1> sl 2.3)

and show the well-posedness of the problem and that this condition is sufficient to prove the uniform decay of the

solution energy.

3. Well-posedness of the problem

In this Section, we prove the existence and uniqueness of solutions for (2.1)-(2.2). Introducing the vector function
U= (0,30 — U, W,0,8,,3W, — U, Wy, 0,,2)"

system (2.1)-(2.2) can be written as

a(t) _
SR =AUt >o, ) o
U(O) = UO = ((I)Oﬂ?’WU - \1}07W07907(I)173W1 - \Illvwlaelva) )

where A is a linear operator defined by

D,
W, — ¥
o tW i
3W — ¥ et
t
w G
0 o (¥ — @z),
A P = G D
3W, ' i} *(Qp_(bx)""*(BW_\I')wz_getw
W a fe 8D
Wt —*(1ﬁ—@z)—lW—th+*Wm
0y 5 P 3p2 3p2 P2
z e — = (BW —0),, + POy + 222, (2, 1,1)
P3 P3 P3 P3
—T_lzp

We consider the following spaces

L?(0,1) = {weL2(0,1):/1w(s)ds:O}, H!(0,1) = H' (0,1)n L2 (0,1),
0
H?(0,1) = {w e H?(0,1) : w, (0) = w, (1) =0} .
Let

H = H}(0,1) x H} (0,1) x Hg (0,1) x H} (0,1) x L2(0,1) x L?(0,1) x L*(0,1) x L2 (0,1)
xL*((0,1),L*(0,1)),
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be the Hilbert space equipped with the inner product
_ 1 o 1 o o 1 7 1 7
<U, U>H - Upl/ ®,B,dx + o—G/ (U — &) (V- B,)d + 407/ WWdz + 30/ pa Wi oda
0 0 0 0
1 1
+ops / (BW —0), (3T — T), de + a/ D (W — W), (3 ~ ), de
0 0

1 1 1 1 1
+30D / W W odx + aps / 0,0 dx + a5/ 0,0,dx + /\/ / zZdpdx,
0 0 0 o Jo

where ) is the positive constant satisfying

{Ta|#2| <A <Ta2u — |p2l), i |p2] <, (32)
A =Tapu, it |p2| = .

Then, the domain of A is given by

UeH|®,0ec H2(0,1)NHL(0,1),¥,W e H?(0,1)n H (0,1),
D (A) = \I/t,WteHO(O,l),d)t,GteHl( 1),(0+e Tu2) 0+ w6 € H2(0,1), . (3.3)
2,2z, € L?((0,1),L?(0,1)) , 2 (x,0) = by, (2)

Clearly, D (A) is dense in H.
We have the following existence and uniqueness result.

Theorem 3.1. Assume that Uy € H and (2.3) holds. Then there exists a unique solution U € C (RT;H) of
problem (3.1). Moreover, if Uy € D (A), then

UeC(RYDA)NC (RTH)).

Proof. The result follows from Lumer-Phillips theorem provided we prove that 4 is a maximal monotone
operator. For this purpose, we need the following two steps: A is dissipative and Id — A surjective.

Step 1. A is dissipative.

For any U € D (A), and using the inner product, we obtain

1 1 1 11
(AU, U),, = —406/ Widx — a,ul/ 07, + aug/ zz (x,1,t) Opdx — é/ / 2z, (x, p,t) dpdz.
0 0 0 T Jo Jo
3.4

By using integration by parts and the fact that z (x, 0) = 6y, (), the last term in the right-hand side of (3.4) gives

11 1 ! 1t
7/ / zz, (z, p, t) dpdx = 7/ 02 dx — 7/ 22 (z,1,t) d. (3.5)
o Jo 2 Jo 2 Jo

Substituting (3.5) in (3.4) yields

1
(AU, U),, ——406/ W da:—ozul/ Gm—&—aug/ Zg (a:,l,t)@tda:—i— / 02 dx
0

)\ 1

A 2
o 27 (z,1,t) dx. (3.6)

Also, using integration by parts and Young’s inequality we obtain, from (3.6)

1 1 1
alp A A alp
<AU,U>H§<0¢#1 '2227)/0 ofmdm(% |22>/0 (L) de— 406 [ Wedn
S

[V =)
MM
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A laminated beam in thermoelasticity of type III with delay

Keeping in mind condition (3.2), we observe that

A A
oy = 2l Aoy A alpl

> 0.
2 2T — 2T 2 =

Consequently, the operator A is dissipative.

Step 2. Id — A is surjective.

To prove that the operator Id — A is surjective, that is, for any F' = (fi,..., fo) € H, there exists U =
(®,3W — U, W,0, Dy, 3W; — U, Wy, 0,, 2) € D (A) satisfying

(Id— A)U =F, (3.7
which is equivalent to
- = fla
BW —¥) — BW =), = fo,
W — Wt = f37
60— et = f47
Pl(pt _G(I)aca: _G(?’W_\Ij)x+3GWx :p1f5a (3 8)
p2 (BW =), + GO, + G (BW — W) —3GW — D (3W — V) __ + aby, '
= p2fs,
psWi — G (3W — ¥) + 3GW — GO, + 2W + LW, — DW,, = pa fr,
p39t - 69wm +o (3W - lll)m; - /J/letmw — H2Zg (I, 17t) = p3f87
Tz + 2, = T fo.
From (3.8); —(3.8)4, we have
(I)t = — fla
BW —=V¥), = BW = V¥) — fo,
39
Wt =W - f3a ( )
Ht = 9 - f4.
By combining (3.9) and (3.8), it can be ®, 3WW — ¥ W, § shown that satisfy
p1® — G, — G(3W — \I/)w +3GW, = P1 (f1 + f5) R
p2(BW —¥)+GP, + G(BW — V) —-3GW —D(3W —-V¥)_ +ab,
= p2 (f2 + f6) + O f4,
psW — G (3W — W) + 3GW — G®, + 2W + LW — DW,,, 3.10)
= p2 (f3+f7)+%f37 '
p30 — 60,0 +0 (BW =) — 11100 — piozs (,1,1)
= p3 (fa + f3) + 00 fo + p10sz fu,
Tz + 2, = T fo.
Using the last equation in (3.10) we can find z with
z(x,0) =0, (z), € (0,1).
Following the same approach as in [28], we obtain, by using (3.10)s,
P
2(z,p,7) = Oz (x) 77 + Tepr-/ e’ fo (z, s) ds.
0
From (3.9)4, we obtain
P
z2(x,p,7) =077 —Opfa(x)e” TP 4+ Te_”’/ €% fo (x,8) ds, (3.11)
0
S
=]
MJM
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and in particular,
z(xz,1,7) =07 + zo (x,7),

where )

20 (,7) = =0z fa(x)e™ T + 7177 / €™’ fo (x, 8) ds.
0

In order to solve (3.8), we consider the following variational formulation
S o . . N\T
B <(<I>,3W —u,w,0", (<I>,3W _ \I/,W,e) ) e ((@,3W _ \Il,Wﬂ) ) , (.12)
where B : [H} (0,1) x Hg (0,1) x Hj (0,1) x H} (0, 1)]2 — R is the bilinear form
S
B((@,3w v, w,eT, (CD,SW— \I/,W,G)
1 o 1 } 1 o 1
- a/ GV — &,)(F — &, )da + a/ 1 &ddz + a/ p2 (3W — ) (3W - \11) dw + a/ ps00dz
0 0 0 0
1 1 1
+ (30pa + 4oy + 405)/ WWdz + a/ D(3W —0), (3W - \I/) dz + 30/ DW, W, dz
0 0 @ 0
1 1 ) 1 o
+a (64 p1+ e o) / 0,.0,.dx + aa/ (BW — W) 0dx + Ua/ 0, (3W — \I/) dz,
0 0 0
and G : H! (0,1) x H} (0,1) x H} (0,1) x H! (0,1) —> R is the linear form
. . \T
F ((@,3W _ \I/,W,H) )
1 . 1 o 1 )
o [ ptitf) @zt [ pa(fat fo) (3 - F)dot 30 [ pa(fat ) Wi
0 0 0
1 . 1 ) 1 } 1 )
+40/ BfsWdx + a/ o3 (fa+ fs) Odx + aa/ Oy foOdx + iy / Oy [40,0dx
0 0 0 0

1 1
+0a/ Oy f4 (3W — \if) dr — aps / Opz00dx.
0 0

Now, for
V = H!(0,1) x Hj (0,1) x Hg (0,1) x H; (0,1),

equipped with the norm
2 2 2 2 2 2 2
1(®,3W =W, W, 0)[ly, = [V = Do [y + 1[5 + [[BW = ¥), [ + Wally + 10115 + 11615,
one can easily see that B(.,.) and G(.) are bounded. Furthermore, using integration by parts, we obtain

B ((@,3W = w,W,0)",(®,3W — 0, W,0)") = c[|(2,3W — ¥, W, 0)[},

for some ¢ > 0. Thus, B(.,.) is coercive.
Consequently, by Lax-Milgram lemma, we obtain that (3.12) has a unique solution

®c H!(0,1), BW W)€ H}(0,1), WeH)0,1), 6cH!0,1).
The substitution of ®,3W — ¥, W and 0 into (3.9) yields
®, € H! (0,1), (3W —W), € H}(0,1), W, € Hy(0,1), 6, € H!(0,1).

e
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A laminated beam in thermoelasticity of type III with delay

Next, it remains to show that

® e (H2(0,1)NH;(0,1)), (3W—W)e (H*(0,1)NH;(0,1)),
W e (H?(0,1)NHj(0,1)), 60€ (H2(0,1)nHL(0,1)).

Taking (3W — 0, W, é) = (0,0,0) € HL(0,1) x HE (0,1) x HL(0,1) in (3.12), we get
T - T
B((@,3W —w,w,0)7, (@,0,0,0)
1 _ 1 _ B B
- a/ p1®d®dz + a/ G(~Du® — (3W — 0), & + 3W,d)du
0 0
1
o [ pr(fi+ fi) Bdn, VB e HLO1), G.13)
0

which implies
GPup =1 ® — G(BW — W), +3GW, — p1 (f1 + f5) € L7 (0,1). (3.14)

Consequently, by the regularity theory for the linear elliptic equations, it follows that
® e H*(0,1) N H}(0,1).

Moreover, (3.13) is also true for any ¢ € C* [0,1] C H! (0,1) . Hence, we have
1 1
| Gatado s [ (- GEW W), +3GW, (1 + f5)) 6dz =0
0 0

for all ¢ € C*[0,1]. Thus, using integration by parts and bearing in mind (3.14), we obtain
D, (1) 6 (1) = @, (0) ¢ (0) = 0,¥6 € C* [0,1].
Therefore, ®,, (0) = @, (1) = 0. Consequently, we obtain
®c H?(0,1)NH!(0,1).

In the same way, taking <<i>, W, é) =(0,0,0) € H! (0,1) x H} (0,1) x H!(0,1) in (3.12), we get
~ - T
B<(<I>,3W\I!,W,G)T,(O,?)W\I/,O,O) )
1
=0 | G(®,(3W —T)+BW —W) (3W —T) —3W (3W - ¥) ) dx
[ (o (o) (s ) (o )
1 B 5 1 ~ 5 1 5 N
+a/ p2(3W—\I!)(3W—\1/>dx+a/ D(3W—\Il)$(3W—\I/) dx+aa/ Hm(SW—\II>da:
0 0 r 0
1 B _ 1 B _
:a/ pg(fz-i-fg)(SW—\I/)dx—i—aa/ 8xf4<3W—\IJ)dx.
0 0
Recalling (3.8)5 and (3.8)4, we arrive at
1 ~ ~
/D(3W—\If)$ (BW—\I/) dz
0

x

_ /1 [p2fs — G (®y + (3W — W) — 3W) — aby, — ps (3W — 1),] (3W - \11) dr  (3.15)
0
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for all (SW - ﬁl) € H'(0,1), which implies
pafs — G (@ + (BW — W) — 3W) — aby, — p2 (3W — W), € L*(0,1).

Consequently, (3.15) takes the form
1
/ (=D (BW =), +G®, + G (BW — ¥) — 3GW + aby, + p2 (3W — ), — pa fg] (3W - \1/) dx = 0.
0

We obtain
-D@BW -¥),. +G (P, +GBW —¥) —3W) + ab, + p2 BW = T), = pa fs,

and
(3W — W) € H?(0,1) N Hy (0,1),

which gives (3.8)g. Similarly, we can show that
W e H?(0,1) N Hj (0,1),

and (3.8)7 are satisfied. Also, if we take (@, 3W — U, W) = (0,0,0)€ H! (0,1) x H} (0,1) x H} (0,1) in
(3.12), then using (3.8)2 and (3.8)4, we get

(5 + eiT,ug) 9383? + N’let:cx = pg@t - pgfg +o (3W — \If)m + ,LLanZO,

and we conclude that
((5 + e_Tug) 0+ 116, € H? (0,1).

Furthermore, it is obvious from
(5 + e_TM2) 0, + p16;, = p3/ 0.dx — pg/ fadx 4+ o (3W — W), + pszo,
0 0

that
(((S + e_T/’LQ) 9:r + ,uletx) (0) = ((6 + e_T,UQ) 99: + Mletm) (1) = Oa

then, we get
(6+e Tp2) 0+ piby € H2(0,1).

Finally, it follows, from (3.11), that
z(2,0) = 04 (¥) and z,2, € L* ((0,1),L*(0,1)).

Hence, there exists a unique U € D (\A) such that (3.7) is satisfied, the operator Id — A is surjective. Moreover,
it is easy to see that D (A) is dense in H.
At last, by Lumer-Philips theorem (see [10, 30]) we have the well-posedness result stated in Theorem 3.1. W

4. Exponential stability

In this section, we state and prove our stability result for the solution of problem (2.1)-(2.2), by using the
multiplier technique. We first introduce the following energy functional

1
E(t) =3 f {apl(pg oG (U — ®,) + 0py (3W — )2 + 6D (3W — 1)? wh
+30p2W2 + doyW?2 + 30 DW2 + aps07 + adh? + A fol 22 (z, p, t) dp} dx. .

To achieve our goal, we need the following lemmas.
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Lemma 4.1. Let (O, U, W, 0, z) be the solution of problem (2.1)-(2.2). Then the energy functional E(t) defined
by (4.1) satisfies

d 1 1 1
—E(t)= —4ﬂa/ Widx — 01/ 02 dx — 02/ 22 (2,1,t)dx <0, 4.2)
dt 0 0 0
where i \ \ i
H2| & Ua| o
= —_ _—— > = — — > .
Gi=ma-"F5—=5-20 , G=g —"——20

Proof. Multiplying the first four equations in (2.1) by 0®;, o (3W — ¥),, 36W,, b, respectively, then,

A

integrating over (0, 1), and multiplying (2.1)5 by —z and integrating over (0, 1) x (0, 1) with respect to p and z,
T

summing them up, we obtain

jt” / [p1q>§ + G (U —0,)% + po (BW; — U)> + D (3W, — U,)% 4 3p, W2 + 4yW2 + 3DW§} dx
dao (! 9 9
+£§/ (p3b; + 662) dx+£§// (z,p,t) dpdx
1 1
= —4f0c Wfd:n - ula/ 07, dx + ,ugoz/ Orzy (x,1,t) do — é/ / zz, (z, p, t) dpdx. (4.3)
0 0 0 0

The last two terms of the right side of (4.3) can be estimated as follows.

\ o AL AL
77/ / zzp (x, p, t) dpdx = —/ 02 dx — —/ 22 (z,1,t) dx
T Jo 0 2T 0 2T 0

1 1 1
uga/ Orzy (x,1,t) dx < %/ 07 dx + %/ 2% (x,1,t) dx.
0 0 0

Hence,
1
dE()< 460/ Widx — ua—lm - — /9 )\_\/,L2|o¢ /zz(x,l,t)da:.
dt 2 0
Using (3.2), we obtain the result. [ |

Lemma 4.2. Let (9, U, W, 0, 2) be the solution of problem (2.1)-(2.2). The functional

1 1
Fi(t) := —py / DD dx + po WWedzx (4.4)
0 0

satisfies the estimate

1 1 1 1 1
2 D
Fl(t) < —pl/ @fdx—%/ W2dx—5/ Wﬁdm+03/ Wt2dx+C4/ (U — ®,)° da
0 0 0 0 0

D [t 5
13 (3W, — ¥, )" dx, 4.5)
where ) ) §
44 9G 3G
03—[)24-?, C4_G+ﬁ+4fy'
S
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Proof. By differentiating F; with respect to ¢, using (2.1), (2.1)3 and integrating by parts, we obtain
Fy(t) = —p1/ P d:c—G/ (T - )dw+p2/ Wde—D/ WQda;—G/ W (¥ —&,)dx
0

4y 2
- Wodx — — WWdx.
3/0 v 3/0 te

Note that . . .
fG/ (I)m(\IfffI)r)dZ’:G/ (\I/fcbz)defG/ U (U —d,)dx.
0 0 0

Then, we deduce that
1 1 1 1
F’()——pl/ <1>§dx+G/ (\I/—(I)I)2dm—G/ \I/(\Il—q)gc)dx—i-pg/ Wde—D/ W2dx
0 0 0 0 0

1 1 1
4 4
—G/ W(\Ilf@m)d:cfl/ W%lef/ WW,dz.
0 3 Jo 3 Jo
Making use of Young’s and Poincaré inequalities, we obtain

1 ) 1 1 D 1
F{()g—pl/ @fdx—l/ W2d3:—D/ ngd:c—k%/ \Ifﬁdm+<p2+)/ Widx
0 0 0

2 2
<G+9G+3G)/ (U — ®,)° da.
4y 0

Note that ) ) . )
/ Vidr = / (U — 3W, + 3W,)  da < 2/ (3W, — ¥,)* + 18/ W2dz.
0 0 0 0
Then the estimate (4.5) is established. |
Lemma 4.3. Let (P, ¥, W, 0, z) be the solution of problem (2.1)-(2.2). The functional
1
Fy (t) := pg/ (BW — W) (3W — W), dx (4.6)
0
satisfies the estimate
! D ! 2 ! 2
F(t) < 5 (BW, — W) da+ps | (3W, — ¥,)* dz —|— — (U —&,)% da —|— — 9 dz,
0 0
“.7

Proof. By differentiating F5 with respect to ¢, using (2.1), and integrating by parts, we get

1
Fy(t G/ (BW — ) (¥ — fI))dx—D/ (3W, w)de—l—a/ (3W, — U,) Oydx
0

1
+p2/ (3W, — 0,)? da.
0
|

Using Young’s and Poincaré inequalities, we obtain the result

Lemma 4.4. Let (O, U, W, 0, 2) be the solution of problem (2.1)-(2.2). The functional

1 T 1
Fy (1) := P2/)3/ (W — ‘I’)t/ 0r (y,t) dydx — 5/)2/ 0. BW — ¥) dx (4.8)
0 0 0
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satisfies the estimate

1 1 1 1
Fl(t) < —% i (3W—\If)fdx+gl/o (T — @,)%dx + Cs (51)/0 Qitdaﬁ—&-sl/o (BW, — 0,)? dz

g

2 1
+@/ 22 (2,1,1) da, (4.9)
0

forany 1 > 0, where
2 2 2 2 2 2 92
aps | p2py | D7p3  0°p;  G7p3
C = — .
e P T
Proof. By differentiating F3 with respect to ¢, using (2.1), (2.1), and integrating by parts, we obtain

1 x 1
(1) = p3/0 G (- a,) /0 6, (y,1) dydz — m/o 6. (3W — W) da
rx=1

T 1 1
+ [pg (=GO +D@BW - V), — ab,) / 0 (y,t) dy} + aps / 02dx — p20/ (3W — \Il)f dx
0 0 0

=0

1 1 1
+papi / (BW = V), Odx — Dps / 0, (BW — W), dx + papz / BW = VW), z(x,1,t) dx.
0 0 0

1 d 1
/Ht(y,t)dy=%/ 0 (y,t)dy =0,
0 0

then, by Young’s and Poincaré inequalities, with €; > 0 to obtain (4.9). |

Note that

Lemma 4.5. Let (9, ¥, W, 0, z) be the solution of problem (2.1)-(2.2). The functional
! 1
Fy(t) := / {p39t9 + 719:% +o(3W —-¥), 9} dx (4.10)
0
satisfies the estimate

5 [ 2 1 1
Fl(t) < _7/ 02dz + ( ps + —— / 9t2d1:+€2/ (W - 0)? dx + 3 22 (2,1,t) dz, (4.11)
2 0 452 0 0 25
for any 5 > 0.
Proof. By differentiating F; with respect to ¢, using (2.1)4 and integrating by parts, we obtain

1 1 1 1
Fi(t) = 00,,0dx + / p30idr + / pazy (z,1,t) 0dr + / o(BW — W) 6,dx.

0 0 0 0

Using Young’s inequality with €5 > 0, we establish (4.11). |
Lemma 4.6. Let (O, U, W, 0, z)be the solution of (2.1)-(2.2). Then the functional

1 1
D
Fs (t) := pg/ BW =V¥), (¢, —¥)dr + %/ BW —Vv) ddx 4.12)
0 0
satisfies the estimate
1 1
Fg(t)g—g (U — ®,)° da +—/0 dx + p2+€3)/ (BW — )7 9p2/W2
0 0
D
+ (C’;l —pQ)/ (BW — 0)_, ®,dz, (4.13)
0
forany g3 > 0.
S
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Proof. By differentiating F5 with respect to ¢, using (2.1), (2.1)2 and integrating by parts, we obtain
1 1 1
FL(t) = —/ G (V- @I)der/ by, (U — &) de — p2/ (3W — W), U, dx
0 0 0
D 1
G 0
Using Young’s inequality with €3 > 0, we establish (4.13). |

Lemma 4.7. Let (O, ¥, W, 0, z)be the solution of (2.1)-(2.2). Then the functional

1,1
Fs (t) := / / e P22 (x, p,t) dpda (4.14)
0 Jo
satisfies, for some m, c > 0, the following estimate
1,1 c [l 1t
F§(t) < fm/ / 22 (z, p,t) dpdz — f/ 22 (x,1,t) da + f/ 02, dz, (4.15)
0o Jo T Jo T Jo

Proof. By differentiating Fg with respect to ¢, using (2.1)5 and integrating by parts, we obtain
9 1 gt
Fé (t) = 77/ / 6727-;)2 (l’,p,t) Zp (I,pﬂf)dpdl‘
T Jo Jo
1 1 1 /1o
= —2/ / e %P2 (x, p,t) dpda — f/ / — (6_27”22 (z,p,t)) dpdx
o Jo T Jo Jo Op

1,1 c [t 1!
—m/ / 2% (z,p,t) dpdx — = / 2% (x,1,t) do + = / 07, dz.
0o Jo T Jo T Jo

This gives (4.15). |

IA

The stability result reads as follows.

Theorem 4.8. Assume that % = p% and (2.3) holds. Let Uy € H, then there exist two positive constants co and
c1, such that the energy E (t) associated with problem (2.1)-(2.2) satisfies

E (t) S C()E (0) e_clt, t Z 0.

Proof. To establish the decay result, we assume < 22 and define a Lyapunov functional £ as follows

P1 P
L(t):=0FE )+ Fi(t)+ 62F (t) + 03F3 (t) + Fa (t) + 04F5 (t) + Fs (1),
where 61, d2, d3, d4 are positive constants to be chosen properly later.
Using Cauchy-Schwarz inequality and the Poincaré’s inequality, one can easily see that all F; (t),i =1,...,6
are bounded by an expression with the existing terms in the energy F (t). This leads to the equivalence of L (t)
and E (t).
Gathering the estimates in the previous lemmas and using

1 1
/Htdeg/ 02 dx,
0 0

32
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we arrive at

r 2 1 1 1
D 5
L(t) < — |4B0d; — C5 — 9”254} / Wide — = [ W2dx — f/ 02dz
L de3 0 2 Jo 2 Jo
2

r 2
—16:C1 — %52 — (5 (81) 03 — (pg + :;2)

a? 1 ! 9
| “3a0 ] [ e

— G§4—C4—G52—€153:|/ (\I/—(I),J;)zdl’—p1/ ‘I’fdx—% W2d£E

L 2 2D 0 0 0
'D D 1 1

— 562 — ﬁ — 6153 - €2:| / (3Wx - \I/x)2 dr — [%63 — ,02(52 — (,02 + 53) 54} / (3Wt — \IJt)Q dx
L 0 0
r 2 2 1 1,1

— 1610y + £ _f2h 03 — lb] / 2% (x,1,t) dx — m/ / 2% (z, p,t) dpdz. (4.16)
L T o 20 | Jo o Jo

At this point we will choose all the constants, carefully. First, we take - large enough and €5 small, such that

D D
552—T8—52>0.

Then we can take J4 sufficiently large such that

G G?
564 - C4 - E(SQ > 0

Next, we pick €3 small and choose §3 large enough such that

o
%53 — pada — (p2 +€3) 04 > 0.

After that, we then select 1 so small that

D D 2
52_7_52_5153>0’ €64—C4—G

= 2 Sy — 2165 > 0.
2 18 2 9p%2 T 1% >

Finally, we choose ¢; so large such that

952 2 2
4B0517037ﬁ54>0, 6102+Efp2'u253f&>07
2 des 7 ) 26
o o « 1
0101 — 502 = U5 (€1) 03 — (ps + 452) —5g% - >0

On the hand, from the above, we deduce that for some positive constants 1, cg one has
arE(t) < L(t) < axE (t).

Therefore, (4.16) becomes
L' (t) < —cE(t).

c
For c; = —, we get
(&%)

L () < —c1L(t),Vt>0. 4.17)
Integrating (4.17) over (0, t), yields
L(t) < L(0)e vt >0. (4.18)
At last, estimate (4.18) gives the desired result Theorem 4.8 when combined with the equivalence of £ (t) and
E (1). [
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