\(\theta_f\)-Approximations via fuzzy proximity relations: Semigroups in digital images

Downloads

DOI:

https://doi.org/10.26637/mjm1103/007

Abstract

This article introduces \(\theta_{f}\)-approximations of sets in fuzzy proximal relator space where \(\theta\in\lbrack0,1)\). \(\theta_{f}\)-approximation provides a more sensitive approach for the upper approximations of subsets or subimages. \(\theta_{f}\)-approximation of a subimage are given with an example in digital images. Furthermore, \(\theta_{f}\)-approximately groupoid and semigroup in fuzzy proximal relator space are introduced.

Keywords:

Proximity space, relator space, descriptive approximation, approximately semigroup

Mathematics Subject Classification:

08A05, 68Q32, 54E05
  • Pages: 303-311
  • Date Published: 01-07-2023
  • Vol. 11 No. 03 (2023): Malaya Journal of Matematik (MJM)

A. Clifford And G. Preston, The Algebraic Theory of Semigroups, American Mathematical Society, Providence, R.I., (1964).

V.A. EfREmovıč, Infinitesimal Spaces, Doklady Akad. Nauk SSSR (N. S.) (Russian), 76(1951), 341-343.

V.A. Efremovič, The Geometry of Proximity I, Mat. Sb. (N. S.) (Russian), 31(73)(1)(1952), 189-200.

E. İNAn, Approximately Groups in Proximal Relator Spaces, Commun. Fac. Sci. Univ. Ank. Ser. Al Math. Stat., 68(1)(2019), 572-582. DOI: https://doi.org/10.31801/cfsuasmas.438380

E. İNAN, Approximately Semigroups and Ideals: An Algebraic View of Digital Images, Afyon Kocatepe University Journal of Science and Engineering, 17(2017), 479-487. DOI: https://doi.org/10.5578/fmbd.57229

E. İNAN, Approximately Subgroups in Proximal Relator Spaces, Adlyaman University Journal of Science, $mathbf{8}(mathbf{1})(2018), 24-41$.

E. İNAN, M. UÇKUN, Semitopological $delta$-Groups, Hacet. J. Math. Stat., 52(1)(2023), 163-170. DOI: https://doi.org/10.15672/hujms.1101438

M. KovĂr, A New Causal Topology and Why the Universe is Co-Compact, arXiv:1112.0817 [math-ph], (2011), 1-15.

M. Lodato, On Topologically Induced Generalized Proximity Relations, Ph.D. Thesis, Rutgers University, $(1962)$.

S.A. Naimpally AND J.F. Peters, Topology with Applications: Topological Spaces via Near and Far, World Scientific, Singapore, (2013). DOI: https://doi.org/10.1142/8501

M.A. ÖztÜRk, E. İNAN, Ö. TEkIN And J.F. PetErs, Fuzzy Proximal Relator Spaces, Neural Comput. Appl., (2018), 1-10. DOI: https://doi.org/10.1007/s00521-017-3268-1

J.F. Peters, Near Sets: An Introduction, Math. Comput. Sci., 7(1)(2013), 3-9. DOI: https://doi.org/10.1007/s11786-013-0149-6

J.F. Peters and S.A. Naimpally, Applications of Near Sets, Notices Amer. Math. Soc., 59(4)(2012), 536542. DOI: https://doi.org/10.1090/noti817

J.F. Peters, Proximal Relator Spaces, Filomat, 30(2)(2016), 469-472. DOI: https://doi.org/10.2298/FIL1602469P

J.F. Peters, E. İnan and M.A. Öztürk, Spatial and Descriptive Isometries in Proximity Spaces, Gen. Math. Notes, $21(2)(2014), 125-134$.

J. QIU, K. SUn, T. WANG, AND H. GAO, Observer-based fuzzy adaptive event-triggered control for purefeedback nonlinear systems with prescribed performance, IEEE Trans. Fuzzy Syst., 27(11)(2019), 21522162. DOI: https://doi.org/10.1109/TFUZZ.2019.2895560

J. QIU, K. SUn, I. J. RUDAS AND H. GaO, Command Filter-Based Adaptive NN Control for MIMO Nonlinear Systems With Full-State Constraints and Actuator Hysteresis, in IEEE Transactions on Cybernetics., doi: 10.1109/TCYB.2019.2944761. DOI: https://doi.org/10.1109/TCYB.2019.2944761

Y. Smirnov, On Proximity Spaces, Math. Sb., (in Russian), 31(73)(1952), 543-574.

K. Sun, S. Mou, J. QIU, T. WANG, AND H. GaO, Adaptive fuzzy control for nontriangular structural stochastic switched nonlinear systems with full state constraints, IEEE Trans. Fuzzy Syst., 27(8)(2019), 1587-1601. DOI: https://doi.org/10.1109/TFUZZ.2018.2883374

Á. SzÁz, Basic Tools and Mild Continuities in Relator Spaces, Acta Math. Hungar., 50(3-4)(1987), 177201. DOI: https://doi.org/10.1007/BF01903935

H. WALLMAN, Lattices and Topological Spaces, Annals of Math., 39(1)(1938), 112-126. DOI: https://doi.org/10.2307/1968717

X.Z. Wang, D. Ruan and E.E. Kerre, Mathematics of Fuzziness-Basic Issues, Springer-Verlag, Berlin, Heidelberg, (2009). DOI: https://doi.org/10.1007/978-3-540-78311-4

L.A. Zadeh, Fuzzy Sets, Information and Control, 8(1965), 338-353. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

  • NA

Metrics

Metrics Loading ...

Published

01-07-2023

How to Cite

İNAN, E., and M. UÇKUN. “\(\theta_f\)-Approximations via Fuzzy Proximity Relations: Semigroups in Digital Images”. Malaya Journal of Matematik, vol. 11, no. 03, July 2023, pp. 303-11, doi:10.26637/mjm1103/007.