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Oscillation of first order delay differential equations
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Abstract
In this article, we establish some new criteria for the oscillation of the delay differential equation

y′(x)+q(x)y(τ(x)) = 0,x≥ x0,τ(x)< x.

For the case where ∫ x

τ(x)
q(t)dt ≥ 1

e
and lim

x→∞

∫ x

τ(x)
q(t)dt =

1
e
.

An open problem by A. Elbert and I. P. Stavroulakis (1995, Proc. Amer. Math. Soc., 123, 1503–1510) is solved.
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1. Introduction
Consider the delay differential equation

y′(x)+q(x)y(τ(x)) = 0,x≥ x0, (1.1)

where
q(x)≥ 0,τ(x)< x and lim

x→∞
τ(x) = ∞

The study of oscillatory properties of solutions of (1.1) has
been the subject of interest for many investigators. The first
systematic study of the problem was made by myskis [12]. In
1950, myskis [11] obtained the first criterion for the oscillation
of equation (1.1). since then the oscillatory properties of
equation (1.1) have been studied extensively. Now it is well
known that every solution of (1.1) oscillates provided that
either

α = liminf
x→∞

∫ x

τ(x)
q(t)dt >

1
e

(1.2)

β = limsup
x→∞

∫ x

τ(x)
q(t)dt > 1 (1.3)

Condition (1.2) has been extensively used in the study of
oscillation of various functional differential equations. For
example, see [1,2,3,9]. There have been many papers improv-
ing the conditions (1.2) and (1.3). See, for example, [5-9]. In
particular, Yu and Wang [9] established that every solution
(1.1) is oscillatory if

α ≤ 1
e

and β = 1− 1
2

(
1−α−

√
1−2α−α2

)
(1.4)

which improves condition (1.3). Elbert and Stavroulakis [5]
and Li [6] have proved that every solution of equation (1.1) is
oscillatory if∫ x

τ(x)
q(t)dt ≥ 1

e
(1.5)

which improves condition (1.2).
Li [14] and Tang and Shen [10] established another new

criteria for the oscillation of (1.1) without condition (1.5).
These results further improve many known results in literature.

We assume that the delay function τ(x) is strictly increas-
ing on [x0,∞) and τ−1(x)> x is its inverse. Define τ−k(x) on
[x0,∞) by

τ
−(k+1)(x) = τ

−1
(

τ
−k(x)

)
, k = 1,2 . . . (1.6)

and let

xk = τ
−k (x0) , k = 1,2 . . . (1.7)
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Clearly xk→ ∞ as k→ ∞.
Assume that the coefficient q(x) is a piecewise continuous
function and satisfies condition (1.5). Elbert and Stavroulakis
[5] obtained best results on the oscillation of (1.1), when∫ x

τ(x)
q(t)dt ≥ 1

e
and lim

x→∞

∫ x

τ(x)
q(t)dt =

1
e
. (1.8)

They are the following Theorems 1.1 and 1.2.

Theorem 1.1. Assume that q(x) ∈ Aλ for some λ ∈ (0,1] the
definition of Aλ is found in [5] and either

λ limsup
k→∞

k
∞

∑
i=k

(∫ xi

xi−1

q(t)dt− 1
e

)
>

2
e

(1.9)

or

λ liminf
k→∞

k
∞

∑
i=k

(∫ xi

xi−1

q(t)dt− 1
e

)
>

1
2e

. (1.10)

Then every solution of (1.1) oscillates.

Theorem 1.2. Let τ(x) = x−1, q(x) = 1
e +a(x) and x0 = 1

in (1.1). Assume that

a(x)≤ 1
8ex2 . (1.11)

Then (1.1) has a solution y(x)≥
√

xe−x.

Remark 1.3. For the following equation

y′(x)+
(

1
e
+Kx−α

)
y(x−1) = 0,x≥ 1. (1.12)

By Theorems 1.1 and 1.2, we see that every solution of (1.12)
oscillates for any k > 0 if

0≤ α < 2 or K >
1
2e

if α = 2

On the other hand, (1.12) has a nonoscillatory solution for
any

0 < K <
1
8e

if α = 2 or K > 0 if α > 2 or K ≤ 0.

Clearly there is a gap between 1
2e and 1

8e ; therefore, Elbert
and Stavroulakis posted the following open problem in [5].

Example 1.4. Can the bounds in conditions (1.9) and (1.10)
of Theorem 1.1. can be replaced by smaller ones?
Our aim in this paper is to solve the above open problem. The
main results are the following.

Theorem 1.5. Assume that (1.5) holds, and

limsup
k→∞

k
∫

∞

xk

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx >

1
e2 . (1.13)

Then every solution of (1.1) oscillates.

Theorem 1.6. Let τ(x) = x− τ,q(x) = 1
eτ
+a(x),τ > 0 and

a(x)≥ 0 in (1.1). Assume that

liminf
x→∞

x
∫

∞

x
a(t)dt >

τ

8e
. (1.14)

Then every solution of (1.1) oscillates.

Remark 1.7. Theorems 1.5 and 1.6 remove the condition
q(x) ∈ Aλ in Theorem 1.1. If q(x) ∈ Aλ for some λ ∈ (0,1]
then ∫ x

τ(x)
q(t)dt− 1

e
≥ λk

(∫ xk+1

xk

q(t)dt− 1
e

)
≥ 0,

for xk < x < xk+1, k = 1, 2, . . .. Where limk→∞ λk = λ . It
follows that

(k−1)
∫

∞

xk−1

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx

= (k−1)
∞

∑
i=k−1

∫ xi+1

xi

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx

≥ (k−1)
∞

∑
i=k−1

λi

(∫ xi+1

xi

q(t)dt− 1
e

)∫ xi+1

xi

q(x)dx

≥ k−1
e

∞

∑
i=k−1

λi

(∫ xi+1

xi

q(t)dt− 1
e

)
=

k−1
ek

k
∞

∑
i=k

λi−1

(∫ xi

xi−1

q(t)dt− 1
e

)
.

Therefore

λ limsup
k→∞

k
∞

∑
i=k

(∫ xi

xi−1

q(t)dt− 1
e

)
>

1
e

(1.15)

implies (1.13). We remark that the bound 1
e in (1.15) is a half

of 2
e in (1.9).

Remark 1.8. If τ(x) = x−τ and q(x) = 1
eτ
+a(x), then xk =

x0 + kτ for k = 1,2, . . .. For,

x0 +(k−2)τ = xk−2 < x≤ xk−1 = x0 +(k−1)τ,k = 2,3 . . .

x
τ

∫
∞

x
a(t)dt ≥ x0 +(k−2)τ

τ

∫
∞

x0+(k−1)τ
a(t)dt

=

(
1− 2

k
+

x0

kτ

)
k

∞

∑
i=k

(∫ xi

xi−1

q(t)dt− 1
e

)
.

Therefore

liminf
k→∞

k
∞

∑
i=k

(∫ xi

xi−1

q(t)dt− 1
e

)
>

1
8e

(1.16)

implies (1.14). We remark that the bound 1
8e in (1.16) is also

a quarter of 1
2e in (1.10).

Remark 1.9. For equation (1.12), by Theorem 1.6 and Theo-
rem 1.2 we have that every solution of (1.12) oscillates if and
only if k > 0 and α < 2 or k > 1

8e and α = 2. This shows that
condition (1.14) is unimprovable in that sense.
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Remark 1.10. If∫
∞

x0

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx = ∞

condition (1.13) holds naturally. Therefore, Theorem 1.5 also
improves [5, Theorem 1], and the main result in [6].

2. Some Lemmas
To prove Theorems 1.5 and 1.6, we need the following lem-
mas.

Lemma 2.1 ([5]). Assume that (1.5) holds and y(x) is a posi-
tive solution of (1.1) on [xk−3,xk+1] for some k≥ 3. Let M, N
be defined by

N = min
xk−1≤x≤xk

y(τ(x))
y(x)

, M = min
xk≤x≤xk+1

y(τ(x))
y(x)

.

Then, 1<N ≤M < (2e)2. Let the sequence {ri}∞

i=0 be defined
by the recurrence relation

r0 = 1,ri+1 = eri/e for i = 0,1 . . . (2.1)

Lemma 2.2 ([5]). For the sequence {ri}∞

i=0 in (2.1) the fol-
lowing relations hold

(a) ri < ri+1

(b) ri < e

(c) limi→∞ ri = e

(d) ri > e−2e/(i+2).

Lemma 2.3. Assume that τ > 0 and a(x) : [x0,∞)→ [0,∞)
is a piecewise Continuous function and (1.14) holds. Then
every solution of the equation

z′(x)+
(
τ
−1 + ea(x)

)
z(x− τ)− τ

−1z(x) = 0, x≥ x0
(2.2)

oscillates.

Proof. Suppose the contrary. Then we may assume, without
loss of generality, that there exists a solution z(x) such that
z(x)> 0 for x≥ xk = x0+kτ for some k > 0. Rewrite (2.2) as(

z(x)− τ
−1
∫ x

x−τ

z(t)dt
)′

+ ea(x)z(x− τ) = 0, x≥ xk.

(2.3)

By [15, Lemma 1] we have eventually

s(x), z(x)− τ
−1
∫ x

x−τ

z(t)dt > 0 and s′(x)≤ 0. (2.4)

Let k1 ≥ k+1 such that the inequalities above hold for x ≥
xk1 = x0 + k1τ . Set N = 2−1 min

{
z(x) : xk1 − τ ≤ x≤ xk1

}
.

We claim that

z(x)> N for x≥ xk1 − τ. (2.5)

In fact, if (2.5) does not hold, we may let x∗= inf{x> xk1 : z(x)
≤ N} such that z(x)> N for xk1 − τ ≤ x≤ x∗ and z(x∗) = N.
By (2.4) we have

N = s(x∗)+ τ
−1
∫ x∗

x∗−τ

z(t)dt > N

This is a contradiction and so (2.5) holds.
Let limx→∞ s(x) = m. Then there exist two possible cases:
Case 1. m = 0. Let k2 > k1 such that s(x)< N

4 for x≥ xk2 =
x0 + k2τ . Then for any x̄≥ xk2 , we have

z(x)> 2τ
−1
∫ x+τ

x̄
s(t)dtfor x ∈ [x̄, x̄+ τ].

Case 2. m > 0. Noting that s′(x) ≤ 0, for x ≥ xk1 ·We have
s(x)≥ m for x≥ xk1 . From (2.4) and (2.5) we get

z(x)≥ m+ τ
−1
∫ x

x−τ

z(t)dt ≥ m+N,x≥ xk1

By induction, one can easily show that

z(x)≥ nm+N,x≥ xk1 +(n−1)τ,n = 1,2 . . .

and so limx→∞ z(x) = ∞, which implies that there is a k3 > k2
such that

z(x)> 2τ
−1
∫ x+τ

xk3

s(t)dtx ∈
⌊
xk3 ,xk3 + τ

]
Combining cases 1 and 2, we see that there exists a X > xk2
such that

z(x)> 2τ
−1
∫ x+τ

X
s(t)dt x ∈ [X ,X + τ].

Now we prove that

z(x)> 2τ
−1
∫ x+τ

X
s(t)dt x≥ X . (2.6)

If (2.6) does not hold, then we may define X∗ by

X∗ = inf
{

x≥ X + τ : z(x)≤ 2τ
−1
∫ x+τ

X
s(t)dt

}
and so

z(x)> 2τ
−1
∫ x+τ

X
s(t)dt for x ∈ [X ,X∗)

and

z(X∗) = 2τ
−1
∫ X∗+τ

X
s(t)dt.
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By (2.4) we have

2τ
−1
∫ X∗+τ

X
s(t)dt

= s(X∗)+ τ
−1
∫ X∗

X∗−τ

z(t)dt

> s(X∗)+2τ
−2
∫ X∗

X∗−τ

dt
∫ t+τ

X
s(ξ )dξ

= s(X∗)+2τ
−1
∫ X∗+τ

X
s(t)dt−2τ

−2
∫ X∗+τ

X∗
(t−X∗)s(t)dt

≥ s(X∗)+2τ
−1
∫ X∗+τ

X
s(t)dt−2τ

−2s(X∗)
∫ X∗+τ

X∗
(t−X∗)dt

= 2τ
−1
∫ X∗+τ

X
s(t)dt.

This is a contradiction and so (2.6) holds. From (2.6) we
obtain

z(x− τ)> 2τ
−1
∫ x

X
s(t)dt for x≥ X + τ (2.7)

Let v(x) =
∫ x

X s(t)dt; Then, v′(x) = s(x),v′′(x) = s′(x). From
(2.3), (2.4) and (2.7), we have

v′′(x)+2τ
−1ea(x)v(x)≤ 0,x≥ X + τ. (2.8)

This shows that inequality (2.8) has an eventually positive so-
lution. On the other hand, by a known result in [16], condition
(1.14) implies that (2.8) has no eventually positive solution.
This contradiction completes the proof.

3. Proofs of Theorems
Proof of Theorem 1.5.
Suppose the contrary. Then we may assume, without loss of
generality, that there exists a solution y(x) such that

y(x)> 0 for x≥ xm−3 for some m≥ 3.

Set,

u(x) =
y(τ(x))

y(x)
for x≥ xm−2. (3.1)

Then u(x)≥ 1 for x≥ xm−2. From (1.1) we have

u(x) = exp
(∫ x

τ(x)
q(t)u(t)dt

)
, x≥ xm−1. (3.2)

Let the sequence {Mi}∞

i=0 be defined by

Mi = min{u(x) : xm+i−1 ≤ x≤ xm+i} i = 0,1 . . . .
(3.3)

By Lemma 2.1, we have

1 < Mi ≤Mi+1 < 4e2 for i = 0,1,2 . . . . (3.4)

This shows that the sequence {Mi}∞

i=0 converges. Let

lim
i→∞

Mi = M. (3.5)

By (1.5), (3.2) and (3.3), we have

Mi+1 ≥ exp
(

Mi

e

)
for i = 0,1,2, . . .

which, together with (3.5), yields M ≥ exp
(M

e

)
. It is easy to

check that

ey/e > y for y 6= e

This inequality, (3.6), and (3.5) imply that M = e and

1 < M1 ≤M2 < .. . < e

From (3.3) and (3.5) we have

u(x)≥Mi for x≥ xm+i−1, i = 0,1,2,3 . . . . (3.6)

It follows from (3.2) that for x≥ xm+i

u(x) = exp
(∫ x

τ(x)
q(t)u(t)dt

)
= exp

(∫ x

τ(x)
q(t)(u(t)−Mi)dt +

Mi

e

)
× exp

[
Mi

(∫ x

τ(x)
q(t)dt− 1

e

)]
≥
[

e
∫ x

τ(x)
q(t)(u(t)−Mi)dt +Mi

][
1+Mi

(∫ x

τ(x)
q(t)dt− 1

e

)]
≥ e

∫ x

τ(x)
q(t)(u(t)−Mi)dt +Mi +M2

i

(∫ x

τ(x)
q(t)dt− 1

e

)
.

Thus,

q(x)(u(x)−Mi)− eq(x)
∫ x

τ(x)
q(t)(u(t)−Mi)dt

≥M2
i q(x)

(∫ x

τ(x)
q(t)dt− 1

e

)
,x≥ xm+i, i = 0,1 . . . .

(3.7)

Integrating both sides of (3.7) from xm+i to X > xm+n with
n≥ i+1

∫ X

xm+i

q(x)(u(x)−Mi)dx− e
∫ X

xm+i

q(x)
(∫ x

τ(x)
q(t)(u(t)−Mi)dt

)
dx

≥M2
i

∫ X

xm+i

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx, for i = 0,1 . . .

(3.8)
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By interchanging the order of integration and using (1.5) and
(3.6), we have

e
∫ X

xm+i

q(x)
∫ x

τ(x)
q(t)(u(t)−Mi)dtdx

= e
∫

τ(X)

xm+i

q(x)(u(x)−Mi)
∫

τ−1(x)

x
q(t)dtdx

+ e
∫ xm+i

xm+i−1

q(x)(u(x)−Mi)
∫

τ−1(x)

xm+i

q(t)dtdx

+ e
∫ X

τ(X)
q(x)(u(x)−Mi)

∫ X

x
q(t)dtdx

≥
∫

τ(X)

xm+i

q(x)(u(x)−Mi)dx

+ e(Mn−Mi)
∫ X

τ(X)
q(x)

∫ X

x
q(t)dtdx

≥
∫

τ(X)

xm+i

q(x)(u(x)−Mi)dx+(Mn−Mi)/2e

It follows from (3.8) that∫ X

τ(X)
q(x)(u(x)−Mi)dx+

(Mn−Mi)

2e

≥M2
i

∫ X

xm+i

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx, for i = 0,1 . . .

or

lnu(x)− (Mn +Mi)

2e

≥M2
i

∫ X

xm+i

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx, for i = 0,1 . . . .

(3.9)

Let Xn ∈ [xm+n,xm+n+1] such that u(Xn) = Mn+1 for n =
1,2 . . .. Set X = Xn in (3.9) and taking the superior limit as
n→ ∞ we get from (3.9)

e−Mi

2e
≥M2

i

∫
∞

xm+i

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx, for i = 0,1 . . .

(3.10)

Comparing (2.1) with (3.6) we can obtain by induction

M0 > r0,Mi > ri for i = 1,2,3, . . .

Then by Lemma 2.2 (d) we have

e−Mi < e− ri <
2e

i+2
.

Multiplying (3.10) by m+ i we obtain

m+ i
i+2

≥M2
i (m+ i)

∫
∞

xm+i

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx, for i = 0,1 . . .

Taking the superior limit as i→ ∞ we get

1≥ e2 limsup
k→∞

k
∫

∞

xk

q(x)
(∫ x

τ(x)
q(t)dt− 1

e

)
dx.

which contradicts (1.13). The proof is complete. �
Proof of Theorem 1.6.
Suppose the contrary. Then we may assume that there exists
a solution y(x) such that y(x)> 0 for x ≥ xk for some k > 0.
Set

w(x) = y(x)e
x
τ for x≥ xk. (3.11)

Then from (1.1) we have,

w′(x)+
(
τ
−1 + ea(x)

)
w(x− τ)− τ

−1w(x) = 0,x≥ xk.
(3.12)

This shows that (2.2) has an eventually positive solution w(x).
On the other hand, by Lemma 2.3, (1.14) implies that (2.2) has
no eventually positivesolution. This contradiction completes
the proof. �

4. Example
Consider the equation

y′(x)+
(

1
e
+ kx−α sin2(βx)

)
y(x−1) = 0,x≥ 1,

(4.1)

where q(x) = 1
e +kx−α sin2(βx),k,α,β > 0, and τ = 1. By a

simple calculation, one can obtain

x
∫

∞

x
a(t)dt = kx

∫
∞

x
t−α sin2(β t)dt

= kx
∞

∑
k=0

∫ x+(k+1)π/β

x+kπ/β

t−α sin2(β t)dt

≥ (2β )−1kπx
∞

∑
k=0

[x+(k+1)π/β ]−α

≥
{[

2(α−1)−1kx2−α(1−π/βx)1−α ,α > 1
]

Therefore

liminf
x→∞

x
∫

∞

x
a(t)dt =

{
∞,α < 2
k
2 ,α = 0

Applying Theorem 1.6, we see that every solution of (4.1)
oscillates for any

k > 0 if 0≤ α < 2 or k >
1
4e

if α = 2.

The same conclusion, however, cannot be inferred from Theo-
rem 1.1 when β 6= nπ or β = nπ and 1

4e < k ≤ 1
e and α = 2.
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