On isolate domination in hypergraphs

Downloads

DOI:

https://doi.org/10.26637/mjm1001/005

Abstract

In this paper we introduced the notion of an isolate domination in hypergraphs. A set \(D \subseteq V\) is called a dominating set of \(\mathcal{H}\) if for every \(v \in V \setminus D\) there exists \(u \in D\) such that \(u\) and \(v\) are adjacent. A dominating set \(I\) of a hypergraph \(\mathcal{H}\) is called an isolate dominating set of \(\mathcal{H}\) if it contains at least one vertex \(v \in I\) such that \(v\) is not adjacent to any vertex of \(I\). The minimum cardinality of an isolate dominating set of \(\mathcal{H}\) is called the isolate domination number \(\gamma_{0}\) of  \(\mathcal{H}\). We determine the isolate domination number for some hypergraphs while the study on this parameter has been initiated. Furthermore, the effects of the removal of a vertex or an edge from the hypergraph upon the isolate domination number are examined.

Keywords:

Hypergraphs, domination number, isolate domination

Mathematics Subject Classification:

05C65
  • Kishor Pawar Kavayitri Bahinabai Chaudhari North Maharashtra University: Jalgaon, Maharashtra, India.
  • Megha M. Jadhav Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India.
  • Pages: 55-62
  • Date Published: 01-01-2022
  • Vol. 10 No. 01 (2022): Malaya Journal of Matematik (MJM)

B. D. Acharya, Domination in Hypergraphs, AKCE Int. J. Graphs Combin., 4(2)(2007), 117-126.

B. D. AchARYA, Domination in hypergraphs:II-New Directions, Proc. Int. Conf. - ICDM, (2008), 1-16.

W. W. Rouse Ball, Mathematical Recreation and Problems of Past and Present Times, 1892.

C. Berge, Theory of Graphs and its Applications, Methuen, London, (1962).

C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam, (1973).

C. Berge, Hypergraphs, Combinatorics of Finite Sets, North-Holland, Amsterdam, (1989).

E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks, 7(1977), $247-261$.

I. Sahul Hamid and S. Balamurugan, Isolate Domination in Graphs, Arab Journal of Mathematical Sciences, DOI:10.1016/j.ajmsc.2015.10.001.

Michael A. Henning, Stephen T. Hedetniemi, Teresa W. Haynes, Structures of Domination in Graphs, Springer International Publishing, 2021.

T.W. Haynes, S.T. Hedetniemi And P.J. Slater, Domination in Graphs-Advanced Topics, New York : Dekker, (1998).

T.W. Haynes, S.T. Hedetniemi And P.J. Slater, Fundamentals of Domination in Graphs, New York: Dekker (1998).

S. T. Hedetniemi and R. C. Laskar, Bibliography on domination in graphs and some basic definitions of domination parameters, Discrete Math., 86(1990), 257-277.

Megha M. Jadhav and Kishor F. Pawar, On Edge Product Hypergraphs, Journal of Hyperstructures, 10(1)(2021), 1-12.

C. F. DE JAEnISCh, Traité des applications de l'analyse mathématique au jeu des échecs, 3(1862).

Bibin K. Jose, Zs. TuzA, Hypergraph Domination and Strong Independence, Appl. Anal. Discrete Math., 3 (2009), 347-358.

Oystein Ore, Theory of Graphs, Amer. Math. Soc. Trans., Vol. 38 Amer. Math. Soc., providence, RI, (1962), 206-212.

Vitaly I. Voloshin, Introduction To Graph And Hypergraph Theory, Nova Science Publishers, Inc. New York , 2009.

A. M. Yaglom And I. M. Yaglom, Challenging mathematical problems with elementary solutions, Volume 1 : Combinatorial Analysis and Probability Theory, 1964.

  • NA

Metrics

Metrics Loading ...

Published

01-01-2022

How to Cite

Kishor Pawar, and M. M. Jadhav. “On Isolate Domination in Hypergraphs”. Malaya Journal of Matematik, vol. 10, no. 01, Jan. 2022, pp. 55-62, doi:10.26637/mjm1001/005.