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Abstract. In this paper, we define weakly δss- supplemented modules and give a characterization for them named with δss-
semilocal modules. In particular, we determine the suitable conditions for a δss- semilocal module to be δ-semilocal and
ss-semilocal, respectively. In addition to these we supply contrast examples pointing the relations are proper between these
classes of modules.
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1. Introduction and Background

Firstly, note that throughout this study the symbols R and M will denote an associative ring with identity and
a unitary left R-module, respectively. The notations A ≤ M and A ≤⊕ M will indicate that A is a submodule
of M and A is a direct summand of M . A submodule A of M is called essential (denoted by A E M) if
A ∩ K 6= {0} for any proper submodule K of M except for {0}. The intersection of all essential submodules
of a module M is denoted by Soc(M) which is the largest semisimple submodule of M. A submodule B

′ ≤M

is called a complement of A in M if it is maximal in the set of submodules B ≤ M with A ∩ B = {0}. A
submodule A of M is called small (denoted by A � M) if A + K 6= M for any proper submodule K of M .
The sum of all small submodules of a module M is denoted by Rad(M). A (weak) supplement submodule T of
A in M is a submodule such that A+ T = M and A ∩ T � T (A ∩ T �M). A module M is called (weakly)
supplemented if every submodule of M has a (weak) supplement in M [14].

In [15] and [6], the authors updated the small and supplemented modules via singularity as follows. A
submodule A ≤M is δ-small if and only if for all submodules X ≤M : if A+X =M , then M = Y ⊕X for a
projective semisimple submodule Y of A. Also the submodule A is called δ-small in M if A+K 6=M for every
proper submodule K of M with M

K is singular (denoted by A�δ M ) and the sum of all δ-small submodules of
M denoted by δ(M). Clearly Rad(M) ≤ δ(M).

A δ-supplement submodule T of A in M is a submodule such that A + T = M and A ∩ T �δ T. A
(generalized) weak δ-supplement submodule T of A in M is a submodule such that A+ T = M and (A ∩ T ≤
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Ss-Semilocal modules via singularity

δ(M)) A ∩ T �δ M [11]. The module M is called (weakly) δ-supplemented, if every submodule of M has a
(weak) δ-supplement in M . Clearly every (weakly) supplemented module is (weakly) δ-supplemented. In [5],
the authors introduced ss-supplemented modules which are stronger than supplemented modules. A module M
is called ss-supplemented if for every submoduleA ofM there exists a submodule T ofM such thatA+T =M

and A ∩ T ≤ Socs(T ) where Socs(T ) = Soc(T ) ∩ Rad(T ). In [9], the authors generalized ss-supplemented
modules to weakly ss-supplemented modules by taking Socs(M) instead of Socs(T ) and gave a characterization
for these modules named with ss-semilocal. In [13] the authors generalized (amply) ss-supplemented modules
in view of singularity and introduced (amply) δss-supplemented modules and δss-supplemented rings.

In this article, in the light of the given studies we define weakly δss-supplemented modules and obtain a new
characterization for them named with δss-semilocal modules. A module M is called δss-semilocal whenever

M
Socδ(M) is semisimple where Socδ(M) = Soc(M) ∩ δ(M). A module M is called δ-semilocal if M

δ(M) is
semisimple. As Socδ(M) ≤ δ(M) ≤ M , every δss-semilocal module is δ-semilocal and every ss-semilocal
module is δss-semilocal. We give examples on the converse implications might not be true. Also, we investigate
suitable conditions when δsssemilocal modules are δ-semilocal and ss-semilocal. In particular, we obtain new
characterizations for δss-semilocal rings.

For undefined algebraic structures used here, such as δ-(semi)perfect and δss-perfect rings, we refer to [15]
and [13], respectively.

2. Weakly δss-supplemented modules

A module M is called weakly δ-supplemented if for any submodule A of M there exists a submodule T of
M such that A + T = M and A ∩ T �δ M [11]. By means of this concept and the usuful lemma given in
the following we will define weakly δss-supplemented modules as a strongly version of weakly δ-supplemented
modules.

Lemma 2.1. Let f : A −→ B be a module homomorphism. Then f(Socδ(A)) ≤ Socδ(B). In particular, we
have Socδ(A) ≤ Socδ(B) whenever A ≤ B.

Proof. As f is a homomorphism we have f(Soc(A)) ≤ Soc(B) and f(δ(A)) ≤ δ(B). Therefore we get
f(Socδ(A)) = f(Soc(A) ∩ δ(A)) ≤ f(Soc(A)) ∩ f(δ(A)) ≤ Soc(B) ∩ δ(B) = Socδ(B). In particular, if the
inclusion map from A to B is taken instead of f , then Socδ(A) ≤ Socδ(B) is obtained clearly. �

Definition 2.2. A module M is called weakly δss-supplemented if for any submodule A of M there exists a
submodule T of M such that A+ T =M and A ∩ T ≤ Socδ(M).

It is a clear fact that every weakly δss-supplemented module is weakly δ-supplemented but not vice versa. To
verify this with an example we need the following lemma.

Lemma 2.3. Let M be a weakly δ-supplemented module with Soc(M) = 0. Then M = 0.

Proof. Let A ≤ M . By hypothesis there exists a submodule T of M such that A + T = M and A ∩ T ≤
Socδ(M). Since Socδ(M) = Soc(M) ∩ δ(M) = 0 ∩ δ(M) = 0 then we have A ∩ T = {0}. Therefore, M is a
semisimple module as each submodule is a direct summand. Hence M = Soc(M) = 0. �

Example 2.4. It is a known fact that Z-module Q is weakly δ-supplemented as it is weakly supplemented [3,
17.15 Example, 213p.]. On the orher hand, it is not weakly δss-supplemented by Lemma 2.3.

Now we give a characterization lemma for weak δss-supplement submodules of a module.

Lemma 2.5. Let M be a module and A, T ≤M . Then the following implications are equivalent:

1. M = A+ T and A ∩ T ≤ Socδ(M).
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2. T is a weak δ-supplement of A in M and A ∩ T is semisimple.

3. T is a generalized weak δ-supplement of A in M and A ∩ T is semisimple.

Proof. (1) ⇒ (2) : By hypothesis we have M = A + T, A ∩ T ≤ δ(M) and A ∩ T ≤ Soc(M) as Socδ(M)

is a submodule of both δ(M) and Soc(M). Therefore, A ∩ T is semisimple and it is also δ-small in M by [13,
Lemma 2.2].

(2)⇒ (3) : It is clear.
(3) ⇒ (1) : By hypothesis we have M = A + T, A ∩ T ≤ δ(M) and A ∩ T is semisimple. Thus,

A ∩ T ≤ Soc(M). Hence, A ∩ T ≤ Soc(M) ∩ δ(M) = Socδ(M). �

We say that a module M is called δ-semilocal if M
δ(M) is semisimple. And it is proven in [10, Theorem 3.7]

that a module M with δ(M)�δ M and M
δ(M) is singular is δ-semilocal if and only if M is a generalized weakly

δ-supplemented module. Motivated by this we give a similar characterization for our modules in the following
theorem.

Theorem 2.6. The following implications are equivalent for a module M :

1. M
Socδ(M) is semisimple.

2. M is weakly δss-supplemented.

3. M is a direct sum of two submodules M1 and M2 such that M1 and M2

Socδ(M) are semisimple, also
Socδ(M) EM2.

Proof. (3)⇒ (1) : Let M =M1⊕M2. Then M
Socδ(M) =

M1+Socδ(M)
Socδ(M) ⊕ M2

Socδ(M) is semisimple as a direct sum
of two semisimple modules.

(1) ⇒ (2) : For any A ≤ M, A+Socδ(M)
Socδ(M) ⊕ T

Socδ(M) = M
Socδ(M) can be written by hypothesis. Then,

M = A + T and by modularity (A + Socδ(M)) ∩ T = (A ∩ T ) + Socδ(M) = Socδ(M) are obtained. Thus,
A ∩ T ≤ Socδ(M) is got.

(1) ⇒ (3) : Let M1 be a complement of Socδ(M). Then, M1
∼= M1+Socδ(M)

Socδ(M) ≤⊕ M
Socδ(M) and so M1 is

semisimple as it is isomorphic to a submodule of a semisimple module. Additionally, there exists a semisimple
direct summand M2

Socδ(M) satisfying M1+Socδ(M)
Socδ(M) ⊕ M2

Socδ(M) =
M

Socδ(M) . Clearly, M =M1 +M2. Furthermore,
since Socδ(M) = (M1 + Socδ(M)) ∩M2 = Socδ(M)⊕ (M1 ∩M2) by modularity. Then we get M1 ∩M2 ≤
Socδ(M) and M1 ∩M2 ≤M1 which means M1 ∩M2 ≤M1 ∩Socδ(M) = 0 by the property of a complement.
Thus M = M1 ⊕ M2. For the remaining part of the proof let us show that Socδ(M) E M2. As M1 is the
complement of Socδ(M) we have M1⊕Socδ(M) EM =M1⊕M2 [3, 1.11(1)]. For the second injection map
i2 :M2 −→M1 ⊕M2, i−12 (M1 ⊕ Socδ(M)) EM2 by [1, Theorem 9.1(3)].

2⇒ 1 : For any A
Socδ(M) ≤

M
Socδ(M) we have A+ T =M and A ∩ T ≤ Socδ(M) for a submodule T ≤M

by hypothesis. Thus A
Socδ(M) ⊕

T+M
Socδ(M) =

M
Socδ(M) , that is, M

Socδ(M) is semisimple. �

From now on, we will call a moduleM is δss-semilocal wheneverM satisfies one of the equvalent conditions
of the theorem given above.

3. δss-Semilocal modules

In this part we will present the fundamental properties of our modules firstly. Before of all we need a useful
lemma.

Lemma 3.1. For a given family of R-modules {Mi}i∈I , Socδ(⊕i∈IMi) = ⊕i∈ISocδ(Mi).

Proof. It is clear by Lemma 2.1 and [3, 6.2(3)]. �
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Theorem 3.2. Let {Mi}i∈I be a family of δss-semilocal modules. Then M = ⊕
i∈IMi is δss-semilocal.

Proof. As each Mi

Socδ(Mi)
is semisimple, M

Socδ(M) = ⊕i∈IMi

Socδ(⊕i∈IMi)
= ⊕i∈IMi

⊕i∈ISocδ(Mi)
∼= ⊕i∈I Mi

Socδ(Mi)
is also

semisimple by [4, Cor. 8.1.5] and Lemma 3.1. Hence, M is is δss-semilocal. �

Corollary 3.3. The sum of δss-semilocal modules is also δss-semilocal.

Theorem 3.4. If M is a δss-semilocal module, then so is any homomorphic image.

Proof. Let us consider the module epimorphism h : M −→ K where M is δss-semilocal. Then the
homomorphism h : M

Socδ(M) −→
K

Socδ(K) defined by h(x + Socδ(M)) = h(x) + Socδ(K) for every
x + Socδ(M) ∈ M

Socδ(M) is epic. As M
Socδ(M) is semisimple, then the homomorphic image K

Socδ(K) is also
semisimple by [4, Cor. 8.1.5], that is h(M) = K is δss-semilocal. �

Proposition 3.5. Let M be a δss-semilocal module and A be a submodule of M satisfying δ(A) = A ∩ δ(M).
Then A is δss-semilocal.

Proof. Let B ≤ A. Then there exists a submodule T of M such that B + T = M and B ∩ T ≤ Socδ(M).
Following this A = (B + T ) ∩ A = B + (T ∩ A) is obtained by using modularity. Now we will verify that
T ∩ A is a weak δss-supplement of B in A. As B ∩ (T ∩ A) = B ∩ T ≤ Socδ(M) ≤ δ(M) we have
B ∩ (T ∩ A) ≤ δ(M) ∩ A = δ(A). Thus, B ∩ T = B ∩ (T ∩ A) ≤ Soc(A) ∩ δ(A) = Socδ(A). Hence, A is
δss-semilocal. �

Corollary 3.6. Every δss-supplement (and so δ-supplement) submodule of a δss-semilocal module is
δss-semilocal.

Recall that a module K is said to be M -generated, if there exists an epimorphism from M (I) to K where I is
an index set.

Lemma 3.7. Let M be a module. M is δss-semilocal if and only if every M -generated module is δss-semilocal.

Proof. (=⇒) : It is clear by Corollary 3.3 and Theorem 3.4.
(⇐=) : It is clear. �

In general, every amply δss-supplemented module is δss-supplemented [13]. now it is possible to think
whether the analogous idea is valid for our modules. In the following proposition we show that δss-semilocal
modules already contain this property by themselves.

Proposition 3.8. Let M be a δss-semilocal module and A, T ≤ M with A + T = M . Then A has a weak
δss-supplement in M contained by T .

Proof. As A∩T ≤M , there is a submodule B ≤M such that (A∩T )+B =M and (A∩T )∩B ≤ Socδ(M)

by hypothesis. By modularity, we have T = T ∩M = T ∩ [(A ∩ T ) + B] = (A ∩ T ) + (B ∩ T ). Thus,
M = A+ T = A+ (A∩ T ) + (B ∩ T ) = A+ (B ∩ T ) and A∩ (B ∩ T ) = (A∩B)∩ T ≤ Socδ(M). Hence,
B ∩ T is a weak δss-supplement of A in M contained by T . �

As we pointed before every δ-semilocal module is δss-semilocal. Under suitable conditions the converse
might be provided as follows.

Proposition 3.9. Let M be a δ-semilocal module with δ(M) ≤ Soc(M). Then M is δss-semilocal.

Proof. Clearly, Socδ(M) = δ(M) as δ(M) ≤ Soc(M). Therefore, M
δ(M) = M

Socδ(M) is semisimple. Hence, M
is δss-semilocal by Theorem 2.6. �

Due to the consequences of the proposition given in the following we will obtain the ring characterization of
δss-semilocal modules in the next.
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Proposition 3.10. Let M be a δss-semilocal module and A�δ M . Then A ≤ Socδ(M).

Proof. By hypothesis there exists a submodule T of M such that A + T = M and A ∩ T ≤ Socδ(M).
As A �δ M we have Y ⊕ T = M for a projective semisimple submodule Y of A. From modularity we
get Y ⊕ (T ∩ A) = A and so A is semisimple as a direct sum of two semisimple modules. Hence A ≤
Soc(M) ∩ δ(M) = Socδ(M). �

Corollary 3.11. Let M be a δss-semilocal module and δ(M)�δ M . Then δ(M) ≤ Soc(M).

As finitely generated modules have δ-small δ-radical we have the following corollary.

Corollary 3.12. Let M be a finitely generated module. Then M is δss-semilocal if and only if M is δ-semilocal
and δ(M) is semisimple.

Proof. (=⇒) : By hypothesis M is weakly δss-supplemented and so it is weakly δ-supplemented. hence it can
be shown that M is δ-semilocal by the similar way from [7, Prop. 2.1]. Also δ(M) ≤ Soc(M) by Corollary 3.11
as δ(M)�δ M .

(⇐=) : Let M be δ-semilocal with a semisimple δ-radical. Then δ(M) ≤ Soc(M). Hence M is δss-
semilocal from Proposition 3.9. �

Definition 3.13. A module M is called weakly δ-radical δ-supplemented if every submodule of M containing
δ(M) has a weak δ-supplement in M .

Theorem 3.14. LetM be a module with δ(M)�δ M . Then the statements given in the following are equivalent:

1. M is δss-semilocal

2. M is δ-semilocal and δ(M) has a weak δss-supplement in M .

3. M is δ-semilocal and δ(M) ≤ Soc(M).

4. M is weakly δ-supplemented and δ(M) ≤ Soc(M).

5. M is weakly δ-radical supplemented and δ(M) ≤ Soc(M).

Proof. (1)⇒ (2) : It is clear.
(2) ⇒ (3) : Let T be a weak δ-supplement of δ(M) in M . Then δ(M) + T = M and δ(M) ∩ T ≤

Socδ(M) ≤ Soc(M) and so δ(M) ∩ T is semisimple. As δ(M) �δ (M) and δ(M) + T = M we have
M = Y ⊕T for a projective semisimple submodule Y of δ(M). By modularity we get δ(M) = Y ⊕ (δ(M)∩T )
and so δ(M) is semisimple by [4, Cor. 8.1.5]. Thus, δ(M) ≤ Soc(M).

(3) ⇒ (4) : By hypothesis, for any A ≤ M there is a submodule T ≤ M such that A + T = M , A ∩ T ≤
δ(M) and A ∩ T is semisimple. Hence M is weakly δ-radical supplemented as δ(M)�δ M .

(4)⇒ (5) : It is clear.
(5)⇒ (1) : For any A ≤ M , A ≤ A+ δ(M) and so, there exists T ≤ M such that [A+ δ(M)] + T = M ,

[A + δ(M)] ∩ T �δ M . Following that [A + δ(M)] ∩ T ≤ δ(M) ≤ Soc(M). As δ(M) �δ M , we have
P ⊕ [A+T ] =M for a projective semisimple submodule P of δ(M). Therefore, we get A+(P ⊕T ) =M and
A ∩ (P ⊕ T ) ≤ [P ∩ (A + T )] + [T ∩ (A + P )] where P ∩ (A + T ) is δ-small and semisimple in M as P is
projective semisimple and, T ∩ (A+P ) is δ-small and semisimple in M as a submodule of T ∩ (A+ δ(P )). �

It is a clear fact that every δss-semilocal module is weakly δ-supplemented but not vice versa. In the following
example this is verified via Theorem 3.14.

Example 3.15. Let us consider the Z-module Z8. As it is local, it is supplemented and so δ-supplemented.
Therefore, Z-module Z8 is weakly δ-supplemented. On the other hand, since δ(Z8) = Rad(Z8) = 2Z8 �δ Z8

and Soc(Z8) = 4Z8, Z8 is not a δss-semilocal Z-module by Theorem 3.14.
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Now we give a ring characterization theorem for δss-perfect rings to be δss-semilocal.

Corollary 3.16. The following statements are equivalent for a ring R.

1. RR is δss-semilocal.

2. RR is δ-semilocal and δ(R) ≤ Soc(R).

3. RR is δss-perfect (δss-supplemented).

Proof. (1)⇐⇒ (2) : It is clear by Corollary 3.12
(2) =⇒ (3) : As a ring R with unit is locally projective [8], Soc(R) �δ R is got from [13, Prop. 5.2].

Thus, δ(R) = Soc(R) is obtained. Since R
δ(R) =

R
Soc(R) and Soc(R) is semisimple Artinian by hypothesis, then

R is also Artinian and so it is δ-supplemented. Therefore R is δ-semiperfect by [6, Theorem 3.3]. Hence, R is
δss-perfect by [13, Theorem 5.3].

(3) =⇒ (1) : Let R be a δss-perfect ring. Then by [13, Theorem 5.3 (2)] R is δ-semiperfect and δ(R) =

Soc(R). Therefore Socδ(R) = δ(R) and so R
Socδ(R) = R

Soc(R) is semisimple by [15, Theorem 3.6]. Hence RR
is δss-semilocal. �

Owing to the following we will construct rings whose modules are δss-semilocal. In addition to this a proper
class of δ-perfect rings is obtained. It will be verified via Example 3.18.

Theorem 3.17. The following statements are equivalent for a ring R:

1. RR is δss-semilocal.

2. Every R-module is δss-semilocal.

3. R is δ-semilocal and δ(R) ≤ Soc(R).

Proof. (1) =⇒ (2) : Let M be an R-module. Since each R-module is R-generated, then there exists an
epimorphism h : R(I) −→M . By hypothesis M is δss-semilocal by Lemma 3.7.

(2) =⇒ (3) : By hypothesis RR is δss-semilocal. Then the proof is clear from Corollary 3.16.
(3) =⇒ (1) :It is clear by Corollary 3.16. �

Example 3.18. Let F be a field, I =

(
F F
0 F

)
and R = {(x1, x2, ..., xn, x, x...) : n ∈ N, xi ∈M2(F), x ∈ I}

be a ring with component-wise operations. Then, Soc(R) = {(x1, x2, ..., xn, 0, 0...) : n ∈ N, xi ∈M2(F)} and

δ(R) = {(x1, x2, ..., xn, x, x...) : n ∈ N, xi ∈ M2(F), x ∈ J =

(
0 F
0 0

)
. From [15, Example 4.3] it can be

seen that R is a δ-perfect ring. But as δ(R) 6= Soc(R), R is not a δss-semilocal ring by [13, Proposition 5.2].

Every ss-semilocal module is δss-semilocal. Now we investigate the suitable conditions satisfying the vice
versa inspired by [2, Prop. 4.2].

Proposition 3.19. Let M be a projective, semilocal and δss-semilocal module with Rad(M) � M . Then M is
ss-semilocal.

Proof. As Soc(M) is semisimple, the submodule Socδ(M) is a direct summand of Soc(M). Then for a
submodule X of M it can be written that Soc(M) = Socs(M)⊕X . Besides there exists a submodule Y of M
such thatM = X+Y andX∩Y �M sinceM is semilocal. Clearly,X∩Y ≤ Rad(M). Following this we have
X∩Y ≤ X∩Rad(M) = [X∩Soc(M)]∩Rad(M) = X∩[Soc(M)∩Rad(M)] = X∩Socs(M) = 0.Also we
getRad(M) = Rad(X)⊕Rad(Y ) = Rad(Y ) asX is semisimple. Here Y is projective as a direct summand of
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the projective module M . Now let us show that δ(Y ) = Rad(Y ). For thiswe have to verify that Y has no simple
projective direct summand [12, Prop. 2.4]. Assume that S is a simple projective direct summand of Y . Then
Y = S ⊕K for K ≤ Y . Therefore, S �δ S ≤ Y and so S ≤ Socδ(Y ) ≤ Soc(Y ) because S is semisimple
projective. By modularity, Soc(Y ) = Soc(M)∩Y = [Socs(M)⊕X]∩Y = [(Soc(M)∩Rad(M))⊕X]∩Y =

[(Soc(M) ∩Rad(Y ))⊕X] ∩ Y =

[Soc(M) ∩ Rad(Y )) ⊕ (X ∩ Y ) = Soc(M) ∩ Rad(Y ) ≤ Rad(Y ) is got and using this S ≤ Soc(Y ) ≤
Rad(Y ) = Rad(M) � M is obtained. As Y ≤⊕ M, S is also small in Y and so this creates the contradiction
K = Y . According to this it must be true that δ(Y ) = Rad(Y ). However, Y is also δss-semilocal by Theorem
3.4 as M is δss-semilocal. Then for any U ≤ Y there is a submodule V of Y such that U + V = Y and
U ∩ V ≤ Socδ(Y ). From this fact U ∩ V ≤ δ(Y ) = Rad(Y ) and so U ∩ V � Y. Thus, U ∩ V ≤ Socs(Y ).

Hence, Y is an ss-semilocal module. By taking into account thatX is an ss-semilocal by [9, Corollary 2.13]. �

Corollary 3.20. The following statements are equivalent for a ring R:

1. RR is δss-semilocal.

2. R is left δss-perfect and semilocal.

3. R is left δss-perfect and Soc(RR)
Socs(RR) is finitely generated.

Proof. (1)⇔ (2) : It is clear by Proposition 3.19 and Corollary 3.16.
(2)⇔ (3) : It is clear by [13, Corollary 5.10] �

Example 3.21. Let Fi = Z2 and Q =
∞∏
i=1

Fi. Then Q is a regular (Rad(R) = 0) commutative ring with unity

via component-wise operations. Let R be the subring of Q generated by
∞⊕
i=1

Fi and 1Q. Then it can be seen that

δ(R) = Soc(R) =
∞⊕
i=1

Fi. Since R
Socδ(R)

∼= Fi is simple then RR is δss-semilocal. On the other hand, R is not

a semilocal ring as R
Rad(R)

∼= R is not semisimple. Hence, R is not an ss-semilocal ring.
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