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Oscillatory properties of third-order delay difference
neutral equations
S. Revathy1* and R. Kodeeswaran2

Abstract
The aim of article is to investigate oscillatory manner for remediation of thirdorder linear delay difference neutral
equation term

∆(c2(t)∆(c1(t)∆y(t)))+ p(t)x(t−σ) = 0, t ≥ t0 > 0

here y(t) = x(t)+q(t)x(t−ξ ). By using comparability concepts with related 1st and 2nd order difference delay
inequality. Examples are given to major outcomes.
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1. Introduction
In research, considered with oscillation for the third order
linear delay difference neutral equation term

∆(c2(t)∆(c1(t)∆y(t)))+ p(t)x(t−σ) = 0, t ≥ t0 > 0
(1.1)

here y(t) = x(t)+q(t)x(t−ξ ). Create following presumption:

(LH1) : c1(t) and c2(t) sequences for non-negative integers;

(LH2) : p(t) and q(t) are the positive real sequences such that
q(t)≥ q0 > 1 and p(t) 6= 0;

(LH3) : σ ,ξ are positive integers, such that σ > ξ

(LH4) : t+ξ −σ ≤ t and (t+ξ −σ)≥ (t−σ)

Specify operators

E0y =y, E1y = c1∆y,
E2y =c2∆(c1(∆y)) , E3y = ∆(c2∆(c1(∆y)))

and assuming that E3y for non canonical , (ie)

∞

∑
s=t0

1
c1(s)

< ∞ and
∞

∑
s=t0

1
c2(s)

< ∞ (1.2)

By remediation for (1.1), real sequence {x(t)} explained
for t ≥ t0 and satisfy this (1.1). We taken single remediation
{x(t)} for (1.1) satisfy this sup{|x(t)| : t ≥ T} > 0 for abso-
lutely t ≥ T and assuming (1.1) possession suchlike solutions.
A remediation for equation (1.1) call on oscillatory whether
it’s not either positive eventually nor yet negative eventually;
or else, it call non oscillatory.

Convey the (1.1) have characteristic V2 whether any re-
mediation x(t) for (1.1) not either is oscillatory of satisfy this
limt→∞ x(t) = 0.

Oscillation concepts for difference third-order equations
uses have continuous attention of previous years, example,
[2− 10,12− 15] and the sources of references placed there
are in.
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In [13] author consider the following equation

∆
(
an∆

(
bn (∆xn)

α
))

+ pn (∆xn+1)
α +qn f

(
xσ(n)

)
= 0, n≥ n0

(1.3)

and established some oscillation for certain difference third-
order equations uses comparability concepts couple for differ-
ence first order equations.

Above observation motivated us to study oscillatory for
third order difference neutral delay with non-canonical oper-
ators. Section 2, we present oscillatory for all remediation
of (1.1) and Section 3, issue few examples illustrative major
result.

2. Main Outcomes
Following notations uses in research article.

µ1(t) =
t−1

∑
s=t1

1
c1( s)

, µ2(t) =
t−1

∑
s=t1

1
c2( s)

, µ(t) =
t−1

∑
s=t1

µ2( s)
c1( s)

ψ1(t) =
∞

∑
s=t

1
c1(s)

, ψ2(t) =
∞

∑
s=t

1
c2(s)

, ψ(t) =
∞

∑
s=t

ψ1(s)
c2(s)

µ (t, t1) =
t−1

∑
s=t1

1
c1(s)

t−1

∑
u=s

1
c2(u)

, µ̃ (t, t1) =
t−1

∑
s=t1

1
c1(s)

t−1

∑
u=s

1
c2(u)uβ

where β is a constant satisfying

0≤ q0β

q0−1
≤ t p(t)µ(t, t +ξ −σ)

q(t +ξ −σ)
(2.1)

Lemma 2.1. Suppose that (LH1)− (LH3) satisfy & x(t) an
positive eventually remediation for (1.1).

y(t)> x(t)≥ 1
q(t +ξ )

[
y(t +ξ )− y(t +2ξ )

q(t +2ξ )

]
(2.2)

& the corresponding sequence y(t) belongs to one of fol-
lowing cases;

y(t) ∈ G1⇔ y > 0,E1y < 0,E2y < 0
y(t) ∈ G2⇔ y > 0,E1y < 0,E2y > 0
y(t) ∈ G3⇔ y > 0,E1y > 0,E2y > 0
y(t) ∈ G4⇔ y > 0,E1y > 0,E2y < 0

Is eventually.

Proof. Choose t1 > t0 suchlike x(t−σ)> 0 and x(t−ξ )> 0.
From the definition of y, y(t)> x(t)> 0 and

x(t) =
y(t +ξ )− x(t +ξ )

q(t +ξ )

≥ 1
q(t +ξ )

(
y(t +ξ )− y(t +2ξ )

q(t +2ξ )

)
for t ≥ t1. Obviously, E3y(t) non-increasing, since E3y(t) =
−p(t)x(t−σ)≤ 0. Hence E1y(t) and E2y(t) eventually one
sign, implied 4 cases G1−G4 possibility y(t).

Next state the nonexistence for non negative non-decrease
remediation for (1.1). That state is included eliminating reme-
diation that class G1. In proof, take the useful truth

lim
t→∞

µ(t +ξ )

µ(t)
= lim

t→∞

µ1(t +ξ )

µ1(t)
= 1 (2.3)

which comes from equation (1.2).

Lemma 2.2. Presume that (LH1)− (LH3) are satisfied. If

∞

∑
s=t0

ψ2(s)p(s)
q(s+ξ −σ)

= ∞, (2.4)

then G3 = G4 = ϕ .

Proof. Sake for contravention, lets (2.4) satisfy y ∈ G3∪G4.
Choose t1 > t0 such like x(t)> 0,x(t−σ)> 0 and x(t−ξ )>
0. Assume that y ∈ G3. Since E2y is decreasing,

E1y(t)≥
t−1

∑
s=t1

1
c2(s)

E2y(s)≥ E2y(t)µ2(t)

Thus,

∆

(
E1y(t)
µ2(t)

)
=

E2y(t)µ2(t)−E1y(t)
c2(t)µ2

2 (t +1)
≤ 0.

Therefore, E1y(t)
µ2(t+1) is non-increasing

y(t)≥
t−1

∑
s=t1

µ2(t)
c1(s)µ2(t)

E1y(s)≥ E1y(t)µ(t)
µ2(t)

for t ≥ t1

Consequently, y(t)
µ(t) is non-increasing,

∆

(
y(t)
µ(t)

)
=

E1y(t)µ(t)− y(t)µ2(t)
c1(t)µ2(t +1)

≤ 0

From t +2ξ ≥ t +ξ

y(t +2ξ )≤ µ(t +2ξ )

µ(t +ξ )
y(t +ξ ) (2.5)

Using this in (2.2),

x(t)≥ y(t +ξ )

q(t +ξ )

[
1− µ(t +2ξ )

µ(t +ξ )q(t +2ξ )

]
, t ≥ t1

By virtue of (LH2) and (2.3), there is t2 ≥ t1 such that for any
constant ε ∈ (0,q0−1) and t ≥ t2

µ(t +2ξ )

µ(t +ξ )q(t +2ξ )
≤ 1+ ε

q0

which implies,

x(t)≥ y(t +ξ )

q(t +ξ )

[
1− 1+ ε

q0

]
> 0 (2.6)
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Combining (2.6) with (1.1) we have

0≥E3y(t)+
(

1− 1+ ε

q0

)
p(t)

q(t +ξ −σ)
y(t +ξ −σ)

≥E3y(t)+ k
(

1− 1+ ε

q0

)
p(t)

q(t +ξ −σ)
(2.7)

where we uses y is non-decreases, & set k = y(t2 +ξ −σ)<
y(t +ξ −σ). Summing (2.7) t2 to t−1

E2y(t)≤ E2y(t2)− k
(

1− 1+ ε

q0

) t−1

∑
s=t2

p(s)
q(s+ξ −σ)

(2.8)

On the other hand, from (1.2) and (2.4), it follows that

∞

∑
s=t0

p(s)
q(s+ξ −σ)

= ∞

visible for (2.8), contravention non-negativity for E2y. As-
suming y ∈ G4 of t ≥ t1. Uses monotonicity for E1y

y(t)≥
t−1

∑
s=t1

1
c1(s)

E1y(s)≥ E1y(t)µ1(t).

Thus, one visible that

∆

(
y(t)

µ1(t)

)
=

E1y(t)µ1(t)− y(t)
c1(t)µ2

1 (t +1)
≤ 0

which implies that y(t)
µ1(t)

is non-increasing. Hence,

y(t +2ξ )≤ µ1(t +2ξ )

µ1(t +ξ )
y(t +ξ )

uses (2.3) arrive (2.7), holds of anyone ε > 0 and t ≥ t2 for
t2 ≥ t1 sufficiently large. Summing (2.7) from t2 to t−1, we
have

−∆(E1y(t))≥ k
(

1− 1+ ε

q0

)
1

c2(t)

t−1

∑
s=t2

p(s)
q(s+ξ −σ)

Summation above in-equality again t2 to t−1

E1y(t)≤ E1y(t2)− k
(

1− 1+ ε

q0

) t−1

∑
u=t2

1
c2(u)

u−1

∑
s=t2

p(s)
q(s+ξ −σ)

Letting t to ∞ changing the summation and using (2.4) we
obtain

0≤E1y(∞)≤ E1y(t2)− k
(

1− 1+ ε

q0

)
∞

∑
u=t2

1
c2(u)

u−1

∑
s=t2

p(s)
q(s+ξ −σ)

=E1y(t2)− k
(

1− 1+ ε

q0

)
∞

∑
u=t2

p(s)Ψ2(s)
q(s+ξ −σ)

=−∞

a contravention. Proof was intact.

Theorem 2.3. Presume that (LH1)− (LH3) are satisfied. If
∞

∑
s=t0

ψ(s)p(s)
q(s+ξ −σ)

= ∞ (2.9)

that (1.1) have characteristic V2.

Proof. Assuming that x(t) non-oscillatory remediation for
(1.1). Generality, create it positive eventually. Presume x(t)>
0,x(t −σ) > 0 and x(t − ξ ) > 0. By decision Lemma 2.1,
y ∈ Gi, i = 1,2,3, . . . for t ≥ t1. Visible for (1.2), state (2.9)
implied

∞

∑
s=t0

ψ2(s)p(s)
q(s+ξ −σ)

=
∞

∑
s=t0

p(s)
q(s+ξ −σ)

= ∞

Thus by Lemma 2.2, G3 = G4 = ϕ and so either y ∈ G1 or
y ∈ G2. Using (LH2) and the fact that y is non-increasing in
(2.2),

x(t)≥ y(t +ξ )

q(t +ξ )

[
1− 1

q(t +2ξ )

]
≥
(

1− 1
q0

)
y(t +ξ )

q(t +ξ )
(2.10)

Onwards ∆y < 0 & l > 0 suchlike

lim
t→∞

y(t) = l < ∞

If l > 0, occurs t2 ≥ t1 suchlike y(t) ≥ l for t ≥ t2. Hence,
from (2.10),

x(t)≥ l (q0−1)
q0

1
q(t +ξ )

, t ≥ t2

Using this in (1.1), we find

E3y(t)+
l (q0−1)

q0

p(t)
q(t +ξ −σ)

≤ 0, t ≥ t2 (2.11)

we assume that y ∈ G1, then by summing (2.11) from t2 to
t−1

−∆(E1y(t))≥ l (q0−1)
q0

1
c2(t)

t−1

∑
s=t2

p(s)
q(s+ξ −σ)

Summation above in-equality t2 to t−1

−∆y(t)≥ l (q0−1)
q0

1
c1(t)

t−1

∑
u=t2

1
c2(u)

u−1

∑
s=t2

p(s)
q(s+ξ −σ)

(2.12)

Summing (2.12) from t2 to t − 1, letting t to infinity &
changed in-equality, & takes (2.9),

l =y(∞)≤ y(t2)−
l (q0−1)

q0

∞

∑
v=t2

1
c1(v)

v−1

∑
u=t2

1
c2(u)

u−1

∑
s=t2

p(s)
q(s+ξ −σ)

(2.13)

=y(t2)−
l (q0−1)

q0

∞

∑
s=n2

ψ(s)p(s)
q(s+ξ −σ)

=−∞
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is contravention. Thence, l = 0.
Takes y ∈ G2, summation (2.11) t2 to t−1& uses (2.9)

E2y(t)≤E2y(t2)−
l (q0−1)

q0
t−1

∑
s=t2

p(s)
q(s+ξ −σ)

→−∞ as t→ ∞ (2.14)

which contradicts the positivity of E2y and so l = 0. Since
y(t)≥ x(t), we find limt→∞ x(t) = 0. Proof was intact.
Following outcomes, For nonexistence G1 type remediation,
comparability for studious Equation (1.1) connected delay
first-order difference in-equality. Given criteria excludes re-
mediation G3 and G4.

Lemma 2.4. Presume that (LH1)− (LH4) are satisfied. If

liminf
t→∞

t−1

∑
s=t+ξ−σ

p(s)ψ(s)
q(s+ξ −σ)

>
q0

q0−1
(2.15)

then G1 = G3 = G4 = ϕ .

Proof. Sake for contravention, lets (2.15) satisfy y ∈ G1 ∪
G3 ∪G4. Choose t1 > t0 suclike x(t) > 0,x(t−σ) > 0 and
x(t−ξ )> 0. Assume first that y ∈G1. Proof for Theorem 2.3
arrive (2.10), visible for (1.1) provide

E3y(t)+
q0−1

q0

p(t)
q(t +ξ −σ)

y(t +ξ −σ)≤ 0 (2.16)

Define the function

w(t) = ψ1(t)E1y(t)+ y(t) (2.17)

From

y(t)≥−
∞

∑
s=t

1
c1(s)

E1y(s)≥−E1y(t)ψ1(t)

=−E1y(t +1)ψ1(t) (2.18)

and

∆w(t) = ψ1(t)∆(E1y(t)) =
ψ1(t)
c2(t)

E2y(t)< 0

w(t) strictly non-increase positive eventually sequence. Using
the definition of w in (2.16), we have

∆

(
c2(t)
ψ1(t)

∆w(t)
)
+

q0−1
q0

p(t)y(t +ξ −σ)

q(t +ξ −σ)
≤ 0

Hence w is remediation for second-order difference delay
in-equality

∆

(
c2(t)∆w(t)

ψ1(t)

)
+

q0−1
q0

p(t)w(t +ξ −σ)

q(t +ξ −σ)
≤ 0

(2.19)

Similarity before, defined function u by

u(t) =
ψ(t)c2(t)

ψ1(t)
∆w(t)+w(t)

From

∆u(t) = ∆

(
c2(t)∆w(t)

ψ1(t)

)
Ψ(t)

= E3y(t)Ψ(t)≤ 0

and

w(t)≥−
∞

∑
s=t

ψ1(s)c2(s)
c2(s)Ψ1(s)

∆w(s)≥− c2(t)
ψ1(t)

∆w(t)ψ(t)

=− c2(t +1)
ψ1(t +1)

∆w(t +1)ψ(t) (2.20)

Come to end u positive eventually & non-increasing. Uses
definition for u on (2.19), visible that u satisfy delay first-order
difference in-equality

∆u(t)+
q0−1

q0

p(t)ψ(t)
q(t +ξ −σ)

u(t +ξ −σ)≤ 0 (2.21)

However, by [1] ( Theorem 6.20.5), state (2.15) make sure that
above in-equality doesn’t possess a non-negative remediation,
which was contravention.

Showing also G3 = G4 = ϕ , it enough (2.9) is required
for validity for (2.15) onwards otherwise, left side for (2.15)
equal be zero. Come to an end suddenly from Theorem 2.3.
Proof was intact.

Lemma 2.5. Presume that (LH1)− (LH4) are satisfied and
(2.4) holds. If for any t1 ≥ t0 large enough,

limsup
t→∞

t−1

∑
s=t1

(
ψ(s)p(s)

q(s+ξ −σ)
−
(

q0

q0−1

)
ψ1(s+1)

4ψ(s)c2(s+1)

)
>

q0

q0−1
(2.22)

then G1 = G3 = G4 = ϕ.

Proof. Sake for contravention, lets (2.15) satisfy y ∈ G1 ∪
G3∪G4. Choose t1 > t0 such like x(t)> 0,x(t−σ)> 0 and
x(t−ξ )> 0. Assume that y ∈G1. Proof for Lemma 2.4 come
by (2.19), here w given (2.17). Then ρ defines by

ρ(t) =
c2(t)∆w(t)
ψ1(t)w(t)

(2.23)

Clearly, ρ < 0, from (2.20),

−1≤ ψ(t)ρ(t)< 0 (2.24)
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Using (2.19) together with (2.23), we have

∆ρ(t) = ∆

(
c2(t)∆w(t)

ψ1(t)

)
1

w(t)
− c2(t +1)[∆w(t +1)]2

ψ1(t +1)w2(t +1)

≤−
(

q0−1
q0

)
p(t)

q(t +ξ −σ)

w(t +ξ −σ)

w(t)

− ψ1(t +1)ρ2(t +1)
c2(t +1)

(2.25)

≤−
(

q0−1
q0

)
p(t)

q(t +ξ −σ)
− ψ1(t +1)ρ2(t +1)

c2(t +1)

Multiplied both side for (2.25) at ψ(t)& summing in-equality
t1 to t−1

ψ(t)ρ(t)≤ψ (t1)ρ (t1)+
t−1

∑
s=t1

ρ(s+1)ψ1(s+1)
c2(s+1)

− q0−1
q0

t−1

∑
s=t1

ψ(s)p(s)
q(s+ξ −σ)

−
t−1

∑
s=t1

ψ1(s+1)ρ2(s+1)ψ(s)
c2(s+1)

=ψ (t1)ρ (t1)−
q0−1

q0

t−1

∑
s=t1

ψ(s)p(s)
q(s+ξ −σ)

+
t−1

∑
s=t1

ψ1(s+1)ψ(s)
c2(s+1)

[
ρ(s+1)

ψ(s)
−ρ

2(s+1)
]

≤−
(

q0−1
q0

) t−1

∑
s=t1

[
ψ(s)p(s)

q(s+ξ −σ)

−
(

q0

q0−1

)
ψ1(s+1)

4ψ(s)c2(s+1)

]
visible for (27), in-equality contravention (2.22). Thence
G1 = ϕ. At Lemma 2.2, G3 = G4 = ϕ caused by (2.4). Proof
was intact.

Corollary 2.6. Presume that (LH1)− (LH3) satisfy &(2.4)
holds. Occurs constant Ck suchlike

ψ2(t)p(t)c2(t)
q(t +ξ −σ)ψ1(t)

≥Ck >
q0

4(q0−1)
(2.26)

then G1 = G3 = G4 = ϕ .
Achieve oscillatory for all remediation, remains eliminates
remediation for G2 type.

Lemma 2.7. Presume that (LH1)− (LH4) are satisfied. If

limsup
t→∞

t−1

∑
s=t+ξ−σ

p(s)µ(t +ξ −σ ,s+ξ −σ)

q(s+ξ −σ)
>

q0

q0−1

(2.27)

then G2 = ϕ.

Proof. Sake for contravention, lets (2.27) satisfy y∈G2. Choose
t1 > t0 suchlike x(t)> 0,x(t−σ)> 0 and x(t−ξ )> 0. Using
(2.10) in (1.1), we obtain

E3y(t)+
qo−1

q0

p(t)
q(t +ξ −σ)

y(t +ξ −σ)≤ 0 (2.28)

Uses monotonicity of E2y

−E1y(u)≥ E1y(v)−E1y(u) =
v−1

∑
s=u

E2y(s)
c2(s)

≥ E2y(v)
v−1

∑
s=u

1
c2(s)

(2.29)

for v≥ u≥ t1. Summation latter in-equality u to v−1,

y(u)≥ E2y(v)
v−1

∑
s=u

1
c1(s)

v−1

∑
x=s

1
c2(x)

= E2y(v)µ(v,u).

(2.30)

Setting u = s+ξ −σ and v = t +ξ −σ in (2.30), we find

y(s+ξ −σ)≥ E2y(t +ξ −σ)µ(t +ξ −σ ,s+ξ −σ)
(2.31)

Summation (2.28) t + ξ −σ to t− 1& using (2.31), we see
that

E2y(t +ξ −σ)≥E2y(t +ξ −σ)−E2y(t)

≥q0−1
q0

t−1

∑
s=t+ξ−σ

p(s)y(s+ξ −σ)

q(s+ξ −σ)

≥q0−1
q0

E2y(t +ξ −σ)

t−1

∑
s=t+ξ−σ

p(s)µ(t +ξ −σ ,s+ξ −σ)

q(s+ξ −σ)

Dividing the above inequality by E2y(t +ξ −σ)& takes the
limsup on two sides for in- equality t→ ∞, get contravention
in (2.27). Proof was intact.

Lemma 2.8. Presume that (LH1)− (LH4) satisfy & lets β

was constant satisfy (2.1) eventually. If

limitsupt→∞(t +ξ −σ)β
t−1

∑
s=t+ξ−σ

p(s)µ̃(t +ξ −σ ,s+ξ −σ)

q(s+ξ −σ)

>
q0

q0−1
(2.32)

then G2 = ϕ .

Proof. Setting u = t +ξ −σ and v = t in (2.30),

y(t +ξ −σ)≥ E2y(t)µ(t, t +ξ −σ)

= E2y(t +1)µ(t, t +ξ −σ) (2.33)
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By (2.1), (2.28) and (2.33), we have

∆

(
tβ E2y(t)

)
= β tβ−1E2y(t +1)+ tβ E3y(t)≤ β tβ−1E2y(t +1)

−
(

q0−1
q0

)
tβ p(t)y(t +ξ −σ)

q(t +ξ −σ)

≤ β tβ−1E2y(t +1)−
(

q0−1
q0

)
tβ p(t)E2y(t +1)µ(t, t +ξ −σ)

q(t +ξ −σ)

= tβ−1E2y(t +1)
[

β −
(

q0−1
q0

)
t p(t)µ(t, t +ξ −σ)

q(t +ξ −σ)

]
≤ 0

That is tβ E2y(t +1) is eventually non-increasing. From here
we obtain that

−E1y(u)≥ E1y(v)−E1y(u) =
v−1

∑
s=u

E2y(s)sβ

sβ c2(s)

≥ E2y(v)vβ
v−1

∑
s=u

1
sβ c2(s)

(2.34)

for v≥ u≥ t1. Proof for Lemma 2.7 in (2.29) replaces (2.34),
at contravention in (2.32). Proof was intact.

Theorem 2.9. Suppose that (LH1)− (LH4) satisfy. Whether
(2.15)( or (2.22))&(2.27)( or (2.32)) hold, that then (1.1)
was oscillatory.

3. Example
Example 3.1. Observe third order delay difference equation

∆

(
1
2

∆

(
1
6

∆(x(t)+2x(t−2))
))

+2x(t−4) = 0.

(3.1)

Hence ξ = 2, σ = 4, q(t) = 2, c1(t) = 1
6 , c2(t) = 1

2 ,
and p(t) = 2. Verify that the states for Theorem 2.3 satisfy.
Here all remediation for (3.1) has characteristic V2, one such
solution is xn = (−1)t .
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