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Analysis for discrete/continuous particle’s motion in
flowing laminar heated fluids
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Abstract
The Integro-differential equation derived under turbulent flow hypothesis to study particle motion has been
critically examined and shown as how the simplified trajectory equation possess several restrictions, when
resolved along x direction. When such a theory has left conjecture, similar trajectory equation to describe motion
has been derived from first principles and significance of particle effects over flow properties have been illustrated.
The extremes of mathematical complexities are described on Eulerian scale, when multi-particles are interacting
with flowing fluid medium.
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Nomenclature:
A−Constant in Fourier Series for Fluid Motion

t−Time
a′−Acceleration Vector
t ′−Time Step
B−Constant in Fourier Series for Fluid Motion
u′−Velocity of fluid vector
C−Constant in Fourier Series for particle Motion
u0−Characteristic velocity of fluid
cd−Drag Force
u−Vertical velocity of fluid
cp−Specific heat of fluid at constant pressure
u−Turbulence intensity of fluid

cg−Specific heat of particle at constant pressure
v′−velocity of particle
D−Constant in Fourier Series for Particle motion
v−Vertical velocity of particle
d−Diameter of particle
v−Turbulence intensity of particle
E f−Energy Spectrum Function for Fluid
w−Relative velocity of u,v
Ep−Energy Spectrum Function for particle
w′−Relative velocity of u’, v’
f ′−Force Vector
x−Flow along x-direction
f−Mass concentration of particles
y−Flow along y-direction
g−Gravitational constant
y f−RMS dispersion coefficient of
fluid
K−Stokes Resistance Law
yp−RMS dispersion coefficient of particle
k−Thermal conductivity of fluid
ρ−density of fluid
m−Mass of the fluid
ρp−density of particle
N−Number density of particles
µ−viscosity of fluid
P−Pressure
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η−amplitude ration
Pr−Prandtl number
Ω−(2πn )Angular frequency
q−Thermal interaction parameter
τv−Relaxation time for fluid
R−Gas Constant
τT−Relaxation time for temperature
Rt−Lagrange Correlation Coefficient for fluid
τ−Characteristic time
Rp−Lagrange Correlation Coefficient for Particle
∈t −Eddy diffusivity for fluid
T−Temperature of fluid
∈p −Eddy diffusivity for particle
T0−Characteristic Temperature of fluid.
λv−Relaxation Length
T ′−Temperature of particle
λT−Thermal relaxation Length
T−Time period

1. Introduction
presence of solid particles composed of sand, ash, and dost in
flowing fluids through several industrial equipment’s has re-
ceived researcher’s attention to estimate erosion losses due to
particle impingement on component surface. the performance
characteristics that are obtained based on current designs are
mostly empirical and not accounted the associated particulate
laden flow parameters. Though the literature for theory, ex-
periments and materials are available, still there is a need for
well defined mathematical relations for particle flow analysis.

2. Particle motion on lagrangian scale:
According to basic theory , when a discrete particle is sus-
pended in flowing fluid , the particle motion for homogeneous
turbulence is defined by
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which physically states that force required to accelerate the
particle is sum of forces acting on it . These forces includes
viscous resistance , pressure gradient in fluid surrounding
particle , acceleration force for mass of particle relative to
fluid and the last term is due to Basset , which may become
substantial , when particle is accelerated at high speed.

From the momentum balance , on substitution of pressure
gradient , above eqn possess non-linearities with fluid inertia
and discous forces . Considering particle velocity is much

greater than fluid inertia and viscous terms , after algebraic
manipulations in ( 1 ) reduces to
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which is restricted to potential low and single discrete
particle and contradicts other theories that particle presence
will have significant effect on viscosity of fluids. Added to
this, solution to equation (2) is still challenges the researchers
without assumptions. However, few attempts have been made
by considering
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To simplify equation (4), turbulent intensity of gas and
particles are defined in terms of Fourier integrals as
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which in energy spectrum function yields to
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and can be equated to
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so that diffusion coefficients for fluid and particles in terms
of Lagrangian correlation coefficients as

y2
f = 2u2

∫ t
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y2
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∫ t

0
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under which, eddy diffusivities for fluid and particles can
be defined as

∈ f= u2
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above equations for short diffusion times leads to ∈p
/ ∈ f= v/u and for long diffusion times, the particles falls
under low frequency components and will not show any dif-
ference between fluid and particle. Also, resistance law have
no role to play. Hence, at n = 0, ∈p=∈ f ; leads to further
complications, when n is different from zero. It can also be
seen when ρp/ρ f ¿0, b will become finite and a = c = 0. But
a = 0, ∈p / ∈ f∼ 1 as t > ∞ and when a is finite as t > ∞;
∈p / ∈ f becomes undetermined. Therefore, it has been consid-
ered that ρp/ρ f is so large that b = c = 0 , which implies that
eddy diffusivities decreases with the increase of frequency
Under these conditions eqn (7) simplifies to

dv
du

= a(u− v) (2.17)

is an conjecture, because of initial hypothesis and several
restrictions for it’s use, when applied to multi-dimensional
flow geometries.

3. Alternate approach for particle
trajectory

To arrive at the conclusion reached in proceeding section,
consider translation of particle suspended in fluid, whose
geometrical description is shown in below figure.

By Newton’s second law, the sum of forces acting on the
particle are represented mathematically as

ma′ = f ′ (3.1)

Where a’ in terms of velocities along x and y direction
will results to
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Whose solution procedure for u,v,u′,v′ is described. Though
it is quite possible to predict fluid-particle, and particle-wall
interactions with above relations, but it will becomes tedious
when fluid is induced to number of particles. Eulerian formu-
lation for fluid and particles:

4. Eulerian formulation for fluid and
particles

When the number of particles in fluid are entering and leav-
ing. the channel as shown in below figure, the conservation
equations in vector form will be written as:

D(ρu)
Dt

= 0 (4.1)

D(ρu)
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=−∇P−∇×[µ(∇×u)]+∆ [(2µ +λ )∇.u]+KN(v−u)
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(4.2)
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which for in compressible fluid-particle laminar flows, the
conservation equations in two dimensional coordinates for
constant flow properties leads to
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Equations (34−35) are basically non-linear elliptic PDEs
which can be simplified to parabolic linear/non-linear PDEs

under boundary layer assumptions. Depending upon the re-
quirements above equation can be modified for free and forced
convection heat transfer additional body forces in momentum
and energy equations. But last term and r h s in this equation
and in (36−38) give rise to coupling between fluid to particle
and particle to fluid with the product of Mars consideration
over relaxation time of particles. This is difficult to solve
above system of equations forgiven flow situation for want of
boundary conditions for particles and therefore the necessity
rises to study the effect of interaction forces when compatible
with τ .

5. Role of interaction forces
It is always advantage to solve equation (34−38) simultane-
ously in time domain, but coupling terms pose serious com-
plexities for both physics and mathematical solution aspects.
Hence based on larger small relaxation Times the governing
equations simplified in terms of interaction forces for homo-
geneous are heterogeneous flows. The dynamic equilibrium
(relaxation time) defined as the ratio of the distance required
for a particle to reach that of the fluid and mathematically
represented as:

τv =
m

3πµd
cs; λv = τT u0 (5.1)

Similarly, relaxation time under thermal conditions are
defined as the distance required for a particle temperature to
reach that of the fluid is defined as

τT =
m

2πkd
cs; λT = τT T0 (5.2)

and mass concentration of particles are ratio of number
density of particled to fluid density is written as

f =
mN
ρ

(5.3)

00.00.0000

00.00.0000

the particle motion depends upon its initial conditions that is
by it’s state at the time it enters the system (mostly particles
are coarse)

the particle has time to adjust to local fluid motion before it
has moved appreciable through this region (particles are fine).

the particle has a memory of events that took place through-
out a region of relaxation length within which, significant
changes in flow conditions takes place. When thermal
relaxation time is compared with characteristic temperature
similar observations can be made.

f > 1 single particle is moving through the fluid and fluid
motion is effected very little.

f ∼ 1 both the fluid and particle motions are affected by in-
teraction forces.
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6. Effect of fluid-particle motion over
relaxation times

To understand the effect of relaxation time between fluid and
particles, consider the equation of particle relative to fluid as
a function of time as

dv
dt

=
u− v

τv
(6.1)

Let u(t) be velocity which is instantaneous at the point
where particle is located at the time t and v = 0 for t = 0 then
solution for

v = e
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∫ t

0
u(t ′)e

t
τvdt ′

Consider u(t) = u0 + b′t where b′ is positive and nega-
tive constant and u0 is positive and constant. Eqn (43) after
integration by parts will be rewritten as:

v = u(t)−b′τ +u
(

b′
τv

u0−1
1
)

e

−t
τv

whose graphical distributions over t for different b′ are
shown in Fig. 3. The Fig reveals.

when b′ = 0, the motion of particle asymptotically ap-
proaches fluid velocity, for b′ > 0 the particle reaches gas
velocity with constant lag and when b′ < 0 particle velocity
exceeds the fluid velocity. However, these observations will be
different when particle motion is incorporated with non-linear
flow terms in time derivative. Hence the phenomena can be an-
alyzed for wider aspects under limiting conditions τv < τ and
τT < τ , so that conservation equations maintains only single
phase but involves interaction terms plus mass concentration
of particles as a function of mixture flow velocity.

Solution to such homogeneous system of equations for
several aspects, reveals that particle presence have pronounced
effect on fluid properties, whose further study to the problem1
are addressed, it will provide valuable insights for practical
applications.

7. Conclusions
When the discrete particle is present in flowing fluid, this paper
has conjected it’s motion derived from the integro-differential
equation under turbulent flow hypothesis. Similar particle
motion has been derived on Lagrangian scale from the first
physical principles with flexibility to account particle-fluid in-
teraction forces without additional assumptions. When multi-
particles are interacting with flowing laminar fluids, structure
of formulation has been examined after studying the interac-
tion forces for physical aspects.

References
[1] John Stringer, Industrial Experience and Design Require-

ments with respect to Erosion and Corrosion in Coal
Conversion Systems, ASTM Proceedings, Pi4- 58 (1978).

[2] Lee S. L., Aspects of Suspension Shear Flows, Advances
in Applied Mechanics, Academic Press, 22, 1-65 (1982).

[3] Hinz., J. O., Turbulence - An Introduction to its Mecha-
nism and Theory, Mc-Graw Hill, New-York, 53 (1957)

[4] Soo., S. L., Multiphase Fluid Dynamics, Science Press,
Bejing (1990).

[5] Bhasker, C., Fluid Flow and Heat Trans- fer Charac-
teristics of Two-Phase (Gas- Particle) Flows Through
Rotating Systems, Ph.D. Thesis, Aug. 1989, Dept. of
Mathematics, Osmania University, Hyderabad, India:

[6] Saffman, P. G., Jr. of Fluid Mechanics, 13, 120-127
(1968).

[7] Mahesh Chalpuri1, J. Sucharitha and M. Madhu. Ad-
vanced Family of Newton-Cotes Formulas, Journal of
Informatics and Mathematical Sciences, 10(3)(2018), 1–
14.

[8] Saffman, P.G., Discussion Note, Nature, 193, 463 (1962),
[9] Sreeram Reddy, K., Madhusudhan Bangad, and Bhasker,

C., Two-Phase Fluid Flow and Thermal Analysis Be-
tween Vertical Plates, Accepted in 36th Congress of IS-
TAM, at IIT/Bombay 19-23 December, (1991).

[10] Bhasker, C., Sreeram Reddy and Bangad, M, Thermo-
fluid Mechanics of Gas-Solid Particle Flows over Hori-
zontal Plate, Numerical Methods in Laminar and Turbu-
lent Flows Editor : C. Taylor et al. Pineridge Press, UK
556-567 (1991)

[11] Fogarty, Journal of Aeronautical Sciences, 247-252
(1951).

[12] Chalpuri Mahesh, The 3-point quadrature rules
with constant weight function, Asian-European
Journal of Mathematics, 13(1)(2020), DOI:
10.1142/S1793557120500412.

?????????
ISSN(P):2319−3786

Malaya Journal of Matematik
ISSN(O):2321−5666

?????????

189

http://www.malayajournal.org

	Introduction 
	Particle motion on lagrangian scale:
	Alternate approach for particle trajectory
	Eulerian formulation for fluid and particles
	Role of interaction forces 
	Effect of fluid-particle motion over relaxation times
	Conclusions
	References

