
Malaya Journal of Matematik, Vol. 9, No. 1, 136-143, 2021

https://doi.org/10.26637/MJM0901/0023

Cauchy Riemann-lightlike submanifolds in the
aspect of an indefinite Kaehler statistical manifold
Vandana Rani 1 and Jasleen Kaur 2*

Abstract
The present work aims to analyse the lightlike geometry of an indefinite Kaehler statistical manifold and develop
properties based on the structure of Cauchy Riemann (CR)-lightlike submanifolds of the same.The results
related to induced geometric objects corresponding to the dual connections in these submanifolds have been
established. We also characterize the geodesicity and integrability of distributions of the tangent bundle in the CR
lightlike submanifolds of the indefinite Kaehler statistical manifold. Further, some conditions on totally umbilical
Cauchy Riemann-lightlike submanifolds have been derived.
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1. Introduction

In complex geometry, the theory of lightlike submanifolds
has proved very useful in defining various induced geometric
objects upon extensive investigation by many researchers.The
non applicability of the geometry available earlier in some
disciplines of mathematics where the metric is not meant to
be definite led to the development of the lightlike geome-
try. [5] introduced the theory of Lorentz Cauchy Riemann
(CR)-submanifolds with lightlike distributions. In order to
bridge the gap between geometry and mathematical physics,
he also developed a new class of globally framed manifolds
and established a relation between the spacetime geometry
and framed structures in [6]. Further [7] brought out striking
differences between the Riemannian and Lorentzian geome-
tries which resulted in a predilection for exploring this sphere
of knowledge in the framework of indefinite metrics. With
the motive of dealing with the lightlike (degenerate) submani-
folds, they introduced the notion of CR lightlike submanifolds
in an indefinite Kaehler manifold. Thereafter, the concept of
indefinite metric gathered great interest in the field of geom-
etry due to its requisition in the realm of general relativity.
Now, we apply this lightlike geometry to the theory of statisti-
cal manifolds which are abstract generalizations of statistical
models and are geometrically composed as Riemannian mani-
folds equpped with a specific connection. It is a contemporary
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field of research having applications in neural networks and
control systems. This theory was introduced by [19] and there-
after developed extensively by [1] and [2]. An appreciable
amount of work has been done in the field of CR-statistical
submanifolds and hypersurfaces of a statistical manifold by
[10],[16],[11],[12],[17], [21]. Recently, [3]and [4] have stud-
ied the lightlike geometry of an indefinite statistical manifold.

This paper aims to extend the geometry of the combined
notion of the Kaehler statistical manifold and lightlike ge-
ometry introduced by [14] . We have studied the structural
properties of Cauchy Riemann-lightlike submanifolds of the
indefinite Kaehler statistical manifold. Some characterizations
of totally geodesic foliation and mixed geodesic CR-lightlike
submanifolds of the same have been established. Also, some
results for the totally umbilical CR-lightlike submanifolds of
the indefinite Kaehler statistical manifold have been devel-
oped.

2. Cauchy Riemann-lightlike
submanifolds

The concept of lightlike submanifolds as [8] is structured
as follows:
Let (M̄, ḡ) be an (m+n)-dimensional semi-Riemannian mani-
fold with semi-Riemannian metric ḡ and a constant index q
where m,n≥ 1, 1≤ q≤ m+n−1.
Let (M,g) be a lightlike submanifold of M̄ of dimension m.
There exists a smooth distribution RadT M on M of rank r > 0,
known as Radical distribution on M such that RadT Mp =
T Mp∩T M⊥p ,∀ p ∈M where T Mp and T M⊥p are degenerate
orthogonal spaces but not complementary. Then M is called
an r-lightlike submanifold of M̄.
Consider S(T M), known as Screen distribution, as a comple-
mentary distribution of radical distribution in T M ,i.e.,

T M = RadT M ⊥ S(T M)

and S(T M⊥), called screen transversal vector bundle, as a
complementary vector subbundle to Rad(T M) in T M⊥ i.e.,

T M⊥ = RadT M ⊥ S(T M⊥)

As S(T M) is non degenerate vector subbundle of T M̄|M , we
have

T M̄|M = S(T M)⊥ S(T M)⊥

where S(T M)⊥ is the complementary orthogonal vector sub-
bundle of S(T M) in T M̄|M .

If tr(T M) and ltr(T M) denote the complementary vector
bundles to T M in T M̄|M and to RadT M in S(T M⊥)⊥ , then
we have

tr(T M) = ltr(T M)⊥ S(T M⊥),

T M̄|M = T M⊕ tr(T M) = (RadT M⊕ ltr(T M))

⊥ S(T M)⊥ S(T M⊥).
(2.1)

Theorem 2.1. [8] Let (M,g,S(T M),S(T M⊥)) be an r-lightlike
submanifold of a semi-Riemannian manifold (M̄, ḡ). Then
there exists a complementary vector bundle ltr(T M) called a
lightlike transversal bundle of Rad(T M) in S(T M⊥)⊥ and ba-
sis of Γ(ltr(T M)|U ) consisting of smooth sections {N1, · · · ,Nr}
S(T M⊥)⊥|U such that

ḡ(Ni,ξ j) = δi j, ḡ(Ni,N j) = 0, i, j = 0,1, · · · ,r

where {ξ1, · · · ,ξr} is a lightlike basis of Γ(RadT M)|U .

If ∇̂ denotes the Levi-Civitia connection on M̄, then from
the above mentioned theory, the Guass and Weingarten for-
mulae are as below:

∇̂XY = ∇XY +h(X ,Y ), ∀ X ,Y ∈ Γ(T M) (2.2)

and

∇̂XV =−AV X +∇
⊥
X V, ∀ X ∈ Γ(T M),V ∈ Γ(tr(T M))

From the projections L : tr(T M)−→ ltr(T M) and S : tr(T M)
−→ S(T M⊥), we have the following equations specified by
[8]:

∇̂XY = ∇XY +hl(X ,Y )+hs(X ,Y )

∇̂XV =−AV X +Dl
XV +Ds

XV

In particular,

∇̂X N =−ANX +∇
l
X N +Ds(X ,N)

∇̂XW =−AW X +∇
s
XW +Dl(X ,W )

for any X ,Y ∈ Γ(T M), N ∈ Γ(ltr(T M)) and W ∈ Γ(S(T M⊥))
here hl(X ,Y )=Lh(X ,Y ), hs(X ,Y )= Sh(X ,Y ), Dl

XV =L(∇⊥X V ),
Ds

XV = S(∇⊥X V ) , ∇l
X N, Dl(X ,W ) ∈ Γ(ltr(T M)), ∇s

XW,
Ds(X ,N) ∈ Γ(S(T M⊥)) and ∇XY,ANX ,AW X ∈ Γ(T M).

Denoting by P, the projection morphism of tangent bun-
dle T M to the screen distribution, we consider the following
decomposition:

∇X PY = ∇
′
X PY +h′(X ,PY )

∇X ξ =−A′
ξ

X +∇
′t
X ξ

for any ξ ∈ Γ(Rad(T M)), where {∇′X PY ,A′
ξ

X} and
{h′(X ,PY ),∇′tX ξ} belong to Γ(S(T M)) and Γ(Rad(T M)) re-
spectively; ∇′ and ∇′t are linear connections on complemen-
tary distributions S(T M) and Rad(T M) respectively. The
screen distribution S(T M) is totally geodesic if h′(X ,Y ) = 0
for any X ,Y ∈ Γ(T M). Also, we have the following equations:

ḡ(hl(X ,PY ),ξ )= g(A′
ξ

X ,PY ), ḡ(h′(X ,PY ),N)= g(ANX ,PY )

g(A′
ξ

PX ,PY ) = g(PX ,A′
ξ

PY ), A′
ξ

ξ = 0

for any X ,Y ∈Γ((T M)) , ξ ∈Γ(Rad(T M)) and N ∈Γ(ltr(T M)).

As per the structure of submanifolds decribed above, the
CR-lightlike submanifold is defined as follows:
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Definition 2.2. [8] A submanifold M of an indefinite Kaehler
manifold M̄ is said to be a CR-lightlike submanifold if the
following two conditions are fullfilled:
(i) J̄(Rad(T M)) is a distribution on M such that

Rad(T M)∩ J̄Rad(T M) = {0}

(ii) There exist vector bundles S(T M), S(T M⊥), ltr(T M) , D◦
and D′ over M such that

S(T M) = {J̄(RadT M)⊕D′} ⊥ D◦, J̄D◦ = D◦, J̄D′ = L1 ⊥ L2

where D◦ is a nondegenerate distribution on M and L1 , L2
are vector bundles of ltr(T M) and S(T M⊥), respectively.

Using the above definition , the tangent bundle T M of M
is decomposed as:

T M = D⊕D′

where

D = RadT M ⊥ J̄RadT M ⊥ D◦

The projections on D and D′ are respectively denoted by S
and Q so that

J̄X = f X +wX (2.3)

for any X ,Y ∈ Γ(T M), where f is a tensor field of type (1,1)
such that f X = J̄SX and w is Γ(L1 ⊥ L2) - valued 1-form on
M such that wX = J̄QX . Also X ∈ Γ(D) iff wX = 0.
On the other hand, we set

J̄V = BV +CV (2.4)

for any V ∈ Γ(tr(T M)). where BV ∈ Γ(T M) and CV ∈
Γ(tr(T M)).

Unless otherwise stated, M1 and M2 are supposed to be
as J̄L1 and J̄L2 where J̄(L1) = M1 ⊂D′ and J̄(L2) = M2 ⊂D′

respectively.

3. Lightlike structure in an indefinite
statistical manifold

Some basic results related to the theory of lightlike submani-
folds of an indefinite statistical manifold developed so far are
as follows:

3.1 Indefinite statistical manifold
Consider a semi-Riemannian manifold (M̄, ḡ) where ḡ is a
semi-Riemannian metric of constant index q on M̄, If M̄ ad-
mits an affine connection ∇̄ such that for all X ,Y,Z ∈ Γ(T M̄)
(i) ∇̄XY − ∇̄Y X = [X ,Y ];
(ii) (∇̄X ḡ)(Y,Z) = (∇̄Y ḡ)(X ,Z) hold,
then (M̄, ḡ) is said to be an indefinite statistical manifold.
Also, if

Xḡ(Y,Z) = ḡ(∇̄XY,Z)+ ḡ(Y, ∇̄∗X Z) X ,Y,Z ∈ Γ(T M̄)

then ∇̄∗ is referred to as a dual connection of ∇̄.
If (M̄, ḡ, ∇̄) is an indefinite statistical manifold, then so

is (M̄, ḡ, ∇̄∗). Therefore, the indefinite statistical manifold is
denoted by (M̄, ḡ, ∇̄, ∇̄∗).

Let M be a submanifold of a statistical manifold (M̄,∇̄,ḡ)
and g be the induced metric on M. An affine connection ∇ on
M is defined by ([16], [11]) as:

∇XY = (∇̄XY )T

where (∇̄XY )T denotes the orthogonal projection of ∇XY
on the tangent space with respect to ḡ, that is 〈∇XY,Z〉 =
〈∇̄XY,Z〉 for X ,Y,Z ∈ Γ(T M).Then (M,∇,g) becomes a sta-
tistical manifold and (∇,g) is called the induced statistical
structure on M.
(M,∇,g) is said to be a statistical submanifold in (M̄,∇̄,ḡ) if
(∇,g) is induced statistical structure on M.
Now T⊥x M denote the normal space of M i.e.
T⊥x M : ={v∈ TxM̄ | ḡ(v,w) = 0,w∈ TxM} and g, the induced
metric on M. It follows that

∇,∇∗ : Γ(T M)×Γ(T M)−→ Γ(T M)

h,h∗ : Γ(T M)×Γ(T M)−→ Γ(T⊥M)

A,A∗ : Γ(T⊥M)×Γ(T M)−→ Γ(T M)

∇
⊥,∇⊥∗ : Γ(T M)×Γ(T⊥M)−→ Γ(T⊥M)

∇̄XY = ∇XY +h(X ,Y ), ∇̄XV =−AV X +∇
⊥
X V,

∇̄
∗
XY = ∇

∗
XY +h∗(X ,Y ), ∇̄

∗
XV =−A∗V X +∇

⊥∗
X V, (3.1)

for X , Y ∈ Γ(T M), V ∈ Γ(T⊥M).

Then the following hold for X , Y ∈ Γ(T M), V ∈ Γ(T⊥M):

ḡ(h(X ,Y ),V ) = g(A∗V X ,Y ), ḡ(h∗(X ,Y ),V ) = g(AV X ,Y )

(3.2)

The structure of lightlike submanifolds developed hitherto
implies that the Gauss and Weingarten formulae for a lightlike
submanifold of an indefinite statistical manifold are as under:

∇̄XY = ∇XY +hl(X ,Y )+hs(X ,Y ),

∇̄
∗
XY = ∇

∗
XY +h∗l(X ,Y )+h∗s(X ,Y )

(3.3)

∇̄XV =−AV X +Dl
XV +Ds

XV,

∇̄
∗
XV =−A∗V X +D∗lX V +D∗sX V,

(3.4)

∇̄X N =−ANX +∇
l
X N +Ds(X ,N),

∇̄
∗
X N =−A∗NX +∇

∗l
X N +D∗s(X ,N)

(3.5)
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∇̄XW =−AW X +∇
s
XW +Dl(X ,W ),

∇̄
∗
XW =−A∗W X +∇

∗s
X W +D∗l(X ,W )

(3.6)

for any X ,Y ∈ Γ(T M), V ∈ Γ(tr(T M)), N ∈ Γ(ltr(T M)) and
W ∈ Γ(ST M⊥).

The concept of indefinte statistical manifold and the equa-
tions (2.1), (3.3), (3.4), (3.5), (3.6), result in the following:

ḡ(hs(X ,Y ),W )+ ḡ(Y,D∗l(X ,W )) = ḡ(Y,A∗W X),

ḡ(hl(X ,Y ),ξ )+ ḡ(Y,∇∗X ξ )+ ḡ(Y,h∗l(X ,ξ )) = 0,

ḡ(Ds(X ,N),W ) = ḡ(N,A∗W X),

ḡ(ANX ,PY ) = ḡ(N, ∇̄∗X PY ),

and

ḡ(ANX ,N′)+ ḡ(A∗N′X ,N) = 0.

From the theory of non-degenerate submanifolds of a sta-
tistical manifold, it is known that submanifold of statistical
manifold is a statistical manifold but this is not true for light-
like submanifolds as from the definition of statistical manifold
and the equations (2.1) and (3.3), we have

(∇X g)(Y,Z)−(∇Y g)(X ,Z)= ḡ(Y,hl(X ,Z))− ḡ(X ,hl(Y,Z)).

and

Xg(Y,Z)−g(∇XY,Z)−g(Y,∇∗X Z) = ḡ(hl(X ,Y ),Z)

+ḡ(Y,h∗l(X ,Z))

If P is the projection morphism of the tangent bundle T M to
the screen distribution, then the following decomposition w.r.t
∇ and ∇∗ holds:

∇X PY =∇
′
X PY +h′(X ,PY ), ∇

∗
X PY =∇

∗′
X PY +h∗′(X ,PY )

(3.7)

∇X ξ =−A′
ξ

X +∇
′t
X ξ , ∇

∗
X ξ =−A∗′

ξ
X +∇

∗′t
X ξ (3.8)

for any X ,Y ∈ Γ(T M), ξ ∈ Γ(Rad(T M)).
Then the equations (3.3),(3.4),(3.7) and (3.8) imply that

ḡ(hl(X ,PY ),ξ )= g(A∗′
ξ

X ,PY ), ḡ(h∗l(X ,PY ),ξ )= g(A′
ξ

X ,PY )

(3.9)

ḡ(h′(X ,PY ),N)= g(A∗NX ,PY ), ḡ(h∗′(X ,PY ),N)= g(ANX ,PY )

(3.10)

for any X ,Y ∈Γ(T M), ξ ∈Γ(Rad(T M)) and N ∈Γ(ltr(T M)).
As hl and h∗l are symmetric, (3.9) leads to the following:

g(A′
ξ

PX ,PY ) = g(PX ,A′
ξ

PY ),g(A∗′
ξ

PX ,PY ) = g(PX ,A∗′
ξ

PY ).

3.2 Indefinite Kaehler statistical manifold
Let ∇̄◦ be the Levi-Civita connection w.r.t ḡ . Then, we have
∇̄◦ = 1

2 (∇̄+ ∇̄∗).

For a statistical manifold (M̄, ḡ, ∇̄, ∇̄∗) , the difference (1,2)
tensor K of a torsion free affine connection ∇̄ and Levi-civita
connection ∇̄◦ is defined as

K(X ,Y ) = KXY = ∇̄XY − ∇̄
◦
XY (3.11)

Since ∇̄ and ∇̄◦ are torsion free, we have

K(X ,Y ) = K(Y,X) , ḡ(KXY,Z) = ḡ(Y,KX Z)

for any X ,Y,Z ∈ Γ(T M). Also we have

K(X ,Y ) = ∇̄
◦
XY − ∇̄

∗
XY.

From the above equations, we have

K(X ,Y ) =
1
2
(∇̄XY − ∇̄

∗
XY ).

Also, from (3.11), we have

ḡ(∇̄XY,Z) = ḡ(K(X ,Y ),Z)+ ḡ(∇̄◦XY,Z)

We have the following result from [18]:

ḡ((∇̄X J̄)Y,Z) =−ḡ(Y,(∇̄∗X J̄)Z) (3.12)

holds for any X ,Y,Z ∈ Γ(T M) for an almost Hermitian mani-
fold (M̄, ḡ, J̄, ∇̄, ∇̄∗). Now , from [21] , we have the following
equations for the almost Hermitian manifold:

(∇̄X J̄)Y = (∇̄◦X J̄)Y +(KX J̄)Y

(∇̄∗X J̄)Y = (∇̄◦X J̄)Y − (KX J̄)Y

for any X ,Y,Z ∈ Γ(T M). This implies

(∇̄X J̄)Y +(∇̄∗X J̄)Y = 2(∇̄◦X J̄)Y

Let (M̄, J̄, ḡ) be an indefinite almost Hermitian manifold
with an almost complex structure J̄ and Hermitian metric ḡ
such that for all X ,Y ∈ Γ(T M̄),

J̄2 =−I, ḡ(J̄X , J̄Y ) = ḡ(X ,Y ). (3.13)

Let ∇̄ be the Levi-Civita connection of M̄ with respect to
metric ḡ, then the covariant derivative of J̄ is defined by

(∇̄X J̄)Y = ∇̄X J̄Y − J̄∇̄XY

An indefinite almost Hermitian manifold M̄ is called an indef-
inite Kaehler manifold if J̄ is parallel with respect to ∇̄, i.e.,
(∇̄X J̄)Y = 0
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Definition 3.1. Let (ḡ, J̄) be an indefinite Hermitian structure
on M̄. A triplet (∇̄ = ∇̄◦ +K, ḡ, J̄) is called an indefinite
Hermitian statistical structure on M̄ if (∇̄, ḡ) is a statistical
structure on M̄.Then (M̄, ∇̄, ∇̄∗, ḡ, J̄) is called an indefinite
Hermitian statistical manifold.

In this context, we have the following definition:

Definition 3.2. [14] An indefinite Hermitian statistical mani-
fold is called indefinite Kaehler statistical manifold if its al-
most complex structure is parallel with respect to Levi-Civita
connection i.e. if,

(∇̄◦X J̄)Y = 0

Equivalently

(∇̄X J̄)Y +(∇̄∗X J̄)Y = 0

for all X ,Y ∈ Γ(T M̄).

4. CR-lightlike submanifolds in an
indefinite Kaehler statistical manifold

The lightlike geometry of CR-lightlike submanifolds in the
indefinite Kaehler statistical manifold have been worked upon
and thus some results related to its structure and geodesicity
have been derived. Also, some conditions for screen transver-
sal curvature vector fields in the totally umbilical CR-lightlike
submanifolds with respect to the dual connections have been
developed.

4.1 Results on structure of Cauchy Riemann-lightlike
submanifolds

Lemma 4.1. Let M be a CR-lightlike submanifold of an in-
definite Kaehler statistical manifold M̄. Then

(∇X f )Y +(∇∗X f )Y =AwY X+A∗wY X+Bh(X ,Y )+Bh∗(X ,Y ),

(4.1)

(∇⊥X w)Y +(∇∗⊥X w)Y =Ch(X ,Y )+Ch∗(X ,Y )−h(X , fY )

−h∗(X , fY ),
(4.2)

holds for any X ,Y ∈ Γ(T M), where

(∇X f )Y =∇X fY− f (∇XY ), (∇∗X f )Y =∇
∗
X fY− f (∇∗XY )

(∇⊥X w)Y =∇
⊥
X wY−w(∇XY ), (∇∗⊥X w)Y =∇

∗⊥
X wY−w(∇∗XY )

Proof: Since M̄ is a Kaehler statistical manifold. For any
X ,Y ∈ Γ(T M),

(∇̄X J̄)Y +(∇̄∗X J̄)Y = 0

∇̄X J̄Y + ∇̄
∗
X J̄Y = J̄∇̄XY + J̄∇̄

∗
XY

Using the equations (2.3) and (3.1) , we get

∇̄X ( fY +wY )+ ∇̄
∗
X ( fY +wY ) = J̄(∇XY +h(X ,Y ))

+J̄(∇∗XY +h∗(X ,Y ))

Now from (2.3),(2.4),(3.1) and (3.2) , we get

∇X fY +h(X , fY )+∇
∗
X fY +h∗(X , fY )−AwY X +∇

⊥
X wY −A∗wY X

+∇
∗⊥
X wY = f ∇XY +w∇XY + f ∇

∗
XY +w∇

∗
XY +Bh(X ,Y )+

Ch(X ,Y )+Bh∗(X ,Y )+Ch∗(X ,Y )

Comparing the tangential and normal components, we get the
desired result.

Lemma 4.2. Let M be a CR-lightlike submanifold of an in-
definite Kaehler statistical manifold M̄. Then we have

(∇X B)V +(∇∗X B)V =− f AV X− f A∗V X +ACV X +A∗CV X ,

(4.3)

(∇XC)V +(∇∗XC)V =−wAV X−wA∗V X−h(X ,BV )−h∗(X ,BV ),

(4.4)

for any X ∈ Γ(T M) and V ∈ Γ(tr(T M))

(∇X B)V = ∇X BV −B∇
⊥
X V, (∇∗X B)V = ∇

∗
X BV −B∇

∗⊥
X V

(∇XC)V =∇
⊥
X CV−C∇

⊥
X V, (∇∗XC)V =∇

∗⊥
X CV−C∇

∗⊥
X V

Proof: The proof follows using the same hypothesis as in
Lemma 4.

Theorem 4.3. Let M be a CR-lightlike submanifold of an
indefinite Kaehler statistical manifold M̄. Then we have the
following conditions:
(i) the distribution D is integrable, if and only if the second
fundamental form satisfies

h(X , J̄Y )+h∗(X , J̄Y )= h(Y, J̄X)+h∗(Y, J̄X) ∀X ,Y ∈Γ(D).

(ii) The totally real distribution D′ is integrable, if and only if,
the shape operator of M satisfies

AJ̄ZU +A∗J̄ZU = AJ̄U Z +A∗J̄U Z ∀U,Z ∈ Γ(D′)

Proof: From equation (4.2), we obtain

h(X , J̄Y )+h∗(X , J̄Y )=Ch(X ,Y )+Ch∗(X ,Y )+w(∇XY )+w(∇∗XY )

Now using the fact that h and h∗ are symmetric and connec-
tions ∇ and ∇∗ are torsion free, it follows that

h(X , J̄Y )+h∗(X , J̄Y )−h(Y, J̄X)−h∗(Y, J̄X) = 2w[X ,Y ]

which proves condition (i).
Now from (4.1), we obtain

AJ̄ZU+A∗J̄ZU =−Bh(U,Z)−Bh∗(U,Z)− f (∇U Z)− f (∇∗U Z)
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Hence

AJ̄ZU +A∗J̄ZU−AJ̄U Z−A∗J̄U Z =−2 f ([Z,U ])

Using the given hypothesis, we obtain the condition (ii).

Corollary 4.4. Let M be a CR-lightlike submanifold of an in-
definite Kaehler statistical manifold M̄. Then the distribution
D is integrable, if and only if the second fundamental form
satisfies

ḡ
(
h(X , J̄Y )+h∗(X , J̄Y )−h(Y, J̄X)−h∗(Y, J̄X),ξ

)
= 0 ;

ξ ∈ Γ(RadT M)

and

ḡ
(
h(X , J̄Y )+h∗(X , J̄Y )−h(Y, J̄X)−h∗(Y, J̄X),W

)
= 0 ;

W ∈ Γ(L2)

Lemma 4.5. Let M be a CR-lightlike submanifold of an in-
definite Kaehler statistical manifold. Then ∇X J̄X +∇∗X J̄X =
J̄∇X X + J̄∇∗X X for any X ∈ Γ(D◦).

Proof: Let X ,Y ∈ Γ(D◦). Then from the theory of Kaehler
statistical manifold, we obtain

ḡ(∇X J̄X +∇
∗
X J̄X ,Y ) = ḡ(∇̄X J̄X−h(X , J̄X)+ ∇̄

∗
X J̄X

−h∗(X , J̄X),Y )

= ḡ(J̄∇̄X X + J̄∇̄
∗
X X ,Y ) =−ḡ(∇̄X X , J̄Y )− ḡ(∇̄∗X X , J̄Y )

=−ḡ(∇X X , J̄Y )− ḡ(∇∗X X , J̄Y ) = ḡ(J̄∇X X + J̄∇
∗
X X ,Y )

Therefore ḡ(∇X J̄X +∇∗X J̄X− J̄∇X X− J̄∇∗X X ,Y ) = 0.
Hence the result followsfrom the non-degeneracy of D◦.

4.2 Characterizations of Geodesic CR-lightlike sub-
manifolds

Definition 4.6. A CR-lightlike submanifold of an indefinite
Kaehler statistical manifold is called D-totally geodesic with
respect to ∇̄ (respectively ∇̄∗) if h(X ,Y ) = 0 (respectively
h∗(X ,Y ) = 0) for all X ,Y ∈ D.

Definition 4.7. A CR-lightlike submanifold of an indefinite
Kaehler statistical manifold is called mixed totally geodesic
with respect to ∇̄ (resp.∇̄∗) if h(X ,Y ) = 0 (resp. h∗(X ,Y )= 0)
f or X ∈ D and Y ∈ D′.

Theorem 4.8. Let M be a CR-lightlike submanifold of an in-
definite Kaehler statistical manifold M̄. Then the distribution
D defines a totally geodesic foliation with respect to ∇̄ and
∇̄∗ if M is D-geodesic with respect to ∇̄ and ∇̄∗.

Proof: The distribution D defines a totally geodesic foliation
respect to ∇̄ and ∇̄∗ if and only if,

∇XY +∇
∗
XY ∈ Γ(D), ∀ X ,Y ∈ Γ(D) (4.5)

Since D′ = J̄(L1 ⊥ L2), therefore the above equation holds, if
and only if, we have

ḡ(∇XY +∇
∗
XY, J̄ξ ) = 0,

ḡ(∇XY +∇
∗
XY, J̄W ) = 0.

Let X ,Y ∈ Γ(D), Using the fact that M̄ is a Kaehler statistical
manifold, we derive

ḡ(∇XY +∇
∗
XY, J̄ξ )= ḡ(∇̄XY−h(X ,Y )+∇̄

∗
XY−h∗(X ,Y ), J̄ξ )

= ḡ(∇̄XY + ∇̄
∗
XY, J̄ξ )− ḡ(h(X ,Y ), J̄ξ )− ḡ(h∗(X ,Y ), J̄ξ )

=−ḡ(J̄∇̄XY + J̄∇̄
∗
XY,ξ ) =−ḡ(∇̄X J̄Y,ξ )− ḡ(∇̄∗X J̄Y,ξ )

=−ḡ(h(X , J̄Y ),ξ )− ḡ(h∗(X , J̄Y ),ξ )

Similarly, we obtain

ḡ(∇XY +∇
∗
XY, J̄W ) =−ḡ(h(X , J̄Y ),W )− ḡ(h∗(X , J̄Y ),W )

Then the result follows from the given hypothesis.

Theorem 4.9. Let M be a CR-lightlike submanifold of an in-
definite Kaehler statistical manifold M̄. Then the distribution
D defines a totally geodesic foliation with respect to ∇̄ and
∇̄∗ if and only if D is integrable.

Proof: Since M̄ is a Kaehler statistical manifold, therefore
using equation (4.2), we have

h(X , J̄Y )+h∗(X , J̄Y ) =Ch(X ,Y )+Ch∗(X ,Y )+w(∇XY )

+w(∇∗XY )

Now the fact that h and h∗ are symmetric and connections ∇

and ∇∗ are torsion free proves the assertion.

Theorem 4.10. Let M be a CR-lightlike submanifold of an
indefinite Kaehler statistical manifold M̄. Then, M is mixed
geodesic with respect to ∇̄ and ∇̄∗ , if and only if, wAwY X +
wA∗wY X = 0, and C∇⊥X wY−C∇∗⊥X wY = 0 for any X ∈Γ(D),Y ∈
Γ(D′).

Proof: Since M̄ is a Kaehler statistical manifold, therefore we
derive

h(X ,Y )+h∗(X ,Y ) =−J̄2
∇̄XY −∇XY − J̄2

∇̄
∗
XY −∇

∗
XY

=−J̄(∇̄X J̄Y )− J̄(∇̄∗X J̄Y )−∇XY −∇
∗
XY

=−J̄(−AJ̄Y X+∇
⊥
X J̄Y )− J̄(−A∗J̄Y X+∇

∗⊥
X J̄Y )−∇XY−∇

∗
XY

= J̄(AJ̄Y X)− J̄(∇⊥X J̄Y )+ J̄(A∗J̄Y X)− J̄(∇∗⊥X J̄Y )−∇XY−∇
∗
XY

= f AwY X +wAwY X−B∇
⊥
X wY −C∇

⊥
X wY + f A∗wY X +wA∗wY X

−B∇
∗⊥
X wY −C∇

∗⊥
X wY −∇XY −∇

∗
XY

Equating transversal parts on both sides, we have

h(X ,Y )+h∗(X ,Y )=wAwY X+wA∗wY X−C∇
⊥
X wY−C∇

∗⊥
X wY

Thus, M is mixed geodesic w.r.t to ∇̄ and ∇̄∗, if and only if

wAwY X +wA∗wY X = 0, C∇
⊥
X wY −C∇

∗⊥
X wY = 0.
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Theorem 4.11. Let M be a CR-lightlike submanifold of an
indefinite Kaehler statistical manifold M̄. Then,

∇X Z +∇
∗
X Z =− f AW X +B∇

s
XW +BDl(X ,W )− f A∗W X

+B∇
∗s
X W +BD∗l(X ,W )

for any X ∈ Γ(T M), Z ∈ Γ(J̄L2) and W ∈ Γ(L2).

Proof: Let W ∈Γ(L2) such that Z = J̄W . Since M̄ is a Kaehler
statistical manifold, therefore

∇̄X J̄W + ∇̄
∗
X J̄W = J̄∇̄XW + J̄∇̄

∗
XW

Then,

∇X Z+h(X ,Z)+∇
∗
X Z+h∗(X ,Z)= J̄(−AW X+∇

s
XW +Dl(X ,W ))

+J̄(−A∗W X +∇
∗s
X W +D∗l(X ,W ))

=− f AW X−wAW X +B∇
s
XW +C∇

s
XW +BDl(X ,W )

+CDl(X ,W )− f A∗W X−wA∗W X +B∇
∗s
X W +C∇

∗s
X W

+BD∗l(X ,W )+CD∗l(X ,W )

Equating tangential parts, we get

∇X Z +∇
∗
X Z =− f AW X +B∇

s
XW +BDl(X ,W )− f A∗W X

+B∇
∗s
X W +BD∗l(X ,W )

Lemma 4.12. Let M be a CR-lightlike submanifold of an in-
definite Kaehler statistical manifold and screen distribution be
totally geodesic w.r.t to ∇∗ (resp. ∇). Then ∇XY ∈ Γ(S(T M))
(resp. ∇∗XY ∈ Γ(S(T M))) for any X ,Y ∈ Γ(S(T M)).

Proof: For any X ,Y ∈ Γ(S(T M)), using the concept of statis-
tical manifold, we derive

ḡ(∇XY,N) = ḡ(∇̄XY,N) =−ḡ(Y, ∇̄∗X N) = ḡ(Y,A∗NX) =

ḡ(h′(X ,Y ),N)

Hence, the lemma follows using the given hypothesis along-
with theorem (1). Similarly, the corresponding result for dual
connection ∇∗ holds.

4.3 Conditions on totally umbilical CR-lightlike sub-
manifolds

Definition 4.13. Let M be a lightlike submanifold of a in-
definite Kaehler statistical manifold M̄. Then M is said to
be a totally umbilical with respect to ∇̄ (respectively ∇̄∗)
if h(X ,Y ) = Hḡ(X ,Y ) (respectively h∗(X ,Y ) = H∗ḡ(X ,Y ))
for all X ,Y ∈ Γ(T M), where H ∈ Γ(tr(T M)) (resp. H∗ ∈
Γ(tr(T M))) stands for transversal curvature vector fields of
M in M̄ with respect to ∇̄(respectively ∇̄∗).

Also, M is totally umbilical with respect to ∇̄ (respec-
tively ∇̄∗) if and only if on each co-ordinate neighbourhood,
there exist smooth vector fields H l ∈ Γ(ltr(T M)) and Hs ∈
Γ(S(T M⊥)) (H∗l ∈ Γ(ltr(T M)) and H∗s ∈ Γ(S(T M⊥)) re-
spectively) such that hl(X ,Y )=H l ḡ(X ,Y ) , hs(X ,Y )=Hsḡ(X ,Y )
and h∗l(X ,Y ) = H∗l ḡ(X ,Y ) , h∗s(X ,Y ) = H∗sḡ(X ,Y ) respec-
tively with respect to ∇̄(respectively ∇̄∗).

Theorem 4.14. Let M be a totally umbilical CR-lightlike sub-
manifold of an indefinite Kaehler statistical manifold and
screen distribution be totally geodesic w.r.t to ∇ and ∇∗. Then,
ḡ(Hs,W )+ ḡ(H∗s,W ) = 0 for the screen transversal curva-
ture vector fields Hs(resp.H∗s) with respect to the connections
∇̄X and ∇̄∗X respectively.

Proof: Let W ∈ Γ(L2) and X ∈ Γ(D◦)
For a totally umbilical CR-lightlike submanifold of indefinite
Kaehler statistical manifold, we have

ḡ(J̄∇̄X X + J̄∇̄
∗
X X , J̄W ) = ḡ(∇̄X J̄X + ∇̄

∗
X J̄X , J̄W )

= ḡ(∇X J̄X , J̄W )+ ḡ(∇∗X J̄X , J̄W )

= ḡ(J̄∇X X + J̄∇
∗
X X , J̄W )

= ḡ(∇X X +∇
∗
X X ,W ) = 0

and

ḡ(J̄∇̄X X + J̄∇̄
∗
X X , J̄W ) = ḡ(∇̄X X + ∇̄

∗
X X ,W )

= ḡ(hs(X ,X),W )+ ḡ(h∗s(X ,X),W )

= ḡ(X ,X)ḡ(Hs,W )+ ḡ(X ,X)ḡ(H∗s,W ) = 0

Now the non-degeneracy of D◦ implies that
ḡ(Hs,W )+ ḡ(H∗s,W ) = 0.

Theorem 4.15. Let M be a totally umbilical CR-lightlike
submanifold of an indefinite Kaehler statistical manifold and
screen distribution be totally geodesic. Then, AJ̄ZW−AJ̄W Z =
A∗J̄ZW −A∗J̄W Z, ∀W,Z ∈ Γ(D′)

Proof: M̄ , being an indefinite Kaehler statistical manifold,
implies

J̄∇̄ZW + J̄∇̄
∗
ZW = ∇̄Z J̄W + ∇̄

∗
Z J̄W,

J̄∇ZW + J̄h(Z,W )+ J̄∇
∗
ZW + J̄h∗(Z,W ) =−AJ̄W Z +∇

⊥
Z J̄W

−A∗J̄W Z +∇
∗⊥
Z J̄W

Interchanging the role of Z and W in the above equation
and then subtracting the resulting equation from it, we obtain

AJ̄ZW −AJ̄W Z +A∗J̄ZW −A∗J̄W Z = J̄∇ZW − J̄∇W Z + J̄∇
∗
ZW

−J̄∇
∗
W Z

Taking inner product with X ∈ Γ(D◦), we get

ḡ(AJ̄ZW −AJ̄W Z +A∗J̄ZW −A∗J̄W Z,X) = ḡ(J̄∇ZW − J̄∇W Z

+J̄∇
∗
ZW − J̄∇

∗
W Z,X)

=−ḡ(∇ZW, J̄X)+ ḡ(∇W Z, J̄X)− ḡ(∇∗ZW, J̄X)+ ḡ(∇∗W Z, J̄X)

Now

ḡ(∇W Z +∇
∗
W Z, J̄X) = ḡ(∇̄W Z + ∇̄

∗
W Z, J̄X)

= ḡ(Z, ∇̄∗W J̄X + ∇̄W J̄X)

= ḡ(Z, J̄(∇̄∗W X + ∇̄W X)) = ḡ(J̄Z, ∇̄W X)+ ḡ(J̄Z, ∇̄∗W X)
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= ḡ(J̄Z,∇W X)+ ḡ(J̄Z,hs(W,X))+ ḡ(J̄Z,hl(W,X))

+ḡ(J̄Z,∇∗W X)+ ḡ(J̄Z,h∗s(W,X))+ ḡ(J̄Z,h∗l(W,X))

Since M is totally umbilical CR-lightlike submanifold, hence
for any W ∈ Γ(D′) and X ∈ Γ(D◦), we have

hs(W,X) =Hsḡ(W,X) = 0, h∗s(W,X) =H∗sḡ(W,X) = 0

hl(W,X) = H l ḡ(W,X) = 0, h∗l(W,X) = H∗l ḡ(W,X) = 0

ḡ(∇W Z +∇
∗
W Z, J̄X) = ḡ(J̄Z,∇W X +∇

∗
W X) = 0

ḡ(∇W Z +∇
∗
W Z, J̄X) = 0

Similarly, ḡ(∇ZW +∇∗ZW, J̄X) = 0.
So, ḡ(AJ̄ZW −AJ̄W Z +A∗J̄ZW −A∗J̄W Z,X) = 0
Hence the result.

5. Conclusion and Scope
This research work explores the properties of Cauchy Riemann-
lightlike submanifolds in an indefinite Kaehler statistical man-
ifold and thus characterize the geodesicity and integrability
of the distributions therein. Results for screen transversal
curvature vector fields in the totally umbilical CR-lightlike
submanifolds have also been worked upon . Since the paper
inspects the structure of lightlike submanifolds in the Kaehler
statistical manifold, it can motivate the geometers to explore
further properties and characterizations in the same as well
as in its odd dimensional counterpart. Also, due to wide ap-
plications of lightlike geometry and statistical manifolds in
mathematical physics and neural networks, the present study
can be considered as a tool to work further on the structure of
the indefinite Kaehler statistical manifold.
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