$\mathscr{I}_\lambda$-statistical limit points and $\mathscr{I}_\lambda$-statistical cluster points

Downloads

Abstract

In this paper we have extended the notion of $\lambda$-statistical limit points of real sequences to $\mathscr{I}_\lambda$-statistical limit points and studied some basic properties of the set of all $\mathscr{I}_\lambda$-statistical limit points and $\mathscr{I}_\lambda$-statistical cluster points of real sequences including their interrelationship. Then we have established $\mathscr{I}_\lambda$-statistical analogue of the monotone sequence theorem. Also introducing additive property of $\mathscr{I}_\lambda$-density zero sets we have established its relationship with $\mathscr{I}_\lambda$-statistical convergence.

Keywords:

$\mathscr{I}_\lambda$ -statistical convergence, $\mathscr{I}_\lambda$ -statistical limit point, $\mathscr{I}_\lambda$-statistical cluster point, $\mathscr{I}_\lambda $-density, $\mathscr{I}_\lambda$ -statistical boundedness

Mathematics Subject Classification:

Mathematics
  • Pages: 331-337
  • Date Published: 01-01-2021
  • Vol. 9 No. 01 (2021): Malaya Journal of Matematik (MJM)

J. Connor and J. Kline, On statistical limit points and the consistency of statistical convergence, J. Math. Anal. Appl., 197(2)(1996), 392-399.

J. Connor, J. Fridy and J. Kline, Statistically pre-Cauchy Sequences, Analysis, 14(4)(1994), 311-317.

J. Connor, R-type summability methods, Cauchy criteria, P-sets and Statistical convergence, Proc. Amer. Math. Soc., $115(2)(1992), 319-327$.

J. Connor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2)(1989), 194-198.

J. Connor, The statistical and strong P-Cesaro convergence of sequences, Analysis, 8(1-2)(1988), 4-7-63.

P. Das, E. Savas and S. K. Ghosal, On generalizations of certain summability methods using ideals, Appl. Math. Lett., 24(9)(2011), 1509-1514.

P. Das and E. Savas, On I-statistically pre-Cauchy sequences, Taiwanese J. Math., 18(1)(2014), 115-126.

S. Debnath and D. Rakshit, On $I$-statistical convergence, Iranian Journal of Mathematical Sciences and Informatics, $13(2)(2018), 101-109$.

K. Demirci, I-limit superior and limit inferior, Math. Commun., 6(2)(2001), 165-172.

H. Fast, Sur la convergence statistique, Colloq. Math., $2(3-4)(1951), 241-244$.

A. R. Freedman and I. J. Sember, Densities and summability, Pacific J. Math., 95(2)(1981), 293-305.

J. A. Fridy, On statistical convergence, Analysis, $5(4)(1985), 301-313$

J. A. Fridy, statistical limit points, Proc. Amer. Math. Soc., 118(4)(1993), 1187-1192.

J. A. Fridy and C. Orhan, Statistical limit superior and limit inferior, Proc. Amer. Math. Soc., 125(12)(1997), $3625-3631$

M. Gürdal and H. Sari, Extremal A-statistical limit points via ideals, Journal of the Egyptian Mathematical Society, $22(1)(2014), 55-58$.

E. Kolk, The statistical convergence in Banach spaces, Acta Comment. Univ. Tartu, 928(1991), 41-52.

P. Kostyrko, T. Šalát and W. Wilczyński, $I$-convergence, Real Anal. Exchange, 26(2)(2000/2001), 669-685.

P. Kostyrko, M. Macaz, T. Šalát and M. Sleziak, Iconvergence and external $I$-limit points, Math. Slovaca, $55(4)(2005), 443-454$

B. K. Lahiri and P. Das, $I$ and $I^*$-convergence in topological spaces, Math. Bohemica, 126(2)(2005), 153-160.

B. K. Lahiri and P. Das, $I$ and $I^*$-convergence of nets, Real Analysis Exchange, 33(2)(2007/2008), 431-442.

P. Malik, A. Ghosh and S. Das,I-statistical limit points and $I$-statistical cluster points, Proyecciones J. Math., $38(5)(2019), 1011-1026$.

M. Mursaleen, $lambda$-statistical convergence, Mathematica Slovaca, 50(1)(2000), 111-115.

M. Mursaleen, S. Debnath and D. Rakshit, I-Statistical Limit Superior and I- Statistical Limit Inferior, Filomat, $31(7)(2017), 2103-2108$.

I. Niven and H. S. Zuckerman, An introduction to the theorem of numbers, 4th ed., Wiley, New York, 1980.

S. Pehlivan, A. Guncan and M. A. Mamedov, Statistical cluster points of sequences in finite dimensional spaces, Czechoslovak Mathematical Journal, 54(1)(2004), 95102.

T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca,30(2)(1980), 139-150.

E. Savas, and P. Das, A generalized statistical convergence via ideals, Appl. Math. Lett., 24(6)(2011), 826830.

E. Savas, P. Das and S. Dutta, S., A note on strong matrix summability via ideals, Appl. Math. Lett., 25(4)(2012), 733-738.

E. Savas, $I_lambda$-statistical convergence of order $alpha$ in topological groups, General Letters in Mathematics, 1(2)(2016), 64-73.

E. Savas, $I_lambda$-statistically convergent functions of order $alpha$, Filomat, 31(2)(2017), 523-528.

I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66(5)(1959), 361-375.

H. Steinhus,Sur la convergence ordinatre et la convergence asymptotique, Colloq. Math., 2(1)(1951), 73-74.

Metrics

Metrics Loading ...

Published

01-01-2021

How to Cite

Prasanta Malik, and Samiran Das. “$\mathscr{I}_\lambda$-Statistical Limit Points and $\mathscr{I}_\lambda$-Statistical Cluster Points”. Malaya Journal of Matematik, vol. 9, no. 01, Jan. 2021, pp. 331-7, https://www.malayajournal.org/index.php/mjm/article/view/1031.