Malaya Journal of Matematik, Vol. 9, No. 1, 95-100, 2021
https://doi.org/10.26637/MJM0901/0015

Oscillatory properties of third-order delay difference

neutral equations
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The aim of article is to investigate oscillatory manner for remediation of thirdorder linear delay difference neutral

A(ca(1)A(e1(1)Ay (1)) + p(1)x(t — 0) =0,
here y(r) = x(r) +q(¢)x(r — &). By using comparability concepts with related 15t and 2" order difference delay
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1. Introduction

In research, considered with oscillation for the third order
linear delay difference neutral equation term

A(c2(O)A(e1(t)Ay()))+pt)x(t—0) =0, t>1>0

(1.1)
here y(¢) = x(¢) +q(¢)x(t — £). Create following presumption:
(LH;) : c1(7) and c2(¢) sequences for non-negative integers;

(LHy) : p(r) and g(r) are the positive real sequences such that
q(t) > qo > 1 and p(t) #0;

(LH3) : 0,€& are positive integers, such that ¢ > &

(LHy) :t+&—0<tand (t+&—0) > (t—0)

Specify operators

Eiy =c1Ay,
E3y = A(c2A(ci(Ay)))

Eoy =y,
Exy =coA(c1(Ay)),

and assuming that E3y for non canonical , (ie)

oo

1 |
ZT(S)<ooand Z

s=tg s=1y €2 (s)

< oo (1.2)

By remediation for (1.1), real sequence {x(¢)} explained
for t > o and satisfy this (1.1). We taken single remediation
{x(2)} for (1.1) satisfy this sup{|x(¢)| : ¢ > T} > 0 for abso-
lutely + > T and assuming (1.1) possession suchlike solutions.
A remediation for equation (1.1) call on oscillatory whether
it’s not either positive eventually nor yet negative eventually;
or else, it call non oscillatory.

Convey the (1.1) have characteristic V, whether any re-
mediation x(¢) for (1.1) not either is oscillatory of satisfy this
limy 00 x(1) = 0.

Oscillation concepts for difference third-order equations
uses have continuous attention of previous years, example,
[2—-10,12 — 15] and the sources of references placed there
are in.
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In [13] author consider the following equation

A (a”A (b" (Ax")a)) +Pn (Axn+l)a +aqnf (xtf(n)> =0, n=ng
(1.3)

and established some oscillation for certain difference third-
order equations uses comparability concepts couple for differ-
ence first order equations.

Above observation motivated us to study oscillatory for
third order difference neutral delay with non-canonical oper-
ators. Section 2, we present oscillatory for all remediation
of (1.1) and Section 3, issue few examples illustrative major
result.

2. Main Outcomes

Following notations uses in research article.

=1 =l ©
(1) :Sg a(s) Ha(t) = S; ea(s) o = S; ‘:12(( ss))
v (1) :iql(sy val(r) = i czl(s)’ v = i Z’21((;))
e T e ~ SRR
H (t7t1) :s:z CI(Y) 14;}02(’4)7 H (t7tl) :s;t A (S) u=s CZ(M)MB
where 3 is a constant satisfying
qoB _ tp(u(t,t+& - o)
0 2.1
Sqo—l_ lI(tJF‘S*G) oD

Lemma 2.1. Suppose that (LH;) — (LH3) satisfy & x(t) an
positive eventually remediation for (1.1).

y(t+28)

q(1+&) q(t+2¢)

& the corresponding sequence y(t) belongs to one of fol-
lowing cases;

y(t) > x(t) > y(t+8)— (2.2)

y@t)eGi<y>0,Ey<0,Ey<0
¥t)€Gy & y>0,Ey<0,Ey>0
y(t)€Gs < y>0,Ey>0,Ey>0
¥(t)€EGy & y>0,Ey>0,Ey<0

Is eventually.

Proof. Choose t; > fy suchlike x( — o) > 0and x(t — &) > 0.
From the definition of y, y(r) > x(¢) > 0 and

_y(e+8) —x(t+8)
q(t+¢)

(y(t+5)—

x(1)

y(t+28)

q(t+2€))

for # > 1. Obviously, E3y(t) non-increasing, since E3y(t) =
—p(t)x(t — 0) < 0. Hence E;y(t) and E,y(t) eventually one
sign, implied 4 cases G| — G4 possibility y(¢).

Z61(t+€)
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Next state the nonexistence for non negative non-decrease
remediation for (1.1). That state is included eliminating reme-
diation that class Gy. In proof, take the useful truth

fim HEHE) _ oy Pl E) 2.3)
oo p(r) e (r)
which comes from equation (1.2). O

Lemma 2.2. Presume that (LH,) — (LH3) are satisfied. If

>

s=1o q

va(s)p(s)  _

5+E&—0) 2.4)

’

then Gz = G4 = @.

Proof. Sake for contravention, lets (2.4) satisfy y € G3 UGj.
Choose #; > 19 such like x(¢) > 0,x(t —o) > O and x(r — §) >
0. Assume that y € G3. Since Ejy is decreasing,

t—1

Epy(t) > Z

s=1
o

Ey(t)
Ha(t+1)

——E2y(s) > Exy(t)ua(t)
cz(s)
Thus,

Ey(t)
pa (1)

) _ Exy(t)ia(t) — Ery(t)
Cz(l‘),uzz(l-i- 1)

is non-increasing

<0.

Therefore,

t—1

)

s=1

pa(t)

Ey(r)p(r)
c1(s)ua(t)

fort >t
Mo (1) =1

y(t) 1y(s) >

(1)

Consequently, 2 0) is non-increasing,
¥(1)

A(u(t))

From¢+2& >t+¢&

Kt +28)
p(r+8)

_ En(p() —y(0m()

aopi+n =0

y(r+28) < 2.5

y(t+8)

Using this in (2.2),

Yt +E) B w(r+2€&)
x(t)Zq(th) u(t+8&)g(r+28) )"

By virtue of (LH;) and (2.3), there is t; > #; such that for any
constant € € (0,qo— 1) andt > 1,

t>

151

u(t+28) I+e
p(t+8&)q(t+28) = qo
which implies,
y+§) l1+¢
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Combining (2.6) with (1.1) we have

p(t)

0 >E3y(1) + (1— 1;;3) PEY: _G)y(t+€ ~0)
ZEgy(t)+k<1 1;8) q(tfg)_c) 2.7

where we uses y is non-decreases, & setk =y (1, +& — 0) <
y(t+& — o). Summing 2.7)t, tot — 1

1+e\'&  pls)
Exy(t) < Eay(12) —k (1 - )Z e

2.8)
On the other hand, from (1.2) and (2.4), it follows that
i pls)
s:to q(s+ é - G)

visible for (2.8), contravention non-negativity for E»y. As-
suming y € G4 of t > ;. Uses monotonicity for Ey

1
t) > ——Ey(s) > E y(t)u(t).
y(t) Sg,] e y(s) = Ery(t) i (t)
Thus, one visible that

y(t) \  Ewy(t)u(r) —y(r)
A(ul(t)>_ aOuirn =0

which implies that 51(78) is non-increasing. Hence,

i (r+28)

Y28) < T

y(t+8)

uses (2.3) arrive (2.7), holds of anyone € > 0 and t > 1, for
ty > 1y sufficiently large. Summing (2.7) from#, tot — 1, we
have

B Cl4e) 1 = p(s)
AlE(D) 2k (l > o & dG+E—0)

q0

Summation above in-equality again #, to r — 1

1+8>’71 1ou) p(s)

EIY(f)SEIY(Q)*k(If q0 )=, c2u) & q(s+&—0)

Letting ¢ to oo changing the summation and using (2.4) we
obtain

oo u—1
0§E1Y(°°)§E1y(l2)—k(1—1+€)Z Lyl

q0 u=t, 62(1") = LZ(S +§ - G)

B o tE ¢ pe)¥a(s)
_Ely(tZ) k(l 9 )M:[2 q(S—.—é—G)

a contravention. Proof was intact. O

Theorem 2.3. Presume that (LH|) — (LH3) are satisfied. If

y(s)p(s)
s=to Q(S+§ - O-)

that (1.1) have characteristic V.

— o 2.9)

Proof. Assuming that x(¢) non-oscillatory remediation for

(1.1). Generality, create it positive eventually. Presume x(¢) >

0,x(r — o) > 0 and x(t — &) > 0. By decision Lemma 2.1,

y € G;,i=1,2,3,... fort > t,. Visible for (1.2), state (2.9)

implied
5w 5 )
s=to q(s—’_é - G) s=1) q(s + é - O')

Thus by Lemma 2.2, G3 = G4 = ¢ and so either y € G| or

y € G;. Using (LH,) and the fact that y is non-increasing in
2.2),

—= o0

{1_ 1 ]><1_1>y(t+§)
q(t+8) | qt+28)] — 90/ q(t+8)

(2.10)
Onwards Ay < 0 & [ > 0 suchlike

limy(t) =1 < oo

=00

If [ > 0, occurs t, > t; suchlike y(¢) > [ for r > t,. Hence,
from (2.10),

I(gp—1) 1
x(t) > , 12>20n
) 9 qt+8)
Using this in (1.1), we find
l -1
Esy(t) + (=1 rPl) o 5, @1

90 qt+&—-0) "

we assume that y € G, then by summing (2.11) from 1, to
r—1

I(go—1) 1 ' p(s)
q0 )5 as+E-0)

—A(E1y(1) =

Summation above in-equality #; to  — 1

1S pls)

c2(u) s;tz q(s+&—0)

lg-1) 1 '&
&0 2 40 Cl(t)u;tz

(2.12)

Summing (2.12) from #, to t — 1, letting ¢ to infinity &
changed in-equality, & takes (2.9),

I =y(o) < y() - 1O~ g 1

(2.13)
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is contravention. Thence, [ = 0.
Takes y € G», summation (2.11) #, to t — 1& uses (2.9)

I(qo—1)

Exy(t) <Ezy(t2) —
q0

t—1

)y

S=1)

p(s)

— s _coast— oo
q(s+&—0)

(2.14)

which contradicts the positivity of E>y and so / = 0. Since
¥(t) > x(t), we find lim;_,. x(¢) = 0. Proof was intact.

Following outcomes, For nonexistence G| type remediation,
comparability for studious Equation (1.1) connected delay
first-order difference in-equality. Given criteria excludes re-
mediation Gz and Gy. O

Lemma 2.4. Presume that (LH;) — (LHa) are satisfied. If

t—1
liminf )"
t—oo
s=t+&—0

p(s)w(s)
q(s+&—o0)

q0

e (2.15)

then G = G3 =Gy = Q.

Proof. Sake for contravention, lets (2.15) satisfy y € G U
G3UGy. Choose 11 > to suclike x(¢) > 0,x(t — o) > 0 and
x(t—&) > 0. Assume first that y € G|. Proof for Theorem 2.3
arrive (2.10), visible for (1.1) provide

p(1)
q(t+&—0)

qo—1
q0

Esy(1) + Wi+E-0)<0 (216)

Define the function

wlt) = V(OB () +3(0) @17)
From
(0> = ¥ —Ei(s) = ~En()w()
= —Eiy(t+1)yi(r) (2.18)
and
(1) = W (DA (E(0) = 4D Exy(0) <0

w(?) strictly non-increase positive eventually sequence. Using
the definition of w in (2.16), we have

A(Cz(f)

vi(t)
Hence w is remediation for second-order difference delay
in-equality
)+

“

q0— 1 p(t)y(t+&—o0)
90 q(t+&—o0)

Aw(t)) + <0

c2(t)Aw(t)
vi (1)

q0— 1 p(t)w(t+E& — o)
90 q@t+&—o0)

<0

(2.19)
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Similarity before, defined function u by

_yel) o,
u(t) = i) Aw(t) +w(t)
From
_ A [ 2naw()
Au(t) =A ( ) ) Y(r)
= E3y([)\P(Z‘) <0
and
o Vi(s)ea(s) (1)
B M T T IO R
= —MAW(H Dy(r) (2.20)

Come to end u positive eventually & non-increasing. Uses
definition for u on (2.19), visible that u satisfy delay first-order
difference in-equality

p()y(r)
q(t+&—o0)

qo—1
q0

221

Au(r) + u(t+&—-0)<0

However, by [1] ( Theorem 6.20.5), state (2.15) make sure that
above in-equality doesn’t possess a non-negative remediation,
which was contravention.

Showing also Gz = G4 = ¢, it enough (2.9) is required
for validity for (2.15) onwards otherwise, left side for (2.15)
equal be zero. Come to an end suddenly from Theorem 2.3.
Proof was intact. O

Lemma 2.5. Presume that (LH,) — (LHy) are satisfied and
(2.4) holds. If for any t; > to large enough,

. '« [ w(s)pls) q0 vi(s+1)
hfii?ps; (q<s+é —o) <qo— 1) 41V(S)62(S+1)>
90 (2.22)
qo—1

then G = G3 =G4 = Q.

Proof. Sake for contravention, lets (2.15) satisfy y € G| U
G3UGy. Choose 11 > tg such like x(z) > 0,x(t — o) > 0 and
x(t— &) > 0. Assume that y € G. Proof for Lemma 2.4 come
by (2.19), here w given (2.17). Then p defines by

_c2(t)Aw(z)

= 2.23
Clearly, p < 0, from (2.20),
-1 <y(r)p(r) <0 (2.24)
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Using (2.19) together with (2.23), we have

[ ea(t)Aw(t) 1 c(t+ D)[Aw(r +1)]?
s00) = (U ) S
_(%—1) p(t)  w(i+&-o0)
9@ )qt+&—0)  w)
vi(t+1)p%(t+1)
a o(t+1) (2:25)
qo—1 p(t) vi(t+1)p*(t+1)

S_( q0 )61(t+§—0)_ c(t+1)

Multiplied both side for (2.25) at y(¢)& summing in-equality
fHtor—1

1) 1
t1+zps+ l//1s+)

s=11 )

v()p(t) <w(n)p

—1

_CIO_I Z

qO S—tl

Yi(s+1)p*(s+ 1Dy (s)
SX:’I o(s+1)

v(s)p(s)
q(s+&—o0)

go—1'c  w(s)p(s)
q0 s=t1 q(s—|—§ - G)
( ) {P(Hl)

y(s)

[ y(s)p(s)
q(s+&—o0)

()2
40 vi(s+1) ]

- (610— 1> 4y(s)ea(s+1)

visible for (27), in-equality contravention (2.22). Thence
G = ¢. At Lemma 2.2, G3 = G4 = ¢ caused by (2.4). Proof
was intact. O

=y(t)p(h)—

)

s=1
qo—1

yi(s+1)
(%) s—|—

s

~ps+1)

Sf

Corollary 2.6. Presume that (LH;) —
holds. Occurs constant Cy, suchlike

(LH3) satisfy &(2.4)

‘I/Z(f)P(f)Cz(f) >C q0 296
G rE o) - T T 1) (2:20)
then G1 = G3 =Gg = Q.

Achieve oscillatory for all remediation, remains eliminates
remediation for G, type.

Lemma 2.7. Presume that (LH,) — (LHy) are satisfied. If

-1 _ _
ey § POROHE G5 tE—0)
= o q(s+&—0) go—1
2.27)
then G, = @.
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Proof. Sake for contravention, lets (2.27) satisfy y € G,. Choose
11 > fo suchlike x(z) > 0,x(r — 6) > 0 and x(r — &) > 0. Using
(2.10) in (1.1), we obtain

p(t)
q(t+&—o0)

Uses monotonicity of Eyy

qo_l
q0

Esy(t) + Yt+&-0)<0 (228)

v—1 s 1
—Ey() 2 Ery(v) — Ery(u) = Z’ Eczz)ég)) > Exy(v) Z' czl(s)
(2.29)

for v > u > t;. Summation latter in-equality u to v — 1,

v—1 v—1
) 2 Exy() ¥ ci@ Y C;x) = Exy(v)p(v,u).

(2.30)
Settingu=s5+& —c and v=r+& — o in (2.30), we find

Ys+&—0) > Eyit+E—o)u(t+&—o0,5+&~0)
(2.31)

Summation (2.28) r+ £ — 0 to t — 1& using (2.31), we see
that

Exy(t+& —0) 2Ey(t+§ —0) — Exy(t)
-1\ phs+E-o)
a0 S, dals+E—0)
Zqo_lEzy(H-@—G)

q0

© p)u(+E—o,s+&—0)
L q(s+§&—o0)

s=t+—c

Dividing the above inequality by E»y(t + & — 0)& takes the
limsup on two sides for in- equality ¢ — oo, get contravention
in (2.27). Proof was intact. O

Lemma 2.8. Presume that (LH,) — (LHa4) satisfy & lets B
was constant satisfy (2.1) eventually. If

'« pOAF+E—0,5+E—0)

limitsup, _,, (1 + & — o)P
1mitsup, ( 5 ) s:tJrZéfo' q(s—o—é — o)
0 (2.32)
qo—1
then G, = ¢.
Proof. Setting u=t+& — o and v =1 in (2.30),
¥t +&—0) > Ey()u(r,r+§ - o)
= Exy(t+1)u(t,t+& —o) (2.33)
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By (2.1), (2.28) and (2.33), we have
A (tBEzy(t)> = BP T Esy(t 4+ 1)+ P Esy(t) < BtP 1 Epy(t +1)
B (6107 1) Pp)y(t+&—o0)
90 q(t+&—-o0)
B (a0 1\ Pp(t)Eay(t + V(1,1 + &~ o)
<p~tEaern- () di+E—0)

—¢h-1 (qo—1\tp(t)u(t,t+8—0)
i Ezy(t+1){ﬁ (%) o }

<0

That is 8 E;y(t + 1) is eventually non-increasing. From here
we obtain that

v—1 B
Epy(s)s
—Ery(u) 2 Eyy(v) —Eiy(u) = ), ————
s;ﬂ sPea(s)
5 v—1 1
>FE 2.34
> Exy(v)v ;u Ferls) (2.34)
for v > u > t;. Proof for Lemma 2.7 in (2.29) replaces (2.34),
at contravention in (2.32). Proof was intact. O

Theorem 2.9. Suppose that (LH;) — (LHa) satisfy. Whether
(2.15)( or (2.22))&(2.27)( or (2.32)) hold, that then (1.1)
was oscillatory.

3. Example

Example 3.1. Observe third order delay difference equation

A (;A <éA(x(t) ox(t— 2)))) +2x(t—4) =0,
3.1

Henceézza o =4, q(t)zza Cl(t):%a CZ(I):%a
and p(t) = 2. Verify that the states for Theorem 2.3 satisfy.
Here all remediation for (3.1) has characteristic V,, one such
solution is x, = (—1)".
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