Stabilities of mixed type Quintic-Sextic functional equations in various normed spaces

Downloads

Abstract

In this paper, we introduce ”Mixed Type Quintic - Sextic functional equations” and then provide their general
solution, and prove generalized Ulam - Hyers stabilities in Banach spaces and Fuzzy normed spaces, by using
both the direct Hyers - Ulam method and the alternative fixed point method.

Keywords:

Quintic functional equation, sextic functional equation, mixed type quintic - sextic functional equation, generalized Ulam - Hyers stability, Banach space, Fuzzy Banach space, Hyers - Ulam method, alternative fixed point method

Mathematics Subject Classification:

Mathematics
  • John Micheal Rassias Pedagogical Department - Mathematics and Informatics, The National and Kapodistrian University of Athens,4, Agamemnonos Str., Aghia Paraskevi, Athens 15342, Greece.
  • Elumalai Sathya Department of Mathematics, Shanmuga Industries Arts and Science College, Tiruvannamalai - 606 603, TamilNadu, India.
  • Mohan Arunkumar Department of Mathematics, Government Arts College, Tiruvannamalai - 606 603, TamilNadu, India.
  • Pages: 217-243
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

J. Aczel and J. Dhombres, Functional Equations in Sev. eral Variables, Cambridge Univ, Press, 1989.

T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64-66.

M. Arunkumar, Three Dimensional Quartic Functional Equation In Fuzzy Normed Spaces, Far East Journal of Applied Mathematics, 41(2), (2010), 88-94.

M. Arunkumar, John M. Rassias, On the generalized Ulam-Hyers stability of an AQ-mixed type functional equation with counter examples, Far East Journal of Applied Mathematics, Volume 71, No. 2, (2012), 279-305.

M. Arunkumar, Perturbation of $n$ Dimensional $A Q$ mixed type Functional Equation via Banach Spaces and Banach Algebra: Hyers Direct and Alternative Fixed Point Methods, International Journal of Advanced Mathematical Sciences (IJAMS), Vol. 2 (1), (2014), 34-56.

M. Arunkumar and T. Namachivayam, Stability of ndimensional quadratic functional Equation in Fuzzy normed spaces: Direct And Fixed Point Methods, Proceedings of the International Conference on Mathematical Methods and Computation, Jamal Academic Research Journal an Interdisciplinary, (February 2014), 288-298.

M. Arunkumar, P. Agilan, Stability of A AQC Functional Equation in Fuzzy Normed Spaces: Direct Method, Jamal Academic Research Journal an Interdisciplinary, (2015), $78-86$.

M. Arunkumar, G.Shobana, S. Hemalatha, Ulam - Hyers, Ulam - Trassias, Ulam-Grassias, Ulam - Jrassias Stabilities of A Additive - Quadratic Mixed Type Functional Equation In Banach Spaces, International Journal of Pure and Applied Mathematics, Vol. 101, No. 6 (2015), 1027 1040.

M. Arunkumar, C. Devi Shyamala Mary, Generalized Hyers - Ulam stability of additive - quadratic - cubic - quartic functional equation in fuzzy normed spaces: A direct method, International Journal of Mathematics And its Applications, Volume 4, Issue 4 (2016), 1-16.

M. Arunkumar, C. Devi Shyamala Mary, Generalized Hyers - Ulam stability of additive - quadratic - cubic quartic functional equation in fuzzy normed spaces: A fixed point approach, International Journal of Mathematics And its Applications, Volume 4, Issue 4 (2016), 16-32.

T. Bag, S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. 11 (3) (2003) 687-705.

T. Bag and S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets and Systems 151 (2005) 513-547.

${ }^{[13]}$ L. Cadariu and V. Radu, Fixed points and stability for functional equations in probabilistic metric and random normed spaces,Fixed Point Theory and Applications. Article ID 589143,1 8 pages, 2009 (2009).

L. Cadariu and V. Radu, Fixed points and the stability of quadratic functional equations,An. Univ. Timisoara, Ser. Mat. Inform. 41 (2003), 25-48.

L. Cadariu and V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Grazer Math. Ber. 346 (2004), 43-52.

E. Castillo, A. Iglesias and R. Ruiz-coho, Functional Equations in Applied Sciences, Elsevier, B.V.Amslerdam, 2005.

S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994) 429-436.

S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002.

G. L. Forti, Comments on the core of the direct method for proving Hyers-Ulam stability of functional equations, J. Math. Anal. Appl., 295 (2004), 127-133.

Z. Gajda, On the stability of additive mappings, Inter. J. Math. Math. Sci., 14 (1991), 431-434.

P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431-436.

H.Azadi Kenary, S. Y. Jang and C. Park, A fuxed point approach to the Hyers-Ulam stability of a functional equation in various normed spaces, Fixed Point Theory and Applications, doi: 10.1186/1687-1812-2011-67.

D. H. Hyers, On the stability of the linear functional equation, Proc.Nat. Acad.Sci.,U.S.A., 27 (1941) 222-224 .

D. H. Hyers, G. Isac, Th. M. Rassias, Stability of functional equations in several variables, Birkhauser, Basel, 1998.

S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.

Pl. Kannappan, Functional Equations and Inequalities with Applications, Springer Monographs in Mathematics, 2009.

L. Maligranda, A result of Tosio Aoki about a generalization of Hyers-Ulam stability of additive functions- a question of priority, Aequationes Math., 75 (2008), 289-296.

B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), $305-$ 309.

A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems, Vol. 159, no. 6, (2008), 720-729.

A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems, 159, no. 6, (2008), 730-738.

A. K. Mirmostafaee and M. S. Moslehian, Fuzzy approximately cubic mappings, Information Sciences, Vol. 178 , no. $19,(2008), 3791-3798$.

A. K. Mirmostafaee and M. S. Moslehian, Fuzzy almost quadratic functions, Results in Mathematics, 52, no. 1-2, (2008), 161-177.

C. Park and J. R. Lee, An AQCQ-functional equation in paranormed spaces, Advances in Difference Equations, doi: $10.1186 / 1687-1847-2012-63$.

V.Radu, The fixed point alternative and the stability of functional equations, in: Seminar on Fixed Point Theory Cluj-Napoca, Vol. IV, 2003, in press.

J. M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Funct. Anal. USA, 46, (1982) $126-130$

J. M. Rassias, M. Arunkumar, E.sathya, N. Mahesh Kumar, Generalized Ulam - Hyers Stability Of A (AQQ): Additive - Quadratic - Quartic Functional Equation, Malaya Journal of Matematik, 5(1) (2017), 122-142.

J. M. Rassias, M. Arunkumar, E.sathya, N. Mahesh Kumar, Generalized Ulam - Hyers Stability Of $A(A Q Q): A d$ ditive - Quadratic - Quartic Functional Equation, Malaya Journal of Matematik, 5(1) (2017), 122-142.

J. M. Rassias, M. Arunkumar, E. Sathya and T. Namachivayam, Various Generalized Ulam - Hyers Stabilities of a Nonic Functional Equation, Tbilisi Mathematical Journal, 9(1) (2016), pp. 159-196.

Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc.Amer.Math. Soc., 72 (1978), 297 . 300.

Th. M. Rassias, On a modified Hyers-Ulam sequence, $mathrm{J}$. Math. Anal. Appl. 158no. 1, (1991), 106-113.

Th. M. Rassias, The problem of S. M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl., $246(2000), 352-378$

Th. M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Acedamic Publishers, Dordrecht, Bostan London, 2003.

K. Ravi, M. Arunkumar, J.M. Rassias, On the Ulam stability for the orthogonally general Euler-Lagrange type functional equation, International Journal of Mathematical Sciences, 3 (2008), 36-47.

K. Ravi, J. M. Rassias, M. Arunkumar and R. Kodandan, Stability of a generalized mixed type additive, quadratic, cubic and quartic functional equation, J. Inequal. Pure Appl. Math. 10 (2009), no. 4, Article 114, 29 pp.

F. Skof, Proprieta locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53 (1983), 113-129.

S. M. Ulam, Problems in Modern Mathematics, Science Editions, Wiley, NewYork, 1964.

J. Z. Xiao and X. H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets and Systems 133 (2003) 389-399.

T. Z. Xu and J. M. Rassias, M. J. Rassias and W. X. $mathrm{Xu}$, A fixed point approach to the stability of quintic and sextic functional equations in quasi- $beta$-normed spaces, $mathrm{J}$. Inequal. Appl. 2010, Art. ID 423231, 23 pp.

T. Z. Xu and J. M. Rassias, Approximate Septic and Octic mappings in quasi- $beta$-normed spaces, $mathrm{J}$. Computational Analysis and Applications, Vol.15, No. 6, 1110 - 1119 , 2013, copyright 2013 Eudoxus Press, LLC.

L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338 353.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

John Micheal Rassias, Elumalai Sathya, and Mohan Arunkumar. “Stabilities of Mixed Type Quintic-Sextic Functional Equations in Various Normed Spaces”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 217-43, https://www.malayajournal.org/index.php/mjm/article/view/1006.