New generalized $\hat{g}$-closed sets in intuitionistic fuzzy topological spaces

Downloads

Abstract

In this paper, we introduce the concepts of intuitionistic fuzzy $\hat{\hat{g}}$-closed sets and intuitionistic fuzzy $\hat{\mathrm{g}}$-open sets. Further, we study some of their properties.

Keywords:

Intuitionistic fuzzy topology, \text { Intuitionistic fuzzy } \hat{\hat{g}} \text {-closed set }, \text { Intuitionistic fuzzy } \hat{\hat{g}} \text {-open set }

Mathematics Subject Classification:

Mathematics
  • P. Deepika Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti-625532, Tamil Nadu, India.
  • M. Rameshpandi Department of Mathematics, Pasumpon Muthuramalinga Thevar College, Usilampatti-625532, Tamil Nadu, India.
  • S. Antony David Department of Mathematics, Ananda College, Affiliated to Alagappa University, Karaikudi, Tamil Nadu, India.
  • Pages: 267-271
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20(1986), 87-96, doi: 10.1016/S0165$0114(86) 80034-3$.

K. K. Azad, On fuzzy semi continuity, fuzzy almost continuity and fuzzy weakly continuity, Jour. Math. Anal. Appl., 82(1981), 14-32.

D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and Systems, 88(1997), 81-89, doi: 10.1016/S0165-0114(96)00076-0.

M. Garg, S. Agarwal and C. K. Goal, On $hat{g}-$ closed sets in topological spaces, Acta Ciencia Indica, XXXIII(4)M(2007), 1643-1652.

H. Gurcay, D. Coker and Es. A. Haydar, On fuzzy continuity in intuitionistic fuzzy topological spaces, The J. Fuzzy Math., 5(1997), 365-378.

K. Hur and Y. B. Jun, On intuitionistic fuzzy alpha continuous mappings, Honam Math. J, 25(2003), 131-139.

M. Jeyaraman, A. Yuvarani and O. Ravi, Intuitionistic fuzzy $alpha$-generalized semi continuous and irresolute mappings, International Journal of Analysis and Applications., $3(2)(2013), 93-103$.

Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and intuitionistic fuzzy pre continuity, Int. J. Mathematics and Mathematical Sciences, 19(2005), 3091-3101, doi: 10.1155/IJMMS.2005.3091.

N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo, 19(1970), 89-96, doi: $10.1007 / mathrm{BF} 02843888$

$mathrm{K}$. Sakthivel, Intuitionistic fuzzy alpha generalized continuous mappings and intuitionistic fuzzy alpha generalized irresolute mappings, Applied Mathematics Sciences, $4(2010), 1831-1842$.

R. Santhi and D. Jayanthi, Intuitionistic fuzzy generalized semipreclosed mappings, NIFS, 16(2010), 28-39.

R. Santhi and K. Sakthivel, Intuitionistic fuzzy generalized semi continuous mappings, Advances in Theoretical and Applied Mathematics, 5(2009), 73-82.

S. S. Thakur and Jyoti Pandey Bajpai, Intuitionistic fuzzy $omega$-closed sets and intuitionistic fuzzy $omega$-continuity, Inter- national Journal of Contemporary Advanced Mathematics, $1(2010), 1-15$.

S. S. Thakur and Rekha Chaturvedi, Generalized closed sets in intuitionistic fuzzy topology, The Journal of Fuzzy Mathematics, $16(2008), 559-572$.

S. S. Thakur and Rekha Chaturvedi, Regular generalized closed sets in intuitionistic fuzzy topological spaces, Universitatea Din Bacau Studii Si Cercetar Stiintifice, $6(2006), 257-272$.

Young Bae Jun and Seok-Zun Song, Intuitionistic fuzzy semi preopen sets and Intuitionistic semi pre continuous mappings, J. Appl. Math. & Computing, 19(2005), 467474.

L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353, doi: $10.1016 / S 0019-9958(65) 90241$ $mathrm{X}$.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

P. Deepika, M. Rameshpandi, and S. Antony David. “New Generalized $\hat{g}$-Closed Sets in Intuitionistic Fuzzy Topological Spaces”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 267-71, https://www.malayajournal.org/index.php/mjm/article/view/1013.