MALAYA JOURNAL OF MATEMATIK

Malaya J. Mat. **10(01)**(2022), 90–97. http://doi.org/10.26637/mjm1001/008

A study on Ss-Semilocal modules in view of singularity

ESRA ÖZTÜRK SÖZEN*1

¹ Faculty of Sciences and Arts, Department of Mathematics, Sinop University, Sinop, Turkey.

Received 20 September 2021; Accepted 04 December 2021

Abstract. In this paper, we define weakly δ_{ss} - supplemented modules and give a characterization for them named with δ_{ss} semilocal modules. In particular, we determine the suitable conditions for a δ_{ss} - semilocal module to be δ -semilocal and ss-semilocal, respectively. In addition to these we supply contrast examples pointing the relations are proper between these classes of modules.

AMS Subject Classifications: 16D10, 16D99, 16L99.

Keywords: semisimple module, (weakly) δ_{ss} - supplemented module, δ_{ss} - semilocal module, δ_{ss} -perfect ring.

Contents

1	Introduction and Background	90
2	Weakly δ_{ss} -supplemented modules	91
3	δ_{ss} -Semilocal modules	92
4	Acknowledgement	96

1. Introduction and Background

Firstly, note that throughout this study the symbols R and M will denote an associative ring with identity and a unitary left R-module, respectively. The notations $A \leq M$ and $A \leq_{\oplus} M$ will indicate that A is a submodule of M and A is a direct summand of M. A submodule A of M is called *essential* (denoted by $A \leq M$) if $A \cap K \neq \{0\}$ for any proper submodule K of M except for $\{0\}$. The intersection of all essential submodules of a module M is denoted by Soc(M) which is the largest semisimple submodule of M. A submodule $B' \leq M$ is called a *complement* of A in M if it is maximal in the set of submodules $B \leq M$ with $A \cap B = \{0\}$. A submodule A of M is called *small* (denoted by $A \ll M$) if $A + K \neq M$ for any proper submodule K of M. The sum of all small submodules of a module M is denoted by Rad(M). A (*weak*) supplement submodule T of A in M is a submodule such that A + T = M and $A \cap T \ll T$ ($A \cap T \ll M$). A module M is called (*weakly*) supplemented if every submodule of M has a (weak) supplement in M [14].

In [15] and [6], the authors updated the small and supplemented modules via singularity as follows. A submodule $A \leq M$ is δ -small if and only if for all submodules $X \leq M$: if A + X = M, then $M = Y \oplus X$ for a projective semisimple submodule Y of A. Also the submodule A is called δ -small in M if $A + K \neq M$ for every proper submodule K of M with $\frac{M}{K}$ is singular (denoted by $A \ll_{\delta} M$) and the sum of all δ -small submodules of M denoted by $\delta(M)$. Clearly $Rad(M) \leq \delta(M)$.

A δ -supplement submodule T of A in M is a submodule such that A + T = M and $A \cap T \ll_{\delta} T$. A (generalized) weak δ -supplement submodule T of A in M is a submodule such that A + T = M and $(A \cap T \leq A)$

^{*}Corresponding author. Email address: esozen@sinop.edu.tr (Esra ÖZTÜRK SÖZEN)

 $\delta(M)$) $A \cap T \ll_{\delta} M$ [11]. The module M is called (weakly) δ -supplemented, if every submodule of M has a (weak) δ -supplement in M. Clearly every (weakly) supplemented module is (weakly) δ -supplemented. In [5], the authors introduced ss-supplemented modules which are stronger than supplemented modules. A module M is called ss-supplemented if for every submodule A of M there exists a submodule T of M such that A+T=M and $A \cap T \leq Soc_s(T)$ where $Soc_s(T) = Soc(T) \cap Rad(T)$. In [9], the authors generalized ss-supplemented modules by taking $Soc_s(M)$ instead of $Soc_s(T)$ and gave a characterization for these modules named with ss-semilocal. In [13] the authors generalized (amply) ss-supplemented modules in view of singularity and introduced (amply) δ_{ss} -supplemented modules and δ_{ss} -supplemented rings.

In this article, in the light of the given studies we define weakly δ_{ss} -supplemented modules and obtain a new characterization for them named with δ_{ss} -semilocal modules. A module M is called δ_{ss} -semilocal whenever $\frac{M}{Soc_{\delta}(M)}$ is semisimple where $Soc_{\delta}(M) = Soc(M) \cap \delta(M)$. A module M is called δ -semilocal if $\frac{M}{\delta(M)}$ is semisimple. As $Soc_{\delta}(M) \leq \delta(M) \leq M$, every δ_{ss} -semilocal module is δ -semilocal and every ss-semilocal module is δ_{ss} -semilocal. We give examples on the converse implications might not be true. Also, we investigate suitable conditions when δ_{ss} -semilocal modules are δ -semilocal and ss-semilocal. In particular, we obtain new characterizations for δ_{ss} -semilocal rings.

For undefined algebraic structures used here, such as δ -(semi)perfect and δ_{ss} -perfect rings, we refer to [15] and [13], respectively.

2. Weakly δ_{ss} -supplemented modules

A module M is called weakly δ -supplemented if for any submodule A of M there exists a submodule T of M such that A + T = M and $A \cap T \ll_{\delta} M$ [11]. By means of this concept and the usuful lemma given in the following we will define weakly δ_{ss} -supplemented modules as a strongly version of weakly δ -supplemented modules.

Lemma 2.1. Let $f : A \longrightarrow B$ be a module homomorphism. Then $f(Soc_{\delta}(A)) \leq Soc_{\delta}(B)$. In particular, we have $Soc_{\delta}(A) \leq Soc_{\delta}(B)$ whenever $A \leq B$.

Proof. As f is a homomorphism we have $f(Soc(A)) \leq Soc(B)$ and $f(\delta(A)) \leq \delta(B)$. Therefore we get $f(Soc_{\delta}(A)) = f(Soc(A) \cap \delta(A)) \leq f(Soc(A)) \cap f(\delta(A)) \leq Soc(B) \cap \delta(B) = Soc_{\delta}(B)$. In particular, if the inclusion map from A to B is taken instead of f, then $Soc_{\delta}(A) \leq Soc_{\delta}(B)$ is obtained clearly.

Definition 2.2. A module M is called weakly δ_{ss} -supplemented if for any submodule A of M there exists a submodule T of M such that A + T = M and $A \cap T \leq Soc_{\delta}(M)$.

It is a clear fact that every weakly δ_{ss} -supplemented module is weakly δ -supplemented but not vice versa. To verify this with an example we need the following lemma.

Lemma 2.3. Let M be a weakly δ -supplemented module with Soc(M) = 0. Then M = 0.

Proof. Let $A \leq M$. By hypothesis there exists a submodule T of M such that A + T = M and $A \cap T \leq Soc_{\delta}(M)$. Since $Soc_{\delta}(M) = Soc(M) \cap \delta(M) = 0 \cap \delta(M) = 0$ then we have $A \cap T = \{0\}$. Therefore, M is a semisimple module as each submodule is a direct summand. Hence M = Soc(M) = 0.

Example 2.4. It is a known fact that \mathbb{Z} -module \mathbb{Q} is weakly δ -supplemented as it is weakly supplemented [3, 17.15 Example, 213p.]. On the orher hand, it is not weakly δ_{ss} -supplemented by Lemma 2.3.

Now we give a characterization lemma for weak δ_{ss} -supplement submodules of a module.

Lemma 2.5. Let M be a module and $A, T \leq M$. Then the following implications are equivalent:

1. M = A + T and $A \cap T \leq Soc_{\delta}(M)$.

Esra ÖZTÜRK SÖZEN

- 2. T is a weak δ -supplement of A in M and $A \cap T$ is semisimple.
- 3. T is a generalized weak δ -supplement of A in M and $A \cap T$ is semisimple.

Proof. (1) \Rightarrow (2) : By hypothesis we have M = A + T, $A \cap T \leq \delta(M)$ and $A \cap T \leq Soc(M)$ as $Soc_{\delta}(M)$ is a submodule of both $\delta(M)$ and Soc(M). Therefore, $A \cap T$ is semisimple and it is also δ -small in M by [13, Lemma 2.2].

 $(2) \Rightarrow (3)$: It is clear.

 $(3) \Rightarrow (1)$: By hypothesis we have M = A + T, $A \cap T \leq \delta(M)$ and $A \cap T$ is semisimple. Thus, $A \cap T \leq Soc(M)$. Hence, $A \cap T \leq Soc(M) \cap \delta(M) = Soc_{\delta}(M)$.

We say that a module M is called δ -semilocal if $\frac{M}{\delta(M)}$ is semisimple. And it is proven in [10, Theorem 3.7] that a module M with $\delta(M) \ll_{\delta} M$ and $\frac{M}{\delta(M)}$ is singular is δ -semilocal if and only if M is a generalized weakly δ -supplemented module. Motivated by this we give a similar characterization for our modules in the following theorem.

Theorem 2.6. The following implications are equivalent for a module M:

- 1. $\frac{M}{Soc_{\delta}(M)}$ is semisimple.
- 2. *M* is weakly δ_{ss} -supplemented.
- 3. *M* is a direct sum of two submodules M_1 and M_2 such that M_1 and $\frac{M_2}{Soc_{\delta}(M)}$ are semisimple, also $Soc_{\delta}(M) \leq M_2$.

Proof. (3) \Rightarrow (1) : Let $M = M_1 \oplus M_2$. Then $\frac{M}{Soc_{\delta}(M)} = \frac{M_1 + Soc_{\delta}(M)}{Soc_{\delta}(M)} \oplus \frac{M_2}{Soc_{\delta}(M)}$ is semisimple as a direct sum of two semisimple modules.

 $(1) \Rightarrow (2)$: For any $A \leq M$, $\frac{A + Soc_{\delta}(M)}{Soc_{\delta}(M)} \oplus \frac{T}{Soc_{\delta}(M)} = \frac{M}{Soc_{\delta}(M)}$ can be written by hypothesis. Then, M = A + T and by modularity $(A + Soc_{\delta}(M)) \cap T = (A \cap T) + Soc_{\delta}(M) = Soc_{\delta}(M)$ are obtained. Thus, $A \cap T \leq Soc_{\delta}(M)$ is got.

 $(1) \Rightarrow (3): \text{Let } M_1 \text{ bgot}$ $(1) \Rightarrow (3): \text{Let } M_1 \text{ be a complement of } Soc_{\delta}(M). \text{ Then, } M_1 \cong \frac{M_1 + Soc_{\delta}(M)}{Soc_{\delta}(M)} \leq_{\oplus} \frac{M}{Soc_{\delta}(M)} \text{ and so } M_1 \text{ is semisimple as it is isomorphic to a submodule of a semisimple module. Additionally, there exists a semisimple direct summand <math>\frac{M_2}{Soc_{\delta}(M)}$ satisfying $\frac{M_1 + Soc_{\delta}(M)}{Soc_{\delta}(M)} \oplus \frac{M_2}{Soc_{\delta}(M)} = \frac{M}{Soc_{\delta}(M)}. \text{ Clearly, } M = M_1 + M_2. \text{ Furthermore, since } Soc_{\delta}(M) = (M_1 + Soc_{\delta}(M)) \cap M_2 = Soc_{\delta}(M) \oplus (M_1 \cap M_2) \text{ by modularity. Then we get } M_1 \cap M_2 \leq Soc_{\delta}(M) \text{ and } M_1 \cap M_2 \leq M_1 \text{ which means } M_1 \cap M_2 \leq M_1 \cap Soc_{\delta}(M) = 0 \text{ by the property of a complement. Thus } M = M_1 \oplus M_2. \text{ For the remaining part of the proof let us show that } Soc_{\delta}(M) \leq M_2. \text{ As } M_1 \text{ is the complement of } Soc_{\delta}(M) \text{ we have } M_1 \oplus Soc_{\delta}(M) \leq M = M_1 \oplus M_2 \text{ [3, 1.11(1)]}. \text{ For the second injection map } i_2: M_2 \longrightarrow M_1 \oplus M_2, i_2^{-1}(M_1 \oplus Soc_{\delta}(M)) \leq M_2 \text{ by [1, Theorem 9.1(3)]}.$

 $i_{2}: M_{2} \longrightarrow M_{1} \oplus M_{2}, i_{2}^{-1}(M_{1} \oplus Soc_{\delta}(M)) \trianglelefteq M_{2} \text{ by [1, Theorem 9.1(3)].}$ $2 \Rightarrow 1: \text{For any } \frac{A}{Soc_{\delta}(M)} \le \frac{M}{Soc_{\delta}(M)} \text{ we have } A + T = M \text{ and } A \cap T \le Soc_{\delta}(M) \text{ for a submodule } T \le M$ by hypothesis. Thus $\frac{A}{Soc_{\delta}(M)} \oplus \frac{T+M}{Soc_{\delta}(M)} = \frac{M}{Soc_{\delta}(M)}, \text{ that is, } \frac{M}{Soc_{\delta}(M)} \text{ is semisimple.}$

From now on, we will call a module M is δ_{ss} -semilocal whenever M satisfies one of the equvalent conditions of the theorem given above.

3. δ_{ss} -Semilocal modules

In this part we will present the fundamental properties of our modules firstly. Before of all we need a useful lemma.

Lemma 3.1. For a given family of *R*-modules $\{M_i\}_{i \in I}$, $Soc_{\delta}(\bigoplus_{i \in I} M_i) = \bigoplus_{i \in I} Soc_{\delta}(M_i)$.

Proof. It is clear by Lemma 2.1 and [3, 6.2(3)].

Theorem 3.2. Let $\{M_i\}_{i \in I}$ be a family of δ_{ss} -semilocal modules. Then $M = \bigoplus_{i \in I} M_i$ is δ_{ss} -semilocal.

Proof. As each $\frac{M_i}{Soc_{\delta}(M_i)}$ is semisimple, $\frac{M}{Soc_{\delta}(M)} = \frac{\bigoplus_{i \in I} M_i}{Soc_{\delta}(\bigoplus_{i \in I} M_i)} = \frac{\bigoplus_{i \in I} M_i}{\bigoplus_{i \in I} Soc_{\delta}(M_i)} \cong \bigoplus_{i \in I} \frac{M_i}{Soc_{\delta}(M_i)}$ is also semisimple by [4, Cor. 8.1.5] and Lemma 3.1. Hence, M is is δ_{ss} -semilocal.

Corollary 3.3. The sum of δ_{ss} -semilocal modules is also δ_{ss} -semilocal.

Theorem 3.4. If M is a δ_{ss} -semilocal module, then so is any homomorphic image.

Proof. Let us consider the module epimorphism $h: M \longrightarrow K$ where M is δ_{ss} -semilocal. Then the homomorphism $\overline{h}: \frac{M}{Soc_{\delta}(M)} \longrightarrow \frac{K}{Soc_{\delta}(K)}$ defined by $\overline{h}(x + Soc_{\delta}(M)) = h(x) + Soc_{\delta}(K)$ for every $x + Soc_{\delta}(M) \in \frac{M}{Soc_{\delta}(M)}$ is epic. As $\frac{M}{Soc_{\delta}(M)}$ is semisimple, then the homomorphic image $\frac{K}{Soc_{\delta}(K)}$ is also semisimple by [4, Cor. 8.1.5], that is h(M) = K is δ_{ss} -semilocal.

Proposition 3.5. Let M be a δ_{ss} -semilocal module and A be a submodule of M satisfying $\delta(A) = A \cap \delta(M)$. Then A is δ_{ss} -semilocal.

Proof. Let $B \leq A$. Then there exists a submodule T of M such that B + T = M and $B \cap T \leq Soc_{\delta}(M)$. Following this $A = (B + T) \cap A = B + (T \cap A)$ is obtained by using modularity. Now we will verify that $T \cap A$ is a weak δ_{ss} -supplement of B in A. As $B \cap (T \cap A) = B \cap T \leq Soc_{\delta}(M) \leq \delta(M)$ we have $B \cap (T \cap A) \leq \delta(M) \cap A = \delta(A)$. Thus, $B \cap T = B \cap (T \cap A) \leq Soc(A) \cap \delta(A) = Soc_{\delta}(A)$. Hence, A is δ_{ss} -semilocal.

Corollary 3.6. Every δ_{ss} -supplement (and so δ -supplement) submodule of a δ_{ss} -semilocal module is δ_{ss} -semilocal.

Recall that a module K is said to be M-generated, if there exists an epimorphism from $M^{(I)}$ to K where I is an index set.

Lemma 3.7. Let M be a module. M is δ_{ss} -semilocal if and only if every M-generated module is δ_{ss} -semilocal.

Proof. (\Longrightarrow) : It is clear by Corollary 3.3 and Theorem 3.4. (\Leftarrow) : It is clear.

In general, every amply δ_{ss} -supplemented module is δ_{ss} -supplemented [13]. now it is possible to think whether the analogous idea is valid for our modules. In the following proposition we show that δ_{ss} -semilocal modules already contain this property by themselves.

Proposition 3.8. Let M be a δ_{ss} -semilocal module and A, $T \leq M$ with A + T = M. Then A has a weak δ_{ss} -supplement in M contained by T.

Proof. As $A \cap T \leq M$, there is a submodule $B \leq M$ such that $(A \cap T) + B = M$ and $(A \cap T) \cap B \leq Soc_{\delta}(M)$ by hypothesis. By modularity, we have $T = T \cap M = T \cap [(A \cap T) + B] = (A \cap T) + (B \cap T)$. Thus, $M = A + T = A + (A \cap T) + (B \cap T) = A + (B \cap T)$ and $A \cap (B \cap T) = (A \cap B) \cap T \leq Soc_{\delta}(M)$. Hence, $B \cap T$ is a weak δ_{ss} -supplement of A in M contained by T.

As we pointed before every δ -semilocal module is δ_{ss} -semilocal. Under suitable conditions the converse might be provided as follows.

Proposition 3.9. Let M be a δ -semilocal module with $\delta(M) \leq Soc(M)$. Then M is δ_{ss} -semilocal.

Proof. Clearly, $Soc_{\delta}(M) = \delta(M)$ as $\delta(M) \leq Soc(M)$. Therefore, $\frac{M}{\delta(M)} = \frac{M}{Soc_{\delta}(M)}$ is semisimple. Hence, M is δ_{ss} -semilocal by Theorem 2.6.

Due to the consequences of the proposition given in the following we will obtain the ring characterization of δ_{ss} -semilocal modules in the next.

Esra ÖZTÜRK SÖZEN

Proposition 3.10. Let M be a δ_{ss} -semilocal module and $A \ll_{\delta} M$. Then $A \leq Soc_{\delta}(M)$.

Proof. By hypothesis there exists a submodule T of M such that A + T = M and $A \cap T \leq Soc_{\delta}(M)$. As $A \ll_{\delta} M$ we have $Y \oplus T = M$ for a projective semisimple submodule Y of A. From modularity we get $Y \oplus (T \cap A) = A$ and so A is semisimple as a direct sum of two semisimple modules. Hence $A \leq Soc(M) \cap \delta(M) = Soc_{\delta}(M)$.

Corollary 3.11. Let M be a δ_{ss} -semilocal module and $\delta(M) \ll_{\delta} M$. Then $\delta(M) \leq Soc(M)$.

As finitely generated modules have δ -small δ -radical we have the following corollary.

Corollary 3.12. Let M be a finitely generated module. Then M is δ_{ss} -semilocal if and only if M is δ -semilocal and $\delta(M)$ is semisimple.

Proof. (\Longrightarrow) : By hypothesis M is weakly δ_{ss} -supplemented and so it is weakly δ -supplemented. hence it can be shown that M is δ -semilocal by the similar way from [7, Prop. 2.1]. Also $\delta(M) \leq Soc(M)$ by Corollary 3.11 as $\delta(M) \ll_{\delta} M$.

(\Leftarrow) : Let M be δ -semilocal with a semisimple δ -radical. Then $\delta(M) \leq Soc(M)$. Hence M is δ_{ss} -semilocal from Proposition 3.9.

Definition 3.13. A module M is called weakly δ -radical δ -supplemented if every submodule of M containing $\delta(M)$ has a weak δ -supplement in M.

Theorem 3.14. Let M be a module with $\delta(M) \ll_{\delta} M$. Then the statements given in the following are equivalent:

- 1. *M* is δ_{ss} -semilocal
- 2. *M* is δ -semilocal and $\delta(M)$ has a weak δ_{ss} -supplement in *M*.
- 3. *M* is δ -semilocal and $\delta(M) \leq Soc(M)$.
- 4. *M* is weakly δ -supplemented and $\delta(M) \leq Soc(M)$.
- 5. *M* is weakly δ -radical supplemented and $\delta(M) \leq Soc(M)$.

Proof. $(1) \Rightarrow (2)$: It is clear.

 $(2) \Rightarrow (3)$: Let T be a weak δ -supplement of $\delta(M)$ in M. Then $\delta(M) + T = M$ and $\delta(M) \cap T \leq Soc_{\delta}(M) \leq Soc(M)$ and so $\delta(M) \cap T$ is semisimple. As $\delta(M) \ll_{\delta} (M)$ and $\delta(M) + T = M$ we have $M = Y \oplus T$ for a projective semisimple submodule Y of $\delta(M)$. By modularity we get $\delta(M) = Y \oplus (\delta(M) \cap T)$ and so $\delta(M)$ is semisimple by [4, Cor. 8.1.5]. Thus, $\delta(M) \leq Soc(M)$.

 $(3) \Rightarrow (4)$: By hypothesis, for any $A \leq M$ there is a submodule $T \leq M$ such that A + T = M, $A \cap T \leq \delta(M)$ and $A \cap T$ is semisimple. Hence M is weakly δ -radical supplemented as $\delta(M) \ll_{\delta} M$.

 $(4) \Rightarrow (5)$: It is clear.

 $(5) \Rightarrow (1)$: For any $A \le M$, $A \le A + \delta(M)$ and so, there exists $T \le M$ such that $[A + \delta(M)] + T = M$, $[A + \delta(M)] \cap T \ll_{\delta} M$. Following that $[A + \delta(M)] \cap T \le \delta(M) \le Soc(M)$. As $\delta(M) \ll_{\delta} M$, we have $P \oplus [A + T] = M$ for a projective semisimple submodule P of $\delta(M)$. Therefore, we get $A + (P \oplus T) = M$ and $A \cap (P \oplus T) \le [P \cap (A + T)] + [T \cap (A + P)]$ where $P \cap (A + T)$ is δ -small and semisimple in M as P is projective semisimple and, $T \cap (A + P)$ is δ -small and semisimple in M as a submodule of $T \cap (A + \delta(P))$.

It is a clear fact that every δ_{ss} -semilocal module is weakly δ -supplemented but not vice versa. In the following example this is verified via Theorem 3.14.

Example 3.15. Let us consider the \mathbb{Z} -module \mathbb{Z}_8 . As it is local, it is supplemented and so δ -supplemented. Therefore, \mathbb{Z} -module \mathbb{Z}_8 is weakly δ -supplemented. On the other hand, since $\delta(\mathbb{Z}_8) = Rad(\mathbb{Z}_8) = 2\mathbb{Z}_8 \ll_{\delta} \mathbb{Z}_8$ and $Soc(\mathbb{Z}_8) = 4\mathbb{Z}_8$, \mathbb{Z}_8 is not a δ_{ss} -semilocal \mathbb{Z} -module by Theorem 3.14.

Now we give a ring characterization theorem for δ_{ss} -perfect rings to be δ_{ss} -semilocal.

Corollary 3.16. The following statements are equivalent for a ring R.

- 1. $_{R}R$ is δ_{ss} -semilocal.
- 2. $_{R}R$ is δ -semilocal and $\delta(R) \leq Soc(R)$.
- 3. $_{R}R$ is δ_{ss} -perfect (δ_{ss} -supplemented).

Proof. (1) \iff (2) : It is clear by Corollary 3.12

(2) \implies (3) : As a ring R with unit is locally projective [8], $Soc(R) \ll_{\delta} R$ is got from [13, Prop. 5.2]. Thus, $\delta(R) = Soc(R)$ is obtained. Since $\frac{R}{\delta(R)} = \frac{R}{Soc(R)}$ and Soc(R) is semisimple Artinian by hypothesis, then R is also Artinian and so it is δ -supplemented. Therefore R is δ -semiperfect by [6, Theorem 3.3]. Hence, R is δ_{ss} -perfect by [13, Theorem 5.3].

(3) \implies (1) : Let R be a δ_{ss} -perfect ring. Then by [13, Theorem 5.3 (2)] R is δ -semiperfect and $\delta(R) = Soc(R)$. Therefore $Soc_{\delta}(R) = \delta(R)$ and so $\frac{R}{Soc_{\delta}(R)} = \frac{R}{Soc(R)}$ is semisimple by [15, Theorem 3.6]. Hence $_{R}R$ is δ_{ss} -semilocal.

Owing to the following we will construct rings whose modules are δ_{ss} -semilocal. In addition to this a proper class of δ -perfect rings is obtained. It will be verified via Example 3.18.

Theorem 3.17. *The following statements are equivalent for a ring R:*

- 1. $_{R}R$ is δ_{ss} -semilocal.
- 2. Every *R*-module is δ_{ss} -semilocal.
- 3. *R* is δ -semilocal and $\delta(R) \leq Soc(R)$.

Proof. (1) \implies (2) : Let M be an R-module. Since each R-module is R-generated, then there exists an epimorphism $h: R^{(I)} \longrightarrow M$. By hypothesis M is δ_{ss} -semilocal by Lemma 3.7.

 $(2) \Longrightarrow (3)$: By hypothesis $_{R}R$ is δ_{ss} -semilocal. Then the proof is clear from Corollary 3.16.

 $(3) \Longrightarrow (1)$: It is clear by Corollary 3.16.

Example 3.18. Let \mathcal{F} be a field, $I = \begin{pmatrix} \mathcal{F} & \mathcal{F} \\ 0 & \mathcal{F} \end{pmatrix}$ and $R = \{(x_1, x_2, ..., x_n, x, x...) : n \in \mathbb{N}, x_i \in M_2(\mathcal{F}), x \in I\}$ be a ring with component-wise operations. Then, $Soc(R) = \{(x_1, x_2, ..., x_n, 0, 0...) : n \in \mathbb{N}, x_i \in M_2(\mathcal{F})\}$ and

 $\delta(R) = \{(x_1, x_2, ..., x_n, x, x...) : n \in \mathbb{N}, x_i \in M_2(\mathcal{F}), x \in J = \begin{pmatrix} 0 & \mathcal{F} \\ 0 & 0 \end{pmatrix}. \text{ From [15, Example 4.3] it can be seen that } R \text{ is a } \delta \text{-perfect ring. But as } \delta(R) \neq Soc(R), R \text{ is not a } \delta_{ss}\text{-semilocal ring by [13, Proposition 5.2].}$

Every ss-semilocal module is δ_{ss} -semilocal. Now we investigate the suitable conditions satisfying the vice versa inspired by [2, Prop. 4.2].

Proposition 3.19. Let M be a projective, semilocal and δ_{ss} -semilocal module with $Rad(M) \ll M$. Then M is *ss-semilocal*.

Proof. As Soc(M) is semisimple, the submodule $Soc_{\delta}(M)$ is a direct summand of Soc(M). Then for a submodule X of M it can be written that $Soc(M) = Soc_s(M) \oplus X$. Besides there exists a submodule Y of M such that M = X + Y and $X \cap Y \ll M$ since M is semilocal. Clearly, $X \cap Y \leq Rad(M)$. Following this we have $X \cap Y \leq X \cap Rad(M) = [X \cap Soc(M)] \cap Rad(M) = X \cap [Soc(M) \cap Rad(M)] = X \cap Soc_s(M) = 0$. Also we get $Rad(M) = Rad(X) \oplus Rad(Y) = Rad(Y)$ as X is semisimple. Here Y is projective as a direct summand of

Esra ÖZTÜRK SÖZEN

the projective module M. Now let us show that $\delta(Y) = Rad(Y)$. For this have to verify that Y has no simple projective direct summand [12, Prop. 2.4]. Assume that S is a simple projective direct summand of Y. Then $Y = S \oplus K$ for $K \leq Y$. Therefore, $S \ll_{\delta} S \leq Y$ and so $S \leq Soc_{\delta}(Y) \leq Soc(Y)$ because S is semisimple projective. By modularity, $Soc(Y) = Soc(M) \cap Y = [Soc_s(M) \oplus X] \cap Y = [(Soc(M) \cap Rad(M)) \oplus X] \cap Y = [(Soc(M) \cap Rad(Y)) \oplus X] \cap Y = [(Soc(M) \cap Rad(Y) \oplus X] \cap Y = [(Soc(M) \cap Rad(Y)) \oplus X] \cap Y = [(Soc(M) \cap Rad(Y) \oplus X] \cap Y = [(Soc$

 $[Soc(M) \cap Rad(Y)) \oplus (X \cap Y) = Soc(M) \cap Rad(Y) \leq Rad(Y)$ is got and using this $S \leq Soc(Y) \leq Rad(Y) = Rad(M) \ll M$ is obtained. As $Y \leq_{\oplus} M$, S is also small in Y and so this creates the contradiction K = Y. According to this it must be true that $\delta(Y) = Rad(Y)$. However, Y is also δ_{ss} -semilocal by Theorem 3.4 as M is δ_{ss} -semilocal. Then for any $U \leq Y$ there is a submodule V of Y such that U + V = Y and $U \cap V \leq Soc_{\delta}(Y)$. From this fact $U \cap V \leq \delta(Y) = Rad(Y)$ and so $U \cap V \ll Y$. Thus, $U \cap V \leq Soc_{\delta}(Y)$. Hence, Y is an ss-semilocal module. By taking into account that X is an ss-semilocal by [9, Corollary 2.13].

Corollary 3.20. The following statements are equivalent for a ring R:

- 1. $_{R}R$ is δ_{ss} -semilocal.
- 2. *R* is left δ_{ss} -perfect and semilocal.
- 3. *R* is left δ_{ss} -perfect and $\frac{Soc(_RR)}{Soc_s(_RR)}$ is finitely generated.
- **Proof.** (1) \Leftrightarrow (2) : It is clear by Proposition 3.19 and Corollary 3.16. (2) \Leftrightarrow (3) : It is clear by [13, Corollary 5.10]

Example 3.21. Let $\mathcal{F}_i = \mathcal{Z}_2$ and $Q = \prod_{i=1}^{\infty} \mathcal{F}_i$. Then Q is a regular (Rad(R) = 0) commutative ring with unity via component-wise operations. Let R be the subring of Q generated by $\bigoplus_{i=1}^{\infty} \mathcal{F}_i$ and 1_Q . Then it can be seen that $\delta(R) = Soc(R) = \bigoplus_{i=1}^{\infty} \mathcal{F}_i$. Since $\frac{R}{Soc_{\delta}(R)} \cong \mathcal{F}_i$ is simple then $_RR$ is δ_{ss} -semilocal. On the other hand, R is not a semilocal ring as $\frac{R}{Rad(R)} \cong R$ is not semisimple. Hence, R is not an ss-semilocal ring.

4. Acknowledgement

The author is thankful to the referee for his/her valuable suggestions which improved the presentation of the paper.

References

- [1] R. ALIZADE AND A. PANCAR, Homoloji cebire giriş, Ondokuz Mayıs University, Samsun-Turkey (1999), 177p.
- [2] E. BÜYÜKAŞIK AND C. LOMP, When δ -semiperfect rings are semiperfect, *Turkish Journal of Mathematics*, **34(3)**(2010), 317–324.
- [3] J. CLARK, C. LOMP, N. VANAJA AND R. WISBAUER, Lifting modules, supplements and projectivity in module theory, *Frontiers in Mathematics, Birkhauser, Verlag-Basel*, (2006).
- [4] F. KASCH, Modules and rings, London Mathematical Society Monographs 17, Academic Press, Inc. [Harcourt Brace Jonavich, Publishers], London-New York., ()(1982).
- [5] E. KAYNAR, H. ÇALIŞICI AND E. TÜRKMEN, Ss-supplemented modules, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 69(1)(2020), 473–485.

- [6] M.T. KOŞAN, δ -lifting and δ -supplemented modules, *Algebra Colloquium*, **14**(1)(2007), 53–60.
- [7] C. LOMP, On semilocal modules and rings, *Communications in Algebra*, 27(4)(1999), 1921–1935.
- [8] K. NISHIDA, Bicommutators of locally projective modules, Communications in Algebra, 9(1)(1981), 81–94.
- [9] A. OLGUN AND E. TÜRKMEN, On a class of perfect rings, *Honam Mathematical Journal*, 42(3)(2020), 591–600.
- [10] Y. TALEBI AND B.TALAEE, On generalized δ -supplemented modules, *Vietnam Journal of Mathematics*, **37(4)**(2009), 515–525.
- [11] Y. TALEBI AND A.R.M HAMZEKOLAEI, Closed weak δ -supplemented modules, *JP Journal of Algebra*, *Number Theory and Applications*, **13(2)**(2009), 193–208.
- [12] R. TRIBAK, When finitely generated δ -supplemented modules are supplemented, Algebra Colloquium, **22(1)**)(2015), 119–130.
- [13] B. NIŞANCI TÜRKMEN AND E. TÜRKMEN, δ_{ss} -supplemented modules and rings, Analele St. Univ. Ovidius Constanta, **28(3)**(2020), 193–216.
- [14] R. WISBAUER, Foundations of module and ring theory, Gordon and Breach, Reading, (1991).
- [15] Y. ZHOU, Generalizations of perfect, semiperfect and semiregular rings, *Algebra Colloquium*, **7(3)**(2000), 305–318.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

