

https://doi.org/10.26637/MJM0901/0029

Some investigation on continuous functions in almost contra semi-generalized star *b* in topological spaces

B. Jothilakshmi¹ and S. Sekar^{2*}

Abstract

This manuscript's main aim is to present some class of functions in topological spaces called almost contra semi generalized star *b*-continuous function (briefly almost contra sg^*b -continuous). Some characterizations and a variety of characteristics are obtained related to almost contra sg^*b -continuous functions.

Keywords

*sg***b*-closed sets; *sg***b*-closed map; *sg***b*-continuous map; contra *sg***b*-continuity.

AMS Subject Classification 54C05, 54C08, 54C10.

¹Department of Mathematics, Government Arts College (Autonomous), Coimbatore–641 045, Tamil Nadu, India.

² Department of Mathematics, Chikkanna Government Arts College, Tiruppur–641 602, Tamil Nadu, India.

*Corresponding author: ²sekar_nitt@rediffmail.com Article History: Received 19 October 2020; Accepted 19 January 2021

©2021 MJM.

Contents

1	Introduction173
2	Continuous functions Almost contra semi generalised star <i>b</i>
3	Semi generalised star <i>b</i> - regular graphs and strongly contra semi generalised star <i>b</i> - closed graphs 176
4	Connectedness 176
5	Separation axioms177
	References 177

1. Introduction

A novel class was organized and investigated by Jafari and Noiri in 2002 of functions called continuous contra-pre functions. The purpose of this paper is to implement and research almost against semi generalised star *b*-continuous functions through the semi generalised star *b*-closed sets. Also, near contra semi generalised star *b*-continuity characteristics are discussed about. In addition, fundamental properties and preservation are obtained. semi generalised star *b*-continuous theorems This paper defines the $((X, \tau) \text{ and } (Y, \sigma) \text{ describing}$ the non-empty topological spaces without axioms of separation Unless otherwise mentioned, this is presumed. Let $A \subseteq X$, the cl(A) and will denote the closure of A and the interior of A *int*(A) and the union of all X semi generalised star b-open sets found in A is classified as sg-b-interior of A and is marked by $sg^*bint(A)$, The intersection of all semi generalised star b-closed sets of X containing A is called semi generalised star b-closure of A and it is denoted by $sg^*bcl(A)$ [5].

2. Continuous functions Almost contra semi generalised star b

In this section, we present nearly contra semi generalised in this section Star *b*-continuous features and analyzed of some of their functions axioms.

Definition 2.1. [11] A function $f : (X, \tau) \to (Y, \sigma)$ is almost called contra semi generalised star b - continuous if $f^{-1}(V)$ is semi generalised star b - closed in (X, τ) for each regular open set V in (Y, σ) .

Example 2.2. [11] Let $X = Y = \{l, m, n\}$ with $\tau = \{X, \varphi, \{l\}, \{l, m\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{m\}, \{l, m\}, \{l, n\}\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(l) = m, f(m) = n, f(n) = l. Clearly f is almost contra semi generalised star b - continuous.

Theorem 2.3. If $f : X \to Y$ is contra semi generalised star b - continuous then it is almost contra semi generalised star b - continuous.

Proof. It's simple, because every open regular set is an open set. $\hfill \Box$

Remark 2.4. Alternatively, the theorem alluded to above need not be valid as shown in the subsequent case in common.

Example 2.5. Let $X = Y = \{l, m, n\}$ with $\tau = \{X, \varphi, \{n\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{m\}, \{l, m\}, \{m, n\}\}$. Defining a function $f : (X, \tau) \to (Y, \sigma)$ by f(l) = m, f(m) = n, f(n) = l. Then f is almost contra semi generalised star b - continuous but not contra function semi generalised star b - continuous, because for the open set $\{l\}$ in Y and $f^{-1}\{l\} = \{n\}$ is not semi generalised star b - closed in X.

Theorem 2.6. 1) Almost every contra pre - continuous function is nearly contra semi generalised star b - continuous function.

2) Each semi-continuous almost contra function is almost contra semi generalised star b - continuous function.

3) Almost every contra α - the continuous function is almost contra semi generalised star b - continuous function.

4) Almost every contra αg - the continuous function is almost contra semi generalised star b - continuous function.

5) Almost every contra semi generalised star b - the continuous function is almost contra gsp - continuous function.
6) Almost every contra semi generalised star b -the continuous

function is almost contra gb - continuous function.

7) Almost every contra sg - the continuous function is almost contra semi generalised star b - continuous function.

Remark 2.7. As can be seen in the following example, the reverse of the above claims is not true.

Example 2.8. *i)* Let $X = Y = \{l,m,n\}$ with $\tau = \{X, \varphi, \{l\}, \{m\}, \{l,m\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{n\}, \{l,n\}\}$. Defining a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(l) = m, f(m) = l, f(n) = n. Clearly f is almost contra semi generalised star b - continuous but f is not nearly contra pre - continuous. Because $f^{-1}(\{n\}) = \{m\}$ is not pre - closed in (X, τ) where $\{n\}$ is regular - open in (Y, σ) .

ii) Let $X = Y = \{l, m, n\}$ with $\tau = \{X, \varphi, \{l, m\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{m\}, \{l, m\}\}$. Defining a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(l) = n, f(m) = l, f(n) = m. It's obvious that f is almost contra semi generalised star b - continuous but f is not almost contra semi - continuous. Because $f^{-1}(\{l\}) = \{m\}$ is not semi - closed in (X, τ) where $\{l\}$ is regular - open in (Y, σ) .

iii) Let $X = Y = \{l,m,n\}$ with $\tau = \{X, \varphi, \{m\}, \{l,m\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{m\}, \{l,m\}\}$. Defining a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(l) = m, f(m) = l, f(n) = n. It's obvious that f is almost contra semi generalised star b - continuous but f is not almost contra α - continuous. Because $f^{-1}(\{l,n\}) = \{m,n\}$ is not α - closed in (X, τ) where $\{l,n\}$ is regular - open in (Y, σ) .

iv) Let $X = Y = \{l, m, n\}$ with $\tau = \{X, \varphi, \{l, m\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{m\}, \{l, m\}, \{m, n\}\}$. Defining a functionDefine a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(l) = n, f(m) = l, f(n) = m.

It's obvious that f is almost contra semi generalised star b - continuous but f is not almost contra αg - continuous. Because $f^{-1}(\{l\}) = \{m\}$ is not αg - closed in (X, τ) where $\{l\}$ is regular - open in (Y, σ) .

v) Let $X = Y = \{l, m, n\}$ with $\tau = \{X, \varphi, \{l\}, \{l, n\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{n\}, \{l, n\}, \{l, m\}\}$. Defining a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(l) = m, f(m) = n, f(n) = l. It's obvious that f is almost contra gsp - continuous but f is not almost contra semi generalised star b - continuous. Because $f^{-1}(\{m, n\}) = \{l, m\}$ is not semi generalised star b - closed in (X, τ) where $\{m, n\}$ is regular - open in (Y, σ) .

vi) Let $X = Y = \{l,m,n\}$ with $\tau = \{X, \varphi, \{l\}, \{l,m\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{n\}, \{l,n\}, \{m,n\}\}$. Defining a function f : $(X, \tau) \rightarrow (Y, \sigma)$ by f(l) = m, f(m) = l, f(n) = n. It's obvious that f is almost contra gb - continuous but f is not almost contra semi generalised star b - continuous. Because $f^{-1}(\{m,n\}) = \{l,n\}$ is not semi generalised star b - closed in (X, τ) where $\{m,n\}$ is regular - open in (Y, σ) .

vii) Let $X = Y = \{l, m, n\}$ with $\tau = \{X, \varphi, \{m\}, \{l, m\}\}$ and $\sigma = \{Y, \varphi, \{m\}, \{n\}, \{l, m\}, \{m, n\}\}$. Defining a function $f : (X, \tau) \to (Y, \sigma)$ by f(l) = m, f(m) = l, f(n) = n. It's obvious that f is almost contra semi generalised star b - continuous but f is not almost contra sg - continuous. Because $f^{-1}(\{l, m\}) = \{l, m\}$ is not sg - closed in (X, τ) where $\{l, m\}$ is regular - open in (Y, σ) .

Remark 2.9. Near-contra semi generalised star b-continuous principle as seen in the following examples, almost contra sgb-continuous are independent.

Example 2.10. Let $X = Y = \{l, m, n\}$ with $\tau = \{X, \varphi, \{m\}, \{l, m\}\}$ and $\sigma = \{Y, \varphi, \{l\}, \{m\}, \{l, m\}, \{m, n\}\}$. Defining a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(l) = n, f(m) = m, f(n) = l. It's obvious that f is almost contra semi generalised star b - continuous but f is not almost contra sgb - continuous. Because $f^{-1}(\{m, n\}) = \{l, m\}$ is not sgb - closed in (X, τ) where $\{m, n\}$ is regular - open in (Y, σ) .

Example 2.11. Let $X = Y = \{l, m, n\}$ with $\tau = \{X, \varphi, \{l\}, \{n\}, \{l, n\}, \{m, n\}\}$ and $\sigma = \{Y, \varphi, \{m\}, \{n\}, \{m, n\}\}$. Define a function $f : (X, \tau) \rightarrow (Y, \sigma)$ by f(l) = n, f(m) = l, f(n) = m. It's obvious that f is almost contra sgb - continuous but f is not almost contra semi generalised star b - continuous. Because $f^{-1}(\{m\}) = \{n\}$ is not semi generalised star b - closed in (X, τ) where $\{m\}$ is regular - open in (Y, σ) .

Theorem 2.12. *The following are equivalent for a function* $f: X \rightarrow Y$,

(a) f is almost contra semi generalised star b - continuous. (b) for every regular closed set F of Y, $f^{-1}(F)$ is semi generalised star b - open set of X.

(c) for each $x \in X$ and each regular closed set F of Y containing f(x), there exists semi generalised star b - open U containing x such that $f(U) \subset F$.

(d) for each $x \in X$ and each regular open set V of Y not containing f(x), there exists semi generalised star b - closed set K not containing x such that $f^{-1}(V) \subset K$.

Proof. (a) \Rightarrow (b) : Let *F* be a regular closed set in *Y*, then *Y* - *F* is a regular open set in *Y*. By (1), $f^{-1}(Y - F) = X - f^{-1}(F)$ is semi generalised star *b* - closed set in *X*. This implies $f^{-1}(F)$ is semi generalised star *b* - open set in *X*. Therefore, (b) holds.

(b) \Rightarrow (a) : Let *G* be a regular open set of *Y*. Then *Y* - *G* is a regular closed set in *Y*. By (b), $f^{-1}(Y - G)$ is semi generalised star *b* - open set in *X*. This implies $X - f^{-1}(G)$ is semi generalised star *b* - open set in *X*, which implies $f^{-1}(G)$ is semi generalised star *b* - closed set in *X*. Therefore, (a) hold. (b) \Rightarrow (c) : Let *F* be a regular closed set in *Y* containing f(x), which implies $x \in f^{-1}(F)$. By (b), $f^{-1}(F)$ is semi generalised star *b* - open in *X* containing *x*. Set $U = f^{-1}(F)$, which implies *U* is semi generalised star *b* - open in *X* containing *x* and $f(U) = f(f^{-1}(F)) \subset F$. Therefore (c) holds.

(c) \Rightarrow (b) : Let *F* be a regular closed set in *Y* containing f(x), which implies $x \in f^{-1}(F)$. From (c), there exists semi generalised star *b* - open U_x in *X* containing *x* such that $f(U_x) \subset F$. That is $U_x \subset f^{-1}(F)$. Thus $f^{-1}(F) = \{ \cup U_x : x \in f^{-1}(F),$ which is union of semi generalised star *b* - open sets. Therefore, $f^{-1}(F)$ is semi generalised star *b* - open set of *X*.

(c) \Rightarrow (d) : Let *V* be a regular open set in *Y* not containing f(x). Then Y - V is a regular closed set in *Y* containing f(x). From (c), there exists a semi generalised star *b* - open set *U* in *X* containing *x* such that $f(U) \subset Y - V$. This implies $U \subset f^{-1}(Y - V) = X - f^{-1}(V)$. Hence, $f^{-1}(V) \subset X - U$. Set K = X - V, then *K* is semi generalised star *b* - closed set not containing *x* in *X* such that $f^{-1}(V) \subset K$.

(d) \Rightarrow (c) : Let *F* be a regular closed set in *Y* containing f(x). Then Y - F is a regular open set in *Y* not containing f(x). From (d), there exists semi generalised star *b* - closed set *K* in *X* not containing *x* such that $f^{-1}(Y - F) \subset K$. This implies $X - f^{-1}(F) \subset K$. Hence, $X - K \subset f^{-1}(F)$, that is $f(X - K) \subset F$. Set U = X - K, then *U* is semi generalised star *b* - open set containing *x* in *X* such that $f(U) \subset F$. \Box

Theorem 2.13. *The following are equivalent for a function* $f: X \rightarrow Y$,

(I) f is almost contra semi generalised star b - continuous.

(II) $f^{-1}(Int(Cl(G)))$ is semi generalised star b - closed set in X to each open subset G of Y.

(III) $f^{-1}(Cl(Int(F)))$ is semi generalised star b - open set in X to each closed subset F of Y.

Proof. (I) \Rightarrow (II) : Let G be an open set in Y. Then Int(Cl(G)) is regular open set in Y. By (I), $f^{-1}(Int(Cl(G)) \in sg^*b - C(X))$.

 $(II) \Rightarrow (I)$: Proof is obvious.

(I) \Rightarrow (III) : Let *F* be a closed set in *Y*. Then Cl(Int(G)) is regular closed set in *Y*. By (I), $f^{-1}(Cl(Int(G)) \in sg^*b - O(X))$.

(III) \Rightarrow (I) : Proof is obvious.

Theorem 2.14. Let $f : X \to Y$ be a contra semi generalised star b - continuous and $g : Y \to Z$ be semi generalised star b- continuous. If Y is Tsg^*b - space, then $g \circ f : X \to Z$ is an almost contra semi generalised star b - continuous. *Proof.* Let *V* be any regular open and hence open set in *Z*. Since g is semi generalised star *b* - continuous $g^{-1}(V)$ is semi generalised star *b* - open in *Y* and *Y* is Tsg^*b - space implies $g^{-1}(V)$ open in *Y*. Since *f* is contra semi generalised star *b* - continuous, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is semi generalised star *b* - closed set in *X*. Therefore, $g \circ f$ is an almost contra semi generalised star *b* - continuous. \Box

Theorem 2.15. If $f: X \to Y$ is onto strongly semi generalised star b - open (or strongly semi generalised star b - closed) and $g: Y \to Z$ is a function such that $g \circ f: X \to Z$ is an almost contra semi generalised star b - continuous, then g is an almost contra semi generalised star b - continuous.

Proof. Let *V* be any regular closed (resp. regular open) set in *Z*. Since $g \circ f$ is an almost contra semi generalised star *b* - continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is semi generalised star *b* - open (resp. semi generalised star *b* - closed) in *X*. Since *f* is surjective and strongly semi generalised star *b* - closed), $f(f^{-1}(g^{-1}(V))) = g^{-1}(V)$ is semi generalised star *b* - open(or strongly semi generalised star *b* - open(or semi generalised star *b* - closed). Therefore *g* is an almost contra semi generalised star *b* - continuous.

Definition 2.16. A function $f: X \to Y$ is called weakly semi generalised star b - continuous if for every $x \in X$ and each open set V of Y containing f(x), there exists $U \in sg^*b - O(X;x)$ such that $f(U) \subset cl(V)$.

Theorem 2.17. If a function $f : X \to Y$ is an almost contrasemi generalised star b - continuous, then f is weakly semi generalised star b - continuous function.

Proof. Let $x \in X$ and V be an open set in Y containing f(x). Then cl(V) is regular closed in Y containing f(x). Since f is an almost contra semi generalised star b - continuous function by Theorem 3 (2), $f^{-1}(cl(V))$ is semi generalised star b - open set in X containing x. Set $U = f^{-1}(cl(V))$, then $f(U) \subset f(f^{-1}(Cl(V))) \subset cl(V)$. This shows that f is weakly semi generalised star b - continuous function.

Definition 2.18. A space X is called locally semi generalised star b - indiscrete if every semi generalised star b - open set is closed in X.

Theorem 2.19. If a function $f : X \to Y$ is almost contra semi generalised star b - continuous and X is locally semi generalised star b - indiscrete space, then f is almost continuous.

Proof. Let *U* be a regular open set in *Y*. Since *f* is almost contra semi generalised star *b* - continuous $f^{-1}(U)$ is semi generalised star *b* - closed set in *X* and *X* is locally semi generalised star *b* - indiscrete space, which implies $f^{-1}(U)$ is an open set in *X*. Therefore *f* is almost continuous.

Lemma 2.20. Let A and X_0 be subsets of a space X. If $A \in sg^*b - O(X)$ and $X_0 \in \tau^{\alpha}$, then $A \cap X_0 \in sg^*b - O(X_0)$.

Theorem 2.21. If $f: X \to Y$ is almost contra semi generalised star b - continuous and $X_0 \in \tau^{\alpha}$ then the restriction f/X_0 : $X_0 \to Y$ is almost contra semi generalised star b - continuous.

Proof. Let *V* be any regular open set of *Y*. By Theorem, we have $f^{-1}(V) \in sg^*b - O(X)$ and hence $(f/X_0)^{-1}(V) = f^{-1}(V) \cap X_0 \in sg^*b - O(X_0)$. By Lemma 1, it follows that f/X_0 is almost contra semi generalised star *b* - continuous.

Theorem 2.22. If $f : X \to \prod Y_{\lambda}$ is almost contra semi generalised star b - continuous, then $P_{\lambda} \circ f : X \to Y_{\lambda}$ is almost contra semi generalised star b - continuous for each $\lambda \in \nabla$, where P_{λ} is the projection of $\prod Y_{\lambda}$ onto Y_{λ} .

Proof. Let Y_{λ} be any regular open set of Y. Since P_{λ} is continuous open, it is an R - map and hence $(P_{\lambda})^{-1} \in RO(\prod Y_{\lambda})$. By theorem, $f^{-1}(P_{\lambda}^{-1}(V)) = (P_{\lambda} \circ f)^{-1} \in sg^*b - O(X)$. Hence $P_{\lambda} \circ f$ is almost contra semi generalised star b - continuous.

3. Semi generalised star *b* - regular graphs and strongly contra semi generalised star *b* - closed graphs

Definition 3.1. A graph G_f of a function $f: X \to Y$ is said to be semi generalised star b - regular (strongly contra semi generalised star b - closed) if for each $(x,y) \in (X \times Y) \setminus G_f$, there exist a semi generalised star b - closed set U in Xcontaining x and $V \in R - O(Y)$ such that $(U \times V) \cap G_f = \varphi$.

Theorem 3.2. If $f : X \to Y$ is almost contra semi generalised star b - continuous and Y is T_2 , then G_f is semi generalised star b - regular in $X \times Y$.

Proof. Let $(x,y) \in (X \times Y) \setminus G_f$. It is obvious that $f(x) \neq y$. Since *Y* is T_2 , there exists $V, W \in RO(Y)$ such that $f(x) \in V$, $y \in W$ and $V \cap W = \varphi$. Since *f* is almost contra semi generalised star *b* - continuous, $f^{-1}(V)$ is a semi generalised star *b* - closed set in *X* containing *x*. If we take $U = f^{-1}(V)$, we have $f(U) \subset V$. Hence, $f(U) \cap W = \varphi$ and G_f is semi generalised star *b* - regular.

Theorem 3.3. Let $f : (X, \tau) \to (Y, \sigma)$ be a function and $g : (X, \tau) \to (X \times Y, \tau \times \sigma)$ the graph function defined by g(x) = (x, f(x)) to each $x \in X$. Then f is almost semi generalised star b - continuous iff g is almost semi generalised star b - continuous.

Proof. Necessary : Let $x \in X$ and $V \in sg^*b - O(Y)$ containing f(x). Then, we have $g(x) = (x, f(x)) \in R - O(X \times Y)$. Since f is almost semi generalised star b - continuous, there exists a semi generalised star b - open set U of X containing x such that $g(U) \subset X \times Y$. Therefore, we obtain $f(U) \subset V$. Hence f is almost semi generalised star b continuous.

Sufficiency : Let $x \in X$ and w be a regular open set of $X \times Y$ containing g(x). There exists $U_1 \in RO(X, \tau)$ and $V \in RO(Y, \sigma)$ such that $(x, f(x)) \in (U_1 \times V) \subset W$. Since f is

almost semi generalised star b - continuous, there exists $U_2 \in sg^*b - O(X, \tau)$ such that $x \in U_2$ and $f(U_2) \subset V$. Set $U = U_1 \cap U_2$. We have $x \in U_x \in sg^*b - O(X, \tau)$ and $g(U) \subset (U_1 \times V) \subset W$. This shows that g is almost semi generalised star b - continuous.

Theorem 3.4. If a function $f : X \to Y$ be a almost contrasemi generalised star b - continuous and almost continuous, then f is regular set - connected.

Proof. Let $V \in RO(Y)$. Since f is almost contra semi generalised star b - continuous and almost continuous, $f^{-1}(V)$ is semi generalised star b - closed and open. So $f^{-1}(V)$ is clopen. It turns out that f is regular set - connected.

4. Connectedness

Definition 4.1. A space X is called semi generalised star b - connected if X cannot be written as a disjoint union of two non - empty semi generalised star b - open sets.

Theorem 4.2. If $f : X \to Y$ is an almost contra semi generalised star b - continuous onto and X is semi generalised star b - connected, then Y is connected.

Proof. Suppose that *Y* is not a connected space. Then *Y* can be written as $Y = U_0 \cup V_0$ such that U_0 and V_0 are disjoint non - empty open sets. Let $U = int(cl(U_0))$ and $V = int(cl(V_0))$. Then *U* and *V* are disjoint nonempty regular open sets such that $Y = U \cup V$. Since *f* is almost contra semi generalised star *b* - continuous, then $f^{-1}(U)$ and $f^{-1}(V)$ are semi generalised star *b* - open sets of *X*. We have $X = f^{-1}(U) \cup f^{-1}(V)$ such that $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint. Since *f* is onto, this shows that *X* is not semi generalised star *b* - connected. \Box

Theorem 4.3. The almost contra semi generalised star b - continuous image of semi generalised star b - connected space is connected.

Proof. Let $f: X \to Y$ be an almost contra semi generalised star b - continuous function of a semi generalised star b connected space X onto a topological space Y. Suppose that Yis not a connected space. There exist non - empty disjoint open sets V_1 and V_2 such that $Y = V_1 \cup V_2$. Therefore, V_1 and V_2 are clopen in Y. Since f is almost contra semi generalised star b continuous, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are semi generalised star b- open in X. Moreover, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are non - empty disjoint and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$. This shows that X is not semi generalised star b - connected. This is a contradiction and hence Y is connected. \Box

Definition 4.4. A topological space X is said to be semi generalised star b - ultra connected if every two non - empty semi generalised star b - closed subsets of X intersect.

A topological space X is said to be hyper connected if every open set is dense.

Theorem 4.5. If X is semi generalised star b - ultra connected and $f: X \to Y$ is an almost contra semi generalised star b continuous onto, then Y is hyper connected.

Proof. Suppose that *Y* is not hyperconnected. Then, there exists an open set *V* such that *V* is not dense in *Y*. So, there exist non - empty regular open subsets $B_1 = int(cl(V))$ and $B_2 = Y - cl(V)$ in *Y*. Since *f* is almost contra semi generalised star *b* - continuous, $f^{-1}(B_1)$ and $f^{-1}(B_2)$ are disjoint semi generalised star *b* - closed. This is contrary to the semi generalised star *b* - ultra - connectedness of *X*. Therefore, *Y* is hyperconnected.

5. Separation axioms

Definition 5.1. A topological space X is said to be $sg^*b - T_1$ space if for any pair of distinct points x and y, there exist a semi generalised star b - open sets G and H such that $x \in G$, $y \notin G$ and $x \notin H$, $y \in H$.

Theorem 5.2. If $f : X \to Y$ is an almost contra semi generalised star b - continuous one to one and Y is weakly Hausdorff, then X is $sg^*b - T_1$.

Proof. Suppose *Y* is weakly Hausdorff. For any distinct points *x* and *y* in *X*, there exist *V* and *W* regular closed sets in *Y* such that $f(x) \in V$, $f(y) \notin V$, $f(y) \in W$ and $f(x) \notin W$. Since *f* is almost contra semi generalised star *b* - continuous, $f^{-1}(V)$ and $f^{-1}(W)$ are semi generalised star *b* - open subsets of *X* such that $x \in f^{-1}(V)$, $y \notin f^{-1}(V)$, $y \in f^{-1}(W)$ and $x \notin f^{-1}(W)$. This shows that *X* is $sg^*b - T_1$.

Corollary 5.3. If $f: X \to Y$ is a contra semi generalised star b - continuous one to one and Y is weakly Hausdorff, then X is $sg^*b - T_1$.

Theorem 5.4. If $f : X \to Y$ is an almost contra semi generalised star b - continuous one to one function from space Xinto a Ultra Hausdorff space Y, then X is $sg^*b - T_2$.

Proof. Let *x* and *y* be any two distinct points in *X*. Since *f* is an one to one $f(x) \neq f(y)$ and *Y* is Ultra Hausdorff space, there exist disjoint clopen sets *U* and *V* of *Y* containing f(x) and f(y) respectively. Then $x \in f^{-1}(U)$ and $y \in f^{-1}(V)$, where $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint semi generalised star *b* - open sets in *X*. Therefore *X* is $sg^*b - T_2$.

Theorem 5.5. If $f : X \to Y$ is an almost contra semi generalised star b - continuous closed injection and Y is ultra normal, then X is semi generalised star b - normal.

Proof. Let *E* and *F* be disjoint closed subsets of *X*. Since *f* is closed and one to one f(E) and f(F) are disjoint closed sets in *Y*. Since *Y* is ultra normal there exists disjoint clopen sets *U* and *V* in *Y* such that $f(E) \subset U$ and $f(F) \subset V$. This implies $E \subset f^{-1}(U)$ and $F \subset f^{-1}(V)$. Since *f* is an almost contra semi generalised star *b* - continuous injection, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint semi generalised star *b* - open sets in *X*. This shows *X* is semi generalised star *b* - normal.

Theorem 5.6. If $f: X \to Y$ is an almost contra semi generalised star b - continuous and Y is semi - regular, then f is semi generalised star b - continuous.

Proof. Let $x \in X$ and V be an open set of Y containing f(x). By definition of semi - regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subset V$. Since f is almost contra semi generalised star b - continuous, there exists $U \in sg^*b - O(X, x)$ such that $f(U) \subset G$. Hence we have $f(U) \subset G \subset V$. This shows that f is semi generalised star b - continuous function.

References

- [1] Ahmad Al Omari and Mohd. Salmi Md. Noorani, On Generalized b - closed sets, Bull. Malays. Math. Sci. Soc(2), 32(1)(2009), 19–30.
- [2] P. Bhattacharya and B.K. Lahiri, Semi-generalized closed sets on topology, *Indian J. Maths.*, 29(3)(1987), 375–382.
- [3] J. Dontchev, On generalized semi- pre open sets, Mem. Fac. Sci. Kochi. Univ. Ser. A. Math., 16(1995), 35.
- [4] E. Ekici, Almost contra-pre continuous functions, Bull. Malays. Math. Sci. Soc., 27(1)(2004), 53–65.
- Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, *Indian J. Pure. Appl. Math.*, 28(1997), 351–360.
- [6] D. Iyappan and N. Nagaveni, On semi generalized bclosed set, *Nat. Sem. On Mat. & Comp. Sci.*, Jan (2010),
 6.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1963)), 36–41.
- [8] A.S. Mashor Abd., M.E. El-Monsef and S.N. Ei-Deeb, On Pre continous and weak pre-continous mapping, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47–53.
- [9] Metin Akdag and Alkan Ozkan, Some properties of Contra gb-continuous functions, *Journal of New results in Science*, 1(2012), 40–49.
- ^[10] T. Noiri, Almost α -continuous functions, *Kyunpook Math. J.*, 1(1988), 71.
- [11] S. Sekar and B. Jothilakshmi, On semi generalized star bclosed set in Topological Spaces, *International Journal of Pure and Applied Mathematics*, 111(3), (2016), 93–102.
- [12] M.K.R.S. Veerakumar, Between closed sets and g-closed sets, *Mem. Fac. Sci. Kochi. Univ. Ser.A, Math.*, 21(2000), 1–19.

******** ISSN(P):2319 – 3786 Malaya Journal of Matematik ISSN(O):2321 – 5666 ********