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Abstract
In this paper, we present a new public key scheme which is based on factoring, RSA encryption, proposed by
Rivest-Shamir-Adleman(1978) [5]and discrete logarithm problem(DLP) [6], proposed by Diffie and Hellman[15],
particularly, known as the Computational Diffie-Hellman Problem (CDH)[17]. The idea of DLP was mainly applied
to groups, Finite fields and Elliptic Curves but in this paper, we are going to apply it to a particular ring Zpq,
where p and q are two large primes. The encryption and decryption processes of the proposed scheme uses the
Elgamal encryption scheme related to DLP. Also, the proposed system benefits from the fact that this ring is
m-injective over itself i.e, the existence of many R-monomorphisms from this ring to itself, which are subjected to
certain conditions.
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1. Introduction
We have the following definitions. Let R be a ring with
identity element. A left ideal I of R is a subgroup of R
with respect to addition and for any x ∈ I and r ∈ R, rx ∈ I.
A non-empty set M is a left R-module if M is an abelian
group with respect to addition and if there exists a map
. : R×M −→M such that (i)(r+ s).m = r.m+ s.m(ii)r.(m1 +
m2) = r.m1 + r.m2(iii)(rs).m = r.(sm) (iv)1.m = m, ∀r,s ∈ R
and ∀m1,m2 ∈M[2]. Also, we recall that a function h from
a ring R to a ring S is a left R homomorphism if ∀x,y ∈ R,
(i)h(x+ y) = h(x)+h(y) (ii)h(rx) = rh(x), ∀r ∈ R([2],[3]).

A left R module E is injective over R if for any left
R-monomorphism α : M → M′ of left R-modules M and
M′ and any left R- homomorphism f : M → E, there ex-
ists a left R-homomorphism g : M′ → E such that goα =
f [18]. We shall now give Baer’s criterion and then modify
it to introduce the concept of m-injective rings. Let E be
a left R-module. According to Baer’s criterion, E is injec-
tive over R if and only if for every left ideal A of R, any left
R-homomorphism f : A −→ E can be extended to a left R-
homomorphism g : R−→ E([1],[2],[3]). In our study, E = R
and using Baer’s criterion, we define m-injective in the fol-
lowing manner. A ring R, regarded as a module over itself,
is left m-injective over itself if for any left ideal A of R, any
left R-monomorphism f : A−→ E can be extended to a left
R-monomorphism g : R−→ R. As in the definition of homo-
morphism, a function h from a ring R to another ring S is a
left R-monomorphism if ∀x,y ∈ R, (i)h(x+ y) = h(x)+h(y)
(ii)h(rx) = rh(x), ∀r ∈ R (iii)h is one-one. This concept of
rings which are m-injective over themselves is an extension of
the concept of Self injective rings which was introduced by Y.
Utumi [4] in the year 1965. In [4], Utumi studied the proper-
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ties of commutative rings which are injective over themselves.
In this paper, R = Zpq is a finite commutative ring.

A public key cryptography or asymmetric cryptography is
a cryptographic system that uses two types of keys, viz, pub-
lic keys which may be disseminated widely and private keys
known only to the owner. One of the problems used in this
paper is RSA, based on factoring. It stands on the idea that
for a known value e relatively prime to φ(n)(Euler’s totient
function), there exists inverse d of e modulo φ(n). Computing
φ(n) is difficult without the knowledge of the prime factors
of n and thus d remains untraced by an attacker. The second
problem used here is the discrete logarithm problem, partic-
ularly, the Computational Diffie-Hellman Problem i.e given
two known values h and t such that h = ts(mod n), it is diffi-
cult to find s[12] and knowing t, ts, tk modulo n, it is difficult
to find tsk modulo n. In this paper, n = pq is a product of two
primes, just like the one which was first used in [11]. Before
proposing our public key scheme, we would like to prove the
following results based on the m-injectivity of Zpq.
Notation:-x̄ used in this paper will denote the integer x mod-
ulo n and 〈x̄〉 will denote the ideal generated by x̄.

2. Results and Discussion
Proposition 2.1. Let n≥ 2. Consider Zn = {0,1,2, ...,n−1}.
Let x,y ∈ {1,2,3, ...,n−1}
(i)If 〈x〉= 〈y〉 then gcd(x,n) = gcd(y,n)
(ii)If gcd(x,n) = a then 〈x〉= 〈a〉 and a|n

Proof. (i) Let g = gcd(x,n) then g|x and g|n and also g =
xl + nk for some l,k ∈ Z. This implies that g = xl + nk =
xl ∈ 〈x〉 = 〈y〉. This shows that g = yp, for some p ∈ Zn.
From this, we get n|g− yp⇒ g− yp = nq, for some q ∈ Z.
This implies that g = nq+ yp⇒ g|y. For if g - y then there
exists s,r ∈ Z such that y = gs+ r, where r < g. This implies
that gs+ r = y ∈ 〈y〉 = 〈x〉. This shows that gs+ r = xt, for
some t ∈ Zn. This implies that n|(gs+ r− xt). Since g|n⇒
g|(gs+ r− xt)⇒ g|r, which is a contradiction. Hence, g|y
and therefore, g|gcd(y,n) i.e, gcd(x,n)|gcd(y,n). Similarly,
we can show that gcd(y,n)|gcd(x,n). Hence, the result.
(ii)gcd(x,n) = a⇒ a|x⇒ x = ar⇒ x = a r ⊆ 〈a〉, for some
r ∈ Z.
Hence, 〈x〉 ⊆ 〈a〉 . Also, a = xl +nk, for some l,k ∈ Z. This
implies that a = xl+nk = xl ∈ 〈x〉. This shows that 〈a〉 ⊆ 〈x〉
hence, they are equal and clearly a|n.

We can generalise the above two results to get a proposi-
tion below:-

Proposition 2.2. If 〈x1〉= 〈x2〉= 〈x3〉= ...= 〈xt〉 in Zn then
(i)gcd(x1,n) = gcd(x2,n) = gcd(x3,n) = ... = gcd(xt ,n) =
a(say)
(ii)〈a〉= 〈x1〉= 〈x2〉= ...= 〈xt〉, where x1,x2, ...,xt ∈{1,2,3, ...,n−
1} and a|n

Let us take a nonzero proper ideal A of Zn. Suppose
A = 〈x1〉 = 〈x2〉 = 〈x3〉 = ... = 〈xt〉 and let a = gcd(x1,n) =

gcd(x2,n) = gcd(x3,n) = ... = gcd(xt ,n) then by the above
arguments, A = 〈a〉 and a|n.

Lemma 2.3. Let A = 〈a〉 be an ideal of Zn as taken above
and let f : A−→ Zn, n≥ 2, be a monomorphism. Let f (a) = b
for some b ∈ Zn,b 6= 0 then
(i)a|b
(ii)If b|n then b = a

(iii)gcd(
n
a
,

b
a
) = 1

(iv)If a is prime then gcd(n,
n
a
+

b
a
) = 1 or a

(v)If a is prime such that gcd(n,
n
a
+

b
a
) = a then gcd(n,

b
a
) =

1
(vi)For a prime a, gcd(n,

n
a
+

b
a
) = 1 if and only if a2 - n+b

(vii)For a prime a, gcd(n,
b
a
) = 1 if and only if a2 - b

Proof. (i)0 = f (0) = f (n) = f (
n
a

a) = (
n
a
) f (a) = (

n
a
)b =

(
n
a

b).

This implies that n divides
n
a

b. Hence, a divides b.
(ii)Suppose b divides n then n = bx for some x ∈ Z. Now,
f (āx̄) = b̄x̄ = n̄ = 0̄. Since f is a monomorphism, āx̄ = 0̄.
This implies that n|ax which gives ax = nt = bxt and hence
a = bt. This shows that b|a. From (i) we get a = b.

(iii)Let g = gcd(
n
a
,

b
a
) then g|n

a
and g|b

a
.

So,
n
a
= gk and

b
a
= gl, for some k, l ∈ Z. This implies that

n = agk and b = agl = a
n
ak

l =
nl
k
⇒ bk = nl⇒ n|bk.

Again, 0 = bk = f (a)k = f (ak). Since f is one-one, we have
ak = 0.
Hence, n|ak⇒ agk|ak⇒ g|1⇒ g = 1.

(iv)Let g = gcd(n,
n
a
+

b
a
) then g|n and g|n

a
+

b
a

. This

implies that g|n+b showing that g|b. By (iii), we have g|a,
therefore, g = 1 or g = a.

(v)This can be done using (iii).

(vi)Suppose gcd(n,
n
a
+

b
a
) = 1. If possible, let us assume

that a2 | n+b then a|n
a
+

b
a

. Since a|n, we have a|1, which is
impossible.

Conversely, suppose a2 - n + b then a -
n
a
+

b
a

. Let g =

gcd(n,
n
a
+

b
a
). Following the same steps as in (iv), we find

that g = 1 or g = a. Suppose g = a, since a -
n
a
+

b
a

, this

implies that g -
n
a
+

b
a

which is a contrary to our assumption.
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Hence, g=1.
(vii)Proof of (vii) is similar to the proof of (vi).

Proposition 2.4. If a divides b, where b is nonzero element
of Zpq then f : 〈ā〉 −→ Zpq defined by f (ā) = b̄, is an R-
monomorphism.

Proof. Let x̄ ∈ Zpq then f (x̄ā) = x̄b̄,∀x̄ā ∈ 〈ā〉. Clearly, f is
an R-homomorphism. Suppose f (x̄ā) = 0̄. Since a divides
b, there exists s ∈ Z such that b = as. Now, a|pq, therefore,
a = p or a = q. Suppose a = p. Suppose xb = 0̄ then pq|xb⇒
pq|xps⇒ q|xs. Since q is prime, then q|x or q|s. Suppose
q|x⇒ pq|px⇒ pq|ax⇒ ax = 0̄. Suppose q|s⇒ q|ps⇒ q|b.
Since p and q are relatively prime, we have pq|b, which is
impossible as b̄ is nonzero. Hence, f is one-one and therefore,
f is an R-monomorphism.

With the above results, we are now in a position to prove
the following theorem.

Theorem 2.5. Zpq, where p and q are not necessarily distinct,
is m-injective over itself.

Proof. Let A be an ideal of Zpq and f : A−→ Zpq be a left R-
monomorphism . Suppose A = 0 then taking g : Zpq −→ Zpq
to be the identity map, we find that g is a left R- monomor-
phism extending f .
Suppose A = Zpq then taking g : Zpq −→ Zpq to be equal to f ,
we find that g is a left R-monomorphism extending f . Sup-
pose A is a nonzero proper ideal of Zpq. Then A = 〈a〉 where
a 6= 0 and a = p or a = q. Let f : A −→ Zpq be a left R-
monomorphism defined by f (a) = b where b 6= 0.
We define g : Zpq −→ Zpq by

g(x) =

{
( pq

a + b
a )x, if (pq, pq

a + b
a ) = 1

( b
a )x, if (pq, pq

a + b
a ) = a

Clearly, g is a well-defined left R homomorphism which
extends f . For the first case, if x ∈ Kerg ⇒ g(x) = 0 ⇒
( pq

a + b
a )x = 0⇒ pq|( pq

a + b
a )x.

Since gcd(pq, pq
a + b

a ) = 1⇒ pq|x⇒ x = 0 showing that g is
one-one. Similarly, we can prove for the second case also. (by
(iv) and (v)). Therefore, g is a left R-monomorphism.

It is to be noted that since g is a one-one function from a
finite set to itself, it will be bijective and hence it will have an
inverse.

Before proposing our scheme, we would like to state the
following result which is due to the Chinese Remainder Theo-
rem[10].

Proposition 2.6. Let gcd(a,b) = 1 and c> 0 then there exists
an integer x such that gcd(a+bx,c) = 1

The above result is used in the proposed scheme, in step
7.
The proposed Public Key Scheme

A user X who wants to create public and private keys has to
do the following steps:-
1. Choose two large and distinct primes p and q.
2. Compute n = pq.
3. Compute φ(n) = (p−1)(q−1)
4. Take a such that 1 < a < n, a|n and consider the ideal
generated by ā.
5. Choose a monomorphic image b̄∈Zn of ā,b∈{2,3,4, ...,n−
1} such that a2 - (n+b) and b 6= a.

6. Compute t =
n
a
+

b
a

.

7. Choose z≥ 1 such that (n+ tz,φ(n)) = 1 and let e = n+ tz.
8. Compute d such that ed ≡ 1(mod φ(n)).
9. Choose s≥ 1 such that ts is not congruent to 1(mod n) and
compute h≡ ts(mod n)

The public keys of X are (n, t,h,e) and the private keys
are (s,d) .

Encryption
The plaintext space is Zn. Suppose another user Y wants to
send a message m̄ ∈ Zn to X using X ′s public key then Y will
have to do the following steps:-
1. Choose integer k such that tk is not congruent to 1(mod n)
2. Compute r ≡ tk(mod n).
3. Compute c = hkme(mod n)
Y sends to X the encrypted message (r,c)
Decryption
For the decryption of the message c, X should compute m≡
cd(r−1)sd(mod n), using private keys s and d.
Thus, X recovers the encrypted message m.
Let us take an example of p and q, as taken in [5], to see how
the algorithm is implemented.

Example 2.7. Suppose p = 37,q = 43 then n = 1591 and
φ(n) = 36×42 = 1512. Suppose a = 37, b = 74 then 372 =
1369 - 1591+74= 1665 and therefore, t = 45. Since gcd(t,n)=
1, by [10], there exists an integer z such that (n+ tz,φ(n))=1.
Choose z= 6 then e= n+tz= 1861, which is relatively prime
to 1512. Using Euclidean Extended algorithm to solve for
1861d ≡ 1(mod 1512), we get d = 13. Now taking s = 800,
we get h = 47.
The following are the images of the outputs of the three pro-
grams done in connection with the scheme,viz, program to gen-
erate public and private keys, program to encrypt a message
and program to decrypt the message. The elapsed times of
the encryption and decryption processes are shown in the fol-
lowing outputs.These elapsed times during the encryption and
decryption processes were recorded using Python Language,
version 2.7.15, using GNU multi precision library(GMP) on
3.2 GHz processor with 4 GB RAM.

The following table gives us the elapsed time during the
encryption and decryption of different messages.

RECORDS OF ELAPSED TIMES
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The given table shows that there is a difference between
the encryption time and decryption time. The encryption time
is a bit lengthy because the one who encrypts the message has
to check that the ephemeral key r is not equal to 1 modulo n.
The decryption time is almost negligible. With the increase

in the message length, the decryption time goes on increasing
but nothing can be said about the encryption time as it keeps
on fluctuating. This can be seen clearly seen in the given
graph. The graph also shows that the curve of the decryption
process is almost coinciding with the X-axis.
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Message(m) Length(in bits) Encrypted Message(c) Encryption time(in ms) Decryption time(in ms)
9 4 423 4.01600003242 0.0149998664856

99 7 1434 4.35899996758 0.0150001049042
999 10 74 3.1400001049 0.0160000324249
1590 11 591 3.85899996758 0.0160000324249

3. Security of the scheme

The security of this proposed scheme is based on integer fac-
torization problem and Discrete Logarithm Problem, particu-
larly CDH. The encryption and decryption of the scheme
is partly based on the Elgamal Encryption scheme using
DLP([12],[17]). An adversary who tries to find the private
key d will have to find φ(n) first, which is an impossible task,
for a large n, unless he/she knows the factors of n. Again,
the private key s has been chosen randomly which is another
disadvantage to the adversary and thus increases the security
of the scheme. The size of n chosen for the proposed scheme
should be a minimum of 2048 bits (617 decimal digits) as
choosing size of n of at least 1024 bits could retrieve the fac-
tors of n in the near future. So, depending on the size of n,
the size of p and q should be at least 1024 bits long. Also,
taking a large n can somewhat delay the time of factorizing
it via, Polland Rho method or the New Factorization (NF)
method[13]. Moreover, larger size of n can also resist brute
force attack. Again, p and q are to be taken in such a way that
they do not permit the applications of known algorithms like
the number field sieve method and that they do not give rise
to the use of Euclidean Extended algorithm to solve for d in
the congruence ed ≡ 1(mod φ(n)). If d < n0.5 then there is a

chance of retrieving d[14]. So, the value of e should be such
that the value of d is greater than n0.5. Even though t and n
are public but this will not reveal the factors of n because the

equation t =
n
a
+

b
a

contains two unknowns and so is difficult
to solve. In the key generation process, s should be chosen
in such a way that it does not take any value which is the
order of t modulo n or any multiple of the order of t modulo
n otherwise, the value of h will be 1 and the whole problem
will be reduced to just one hard problem. The same applies
to k in the encryption process. Again, taking large n can
also resist attacks on the Discrete Logarithm problem used in
this paper. Such attacks are the brute force attack, Shank’s
Baby-step Giant-step, Pollard’s Rho method, Index Calculus
Method [16]. Suppose a sender wants to find m directly then
he/she will have to compute hk−1 modulo n which is an im-
possible task because k is not revealed to anyone except to the
sender of the message. But even if hk−1 is known then also
an attacker has to find d to know m. So, this scheme is seman-
tically secured]. Hence, this scheme is equally secured as the
other schemes based on RSA cryptosystem and the discrete
logarithm problem. Since the parameter k is chosen by the
sender, so for sending different messages c1 = hkme

1(modn)
and c2 = hkme

2(modn), even if the same k is used, the above
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two problems reduce to me
2 ≡ c−1

2 c1me
1(modn), which does

not give the value of m2 even if m1 is known to the attacker be-
cause the private key d is unknown to him/her. So the sender
can safely use the same parameter k unlike in [7].

4. Performance Analysis
The encryption algorithm of the proposed scheme requires
three modular exponentiations, viz, tk, hk and me. One mod-
ular multiplication of the last two exponentiations is also
required. Thus, the encryption process requires three modular
exponentiations and one modular multiplication. This is more
efficient than the scheme proposed in [8] which requires six
modular exponentiations and four modular multiplications.
The decryption process requires one application of Extended
Euclidean algorithm for finding the inverse of the ephemeral
key r, two modular exponentiations,viz, cd and (r−1)sd and
one modular multiplication of the two exponentiations. The
decryption scheme is as efficient as the scheme proposed in
[9].

5. Conclusion and Future Works
In this paper, we introduced the concept of m-injective Rings
to create a Public key Cryptosystem. This property of Zpq of
being m-injective over itself helped in the creation of a public
key t which is relatively prime to n. The idea of congruence
and the application of Chinese Remainder Theorem helped
in the creation of another public key e which is relatively
prime to φ(n) thus making it as efficient as the RSA Cryp-
tosystem. Again, the property of t, being relatively prime
to n, created another way to the application of the Elgamal
encryption scheme using Discrete Logarithm Problem. So the
whole scheme involves around the idea of two hard problems,
viz, RSA Cryptosystem and DLP (CDH) making the proposed
scheme as efficient as the other existing schemes.

The property of Zpq of being m-injective over itself paved
way to the creation of this proposed scheme. Hence, our
future work will include findings of more rings which are
m-injective over themselves and creating public key cryp-
tographic schemes out of them based on some other hard
problems.
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