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A study on Ss-Semilocal modules in view of singularity
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Abstract. In this paper, we define weakly d55- supplemented modules and give a characterization for them named with §s-
semilocal modules. In particular, we determine the suitable conditions for a dss- semilocal module to be J-semilocal and
ss-semilocal, respectively. In addition to these we supply contrast examples pointing the relations are proper between these
classes of modules.
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1. Introduction and Background

Firstly, note that throughout this study the symbols R and M will denote an associative ring with identity and
a unitary left R-module, respectively. The notations A < M and A <5 M will indicate that A is a submodule
of M and A is a direct summand of M. A submodule A of M is called essential (denoted by A < M) if
AN K # {0} for any proper submodule K of M except for {0}. The intersection of all essential submodules
of a module M is denoted by Soc(M ) which is the largest semisimple submodule of M. A submodule B <M
is called a complement of A in M if it is maximal in the set of submodules B < M with AN B = {0}. A
submodule A of M is called small (denoted by A < M) if A+ K # M for any proper submodule K of M.
The sum of all small submodules of a module M is denoted by Rad(M). A (weak) supplement submodule T of
Ain M is a submodule suchthat A+ T =M and ANT < T (ANT <« M). A module M is called (weakly)
supplemented if every submodule of M has a (weak) supplement in M [14].

In [15] and [6], the authors updated the small and supplemented modules via singularity as follows. A
submodule A < M is §-small if and only if for all submodules X < M:if A+ X = M,then M =Y & X fora
projective semisimple submodule Y of A. Also the submodule A is called §-small in M if A+ K # M for every
proper submodule K of M with % is singular (denoted by A <5 M) and the sum of all §-small submodules of
M denoted by §(M). Clearly Rad(M) < 6(M).

A d-supplement submodule 7" of A in M is a submodule such that A+7 = M and ANT <5 T. A
(generalized) weak §-supplement submodule T of A in M is a submodule such that A+ 7T = M and (ANT <
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0(M)) ANT <s M [11]. The module M is called (weakly) §-supplemented, if every submodule of M has a
(weak) d-supplement in M. Clearly every (weakly) supplemented module is (weakly) d-supplemented. In [5],
the authors introduced ss-supplemented modules which are stronger than supplemented modules. A module M
is called ss-supplemented if for every submodule A of M there exists a submodule 7" of M such that A+T = M
and ANT < Socs(T) where Socs(T) = Soc(T) N Rad(T). In [9], the authors generalized ss-supplemented
modules to weakly ss-supplemented modules by taking Soc, (M) instead of Soc,(T") and gave a characterization
for these modules named with ss-semilocal. In [13] the authors generalized (amply) ss-supplemented modules
in view of singularity and introduced (amply) 0ss-supplemented modules and §ss-supplemented rings.

In this article, in the light of the given studies we define weakly ds-supplemented modules and obtain a new
characterization for them named with §,4-semilocal modules. A module M is called J4s-semilocal whenever
#(M) is semisimple where Socs(M) = Soc(M) N §(M). A module M is called §-semilocal if % is
semisimple. As Socs(M) < §(M) < M, every d55-semilocal module is d-semilocal and every ss-semilocal
module is §ss-semilocal. We give examples on the converse implications might not be true. Also, we investigate
suitable conditions when §sssemilocal modules are d-semilocal and ss-semilocal. In particular, we obtain new
characterizations for Js¢-semilocal rings.

For undefined algebraic structures used here, such as §-(semi)perfect and dss-perfect rings, we refer to [15]
and [13], respectively.

2. Weakly §,,-supplemented modules

A module M is called weakly d-supplemented if for any submodule A of M there exists a submodule 7" of
M suchthat A+7T = M and ANT < M [11]. By means of this concept and the usuful lemma given in
the following we will define weakly d,,-supplemented modules as a strongly version of weakly §-supplemented
modules.

Lemma 2.1. Let f : A — B be a module homomorphism. Then f(Socs(A)) < Socs(B). In particular, we
have Socs(A) < Socs(B) whenever A < B.

Proof. As f is a homomorphism we have f(Soc(A)) < Soc(B) and f(6(A)) < 6(B). Therefore we get

f(Socs(A)) = f(Soc(A)Nd(A)) < f(Soc(A)) N f(6(A)) < Soc(B)N(B) = Socs(B). In particular, if the
inclusion map from A to B is taken instead of f, then Soc;(A) < Socs(B) is obtained clearly. [

Definition 2.2. A module M is called weakly §,s-supplemented if for any submodule A of M there exists a
submodule T of M suchthat A+ T = M and ANT < Socs(M).

It is a clear fact that every weakly d,,-supplemented module is weakly §-supplemented but not vice versa. To
verify this with an example we need the following lemma.

Lemma 2.3. Let M be a weakly 0-supplemented module with Soc(M) = 0. Then M = 0.

Proof. Let A < M. By hypothesis there exists a submodule 7" of M such that A+ 7T = M and ANT <
Socs(M). Since Socs(M) = Soc(M) No(M) =0N§(M) = 0 then we have ANT = {0}. Therefore, M is a
semisimple module as each submodule is a direct summand. Hence M = Soc(M) = 0. n

Example 2.4. It is a known fact that Z-module Q is weakly §-supplemented as it is weakly supplemented [3,
17.15 Example, 213p.]. On the orher hand, it is not weakly Jss-supplemented by Lemma 2.3.

Now we give a characterization lemma for weak d5-supplement submodules of a module.

Lemma 2.5. Let M be a module and A, T < M. Then the following implications are equivalent:

I. M=A+Tand ANT < Socs(M).
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2. T is a weak §-supplement of A in M and A N T is semisimple.

3. T is a generalized weak J-supplement of A in M and A N7 is semisimple.

Proof. (1) = (2) : By hypothesis we have M = A+ T, ANT < §(M)and ANT < Soc(M) as Socs(M)
is a submodule of both §(M) and Soc(M). Therefore, A N T is semisimple and it is also d-small in M by [13,
Lemma 2.2].

(2) = (3) : Itis clear.

(3) = (1) : By hypothesis we have M = A+ T, ANT < 6(M) and AN T is semisimple. Thus,
ANT < Soc(M). Hence, ANT < Soc(M)N§(M) = Socs(M). [ |

We say that a module M is called o- semilocal if 5(—]‘]@) is semisimple. And it is proven in [10, Theorem 3.7]

that a module M with 6(M) <5 M and 5( 7y is singular is d-semilocal if and only if M is a generalized weakly
d-supplemented module. Motivated by this we give a similar characterization for our modules in the following
theorem.

Theorem 2.6. The following implications are equivalent for a module M :
1. #(M) is semisimple.
2. M is weakly §55-supplemented.

3. M is a direct sum of two submodules M; and M, such that M, and #(QM) are semisimple, also
Socs(M) < Ms.

Proof. (3) = (1) :Let M = M; ® M>. Then Soc];/l( i = Mlstf;(c ]‘\54()M ) g Socs ( 5 is semisimple as a direct sum
of two semisimple modules.
A+Socs(M . .
(1) = (2) : Forany A < M, ;rocé(éj&)) ® SO%T(M) = SOCI:I(M) can be written by hypothesis. Then,

M = A+ T and by modularity (A + Socs(M))NT = (ANT) + Socs(M) = Socs(M) are obtained. Thus,
ANT < Socs(M) is got.

(1) = (3) : Let M; be a complement of Socs(M). Then, M; = Mgtf;&f};‘” <a SOC]:[(M) and so M is
semisimple as it is isomorphic to a submodule of a sem151mple module Additionally, there exists a semisimple
direct summand #?JW) satisfying Mlstff(c ]f/[()M ) @ SOCS( T = Tocs ( a7y Clearly, M = M; + My. Furthermore,
since Socs(M) = (My + Socs(M)) N Mz = Socs (M) @ (M N Mz) by modularity. Then we get My N Ms <
Socs(M) and My N My < M, which means M; N My < Mj N Socs(M) = 0 by the property of a complement.
Thus M = M; @& M. For the remaining part of the proof let us show that Socs(M) < Ms. As My is the
complement of Socs(M) we have My & Socs(M) < M = M; ® Mo [3, 1.11(1)]. For the second injection map

o1 My — My @ My, iy ' (My @ Socs(M)) < Mo by [1, Theorem 9.1(3)].

2 = 1 : For any SOCA(M) < SOC%M) wehave A+T = M and ANT < Socs (M) for a submodule ' < M
by hypothesis. Thus Toos ( 7 D Focs (]‘]{[) SOCI: ) that is, % is semisimple. |

From now on, we will call a module M is dss-semilocal whenever M satisfies one of the equvalent conditions
of the theorem given above.

3. §,s-Semilocal modules

In this part we will present the fundamental properties of our modules firstly. Before of all we need a useful
lemma.

Lemma 3.1. For a given family of R-modules {M;};c1, Socs(®icrM;) = BicrSocs(M;).

Proof. Itis clear by Lemma 2.1 and [3, 6.2(3)].
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Theorem 3.2. Let {M,};c1 be a family of 6ss-semilocal modules. Then M = @, M; is 0s5-semilocal.

M; . sl M _ Dicr M; _ Dic1M; ~ ) M, .
Proof. As each Socs (M) 18 semisimple, Soos (M) — Soce(GiciMi) — BiciSocs(Mh) — @lejisocé(Mi) is also

semisimple by [4, Cor. 8.1.5] and Lemma 3.1. Hence, M is is dss-semilocal.

Corollary 3.3. The sum of §ss-semilocal modules is also §ss-semilocal.
Theorem 3.4. If M is a 6s5-semilocal module, then so is any homomorphic image.

Proof. Let us consider the module epimorphism A : M — K where M is Jss-semilocal. Then the

homomorphism % : #(M) — #(K) defined by h(x + Socs(M)) = h(z) + Socs(K) for every
x + Socs(M) € #(M) is epic. As #(M)is semisimple, then the homomorphic image #(K) is also
semisimple by [4, Cor. 8.1.5], that is h(M) = K is §s-semilocal. [ |

Proposition 3.5. Let M be a dss-semilocal module and A be a submodule of M satisfying 6(A) = AN §(M).
Then A is 645-semilocal.

Proof. Let B < A. Then there exists a submodule T of M such that B+ T = M and BN T < Socs(M).
Following this A = (B+T)N A = B+ (T'N A) is obtained by using modularity. Now we will verify that
T N Ais a weak dss-supplement of Bin A. As BN (T'NA) = BNT < Socs(M) < §(M) we have
BN(TNA) <dM)NA=46(A). Thus, BNT =BN(TNA) < Soc(A)NI§(A) = Socs(A). Hence, A is
dss-semilocal. [ |

Corollary 3.6. Every 0ss-supplement (and so -supplement) submodule of a dss-semilocal module is
dss-semilocal.

Recall that a module K is said to be M-generated, if there exists an epimorphism from M () to K where I is
an index set.

Lemma 3.7. Let M be a module. M is 0ss-semilocal if and only if every M -generated module is 644-semilocal.

Proof. (=) : Itis clear by Corollary 3.3 and Theorem 3.4.
(<) : Itis clear. [ |

In general, every amply Jss-supplemented module is dss-supplemented [13]. now it is possible to think
whether the analogous idea is valid for our modules. In the following proposition we show that d45-semilocal
modules already contain this property by themselves.

Proposition 3.8. Let M be a §s5-semilocal module and A, T < M with A+ T = M. Then A has a weak
dss-supplement in M contained by T.

Proof. As ANT < M, there is a submodule B < M such that (ANT)+ B = M and (ANT)NB < Socs(M)
by hypothesis. By modularity, we have T = TNM = TN[(ANT)+ B] = (ANT)+ (BNT). Thus,
M=A+T=A+(AnT)+(BNT)=A+ (BNT)and AN(BNT)=(ANB)NT < Socs(M). Hence,
BN T isaweak dss-supplement of A in M contained by 7. |

As we pointed before every d-semilocal module is ds5-semilocal. Under suitable conditions the converse
might be provided as follows.

Proposition 3.9. Ler M be a §-semilocal module with (M) < Soc(M). Then M is 0ss-semilocal.

Proof. Clearly, Socs(M) = 6(M) as 6(M) < Soc(M). Therefore, % = ﬁ@w) is semisimple. Hence, M

is dss-semilocal by Theorem 2.6. [ |

Due to the consequences of the proposition given in the following we will obtain the ring characterization of
dss-semilocal modules in the next.

3

s
2

93



Esra OZTURK SOZEN

Proposition 3.10. Let M be a dss-semilocal module and A <5 M. Then A < Socs(M).

Proof. By hypothesis there exists a submodule T' of M such that A+ T = M and ANT < Socs(M).
As A s M we have Y & T = M for a projective semisimple submodule Y of A. From modularity we
get Y @ (TN A) = A and so A is semisimple as a direct sum of two semisimple modules. Hence A <
Soc(M)N (M) = Socs(M). [ |

Corollary 3.11. Let M be a §5-semilocal module and §(M) <5 M. Then 6(M) < Soc(M).
As finitely generated modules have §-small d-radical we have the following corollary.

Corollary 3.12. Let M be a finitely generated module. Then M is §ss-semilocal if and only if M is §-semilocal
and 0(M) is semisimple.

Proof. (=) : By hypothesis M is weakly J,,-supplemented and so it is weakly J-supplemented. hence it can
be shown that M is d-semilocal by the similar way from [7, Prop. 2.1]. Also §(M) < Soc(M) by Corollary 3.11
as (M) <5 M.

(«<=) : Let M be é-semilocal with a semisimple d-radical. Then 6(M) < Soc(M). Hence M is dss-
semilocal from Proposition 3.9. |

Definition 3.13. A module M is called weakly 0-radical §-supplemented if every submodule of M containing
0(M) has a weak 6-supplement in M.

Theorem 3.14. Let M be a module with (M) <5 M. Then the statements given in the following are equivalent:
1. M is d,s-semilocal
2. M is d-semilocal and §(M ) has a weak d5,-supplement in M.
3. M is §-semilocal and 6(M) < Soc(M).
4. M is weakly é-supplemented and 6 (M) < Soc(M).
5. M is weakly d-radical supplemented and 6(M) < Soc(M).

Proof. (1) = (2) : Itis clear.

(2) = (3) : Let T be a weak d-supplement of §(M) in M. Then §(M) +T = M and 6(M)NT <
Socs(M) < Soc(M) and so 6(M) N T is semisimple. As 6(M) <5 (M) and §(M) + T = M we have
M =Y ®T for a projective semisimple submodule Y of 6(M ). By modularity we get (M) =Y @ (§(M)NT)
and so 6(M) is semisimple by [4, Cor. 8.1.5]. Thus, §(M) < Soc(M).

(3) = (4) : By hypothesis, for any A < M there is a submodule ' < M suchthat A+ 7T = M, ANT <
0(M) and ANT is semisimple. Hence M is weakly d-radical supplemented as §(M) <5 M.

(4) = (5) : Itis clear.

(5) = (1) :Forany A < M, A < A+ 6(M) and so, there exists 7" < M such that [A + (M) + T = M,
[A+6(M)]NT <5 M. Following that [A 4+ §(M)|NT < §(M) < Soc(M). As §(M) <s M, we have
P®[A+T] = M for a projective semisimple submodule P of §(M ). Therefore, we get A+ (P@®T) = M and
AN(PaT)<[PN(A+T)]+[TNn(A+ P)] where PN (A+T) is §-small and semisimple in M as P is
projective semisimple and, T'N (A + P) is §-small and semisimple in M as a submodule of TN (A+46(P)). A

It is a clear fact that every J4¢-semilocal module is weakly J-supplemented but not vice versa. In the following
example this is verified via Theorem 3.14.

Example 3.15. Let us consider the Z-module Zg. As it is local, it is supplemented and so §-supplemented.
Therefore, Z-module Zg is weakly 0-supplemented. On the other hand, since §(Zs) = Rad(Zg) = 2Zs <5 Zs
and Soc(Zs) = 4Zs, Zs is not a dss-semilocal Z-module by Theorem 3.14.
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Now we give a ring characterization theorem for §4,-perfect rings to be J,s-semilocal.
Corollary 3.16. The following statements are equivalent for a ring R.

1. rRis ds5-semilocal.

2. gpRis d-semilocal and 6(R) < Soc(R).

3. gRis dss-perfect (05s-supplemented).

Proof. (1) <= (2) : Itis clear by Corollary 3.12

(2) = (3) : As aring R with unit is locally projective [8], Soc(R) < R is got from [13, Prop. 5.2].
Thus, 6(R) = Soc(R) is obtained. Since TIE) = ﬁ}m and Soc(R) is semisimple Artinian by hypothesis, then
R is also Artinian and so it is d-supplemented. Therefore R is d-semiperfect by [6, Theorem 3.3]. Hence, R is
dss-perfect by [13, Theorem 5.3].

(3) = (1) : Let R be a §,4-perfect ring. Then by [13, Theorem 5.3 (2)] R is §-semiperfect and §(R) =
Soc(R). Therefore Socs(R) = 6(R) and so ﬁ@ = SOCL}R) is semisimple by [15, Theorem 3.6]. Hence g R
is dss-semilocal. |

Owing to the following we will construct rings whose modules are d44-semilocal. In addition to this a proper
class of d-perfect rings is obtained. It will be verified via Example 3.18.

Theorem 3.17. The following statements are equivalent for a ring R:
1. rRis d45-semilocal.
2. Every R-module is §,,-semilocal.

3. Ris d-semilocal and 6(R) < Soc(R).

Proof. (1) = (2) : Let M be an R-module. Since each R-module is R-generated, then there exists an
epimorphism 4 : RYY) — M. By hypothesis M is d,,-semilocal by Lemma 3.7.
(2) = (3) : By hypothesis rR is dss-semilocal. Then the proof is clear from Corollary 3.16.

(3) = (1) :Itis clear by Corollary 3.16. [ |
Example 3.18. Let F be a field, I = ]O:i and R = {(z1,22, ..., xpn,x,2...) : n € Ny x; € Mo(F), xz € I}
be a ring with component-wise operations. Then, Soc(R) = {(z1,x2, ..., 25,0,0...) : n € N, 2; € Ma(F)} and
O0(R) = {(z1, 22, ..cxp,z,2...) :n €N,z € Ma(F),xz € J = 8{): . From [15, Example 4.3] it can be

seen that R is a d-perfect ring. But as 6(R) # Soc(R), R is not a §5s-semilocal ring by [13, Proposition 5.2].

Every ss-semilocal module is d4¢-semilocal. Now we investigate the suitable conditions satisfying the vice
versa inspired by [2, Prop. 4.2].

Proposition 3.19. Let M be a projective, semilocal and 0 ss-semilocal module with Rad(M) < M. Then M is
ss-semilocal.

Proof. As Soc(M) is semisimple, the submodule Socs(M) is a direct summand of Soc(M). Then for a
submodule X of M it can be written that Soc(M) = Socs(M) @ X. Besides there exists a submodule Y of M
suchthat M = X+Y and XNY < M since M is semilocal. Clearly, XNY < Rad(M ). Following this we have
XNY < XNRad(M) = [XNSoc(M)|NRad(M) = XN[Soc(M)NRad(M)] = X NSocs(M) = 0. Also we
get Rad(M) = Rad(X)® Rad(Y) = Rad(Y') as X is semisimple. Here Y is projective as a direct summand of
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the projective module M. Now let us show that 6(Y) = Rad(Y"). For thiswe have to verify that Y has no simple
projective direct summand [12, Prop. 2.4]. Assume that S is a simple projective direct summand of Y. Then
Y =S5@ K for K <Y. Therefore, S <5 .S <Y andso S < Socs(Y) < Soc(Y) because S is semisimple
projective. By modularity, Soc(Y') = Soc(M)NY = [Socs(M)® X]|NY = [(Soc(M)NRad(M))®X]|NY =
[(Soc(M)NRad(Y))®d X|NY =

[Soc(M)N Rad(Y)) ® (X NY) = Soc(M) N Rad(Y) < Rad(Y) is got and using this S < Soc(Y) <
Rad(Y) = Rad(M) < M is obtained. As Y <g M, S is also small in Y and so this creates the contradiction
K =Y. According to this it must be true that 6(Y') = Rad(Y’). However, Y is also d,5-semilocal by Theorem
3.4 as M is dss-semilocal. Then for any U < Y there is a submodule V of Y such that U + V' = Y and
UNV < Socs(Y). From this fact UNV < §(Y) = Rad(Y) andsoUNV < Y. Thus, UNV < Socy(Y).
Hence, Y is an ss-semilocal module. By taking into account that X is an ss-semilocal by [9, Corollary 2.13]. W

Corollary 3.20. The following statements are equivalent for a ring R:

1. gRis d4s-semilocal.

2. Risleft §,4-perfect and semilocal.

d Soc(rR)

3. Risleft ds,-perfect and <~ B is finitely generated.

Proof. (1) < (2) : Itis clear by Proposition 3.19 and Corollary 3.16.
(2) & (3) : Itis clear by [13, Corollary 5.10] [ |

Example 3.21. Let F; = Z5 and Q = [] Fi. Then Q is a regular (Rad(R) = 0) commutative ring with unity
i=1

o0
via component-wise operations. Let R be the subring of Q) generated by @ F; and 1¢. Then it can be seen that
i=1
o0
0(R) = Soc(R) = @ F;. Since ﬁh{) = F; is simple then pR is 65s-semilocal. On the other hand, R is not
i=1

a semilocal ring as Rad(®) = R is not semisimple. Hence, R is not an ss-semilocal ring.
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